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Dedication

This book is dedicated to all the code warriors, white hat hackers, midnight engineers, and countless 
volunteers who have tirelessly given their skill, talent, experience, and time to make the open-source 
movement a reality and the Linux revolution possible.  Without their  tremendous contributions,  the 
software  needed  to  explore  cluster  programming,  MPP  programming,  SMP  programming,  and 
distributed programming would simply not be as widely accessible and available to everyone in the 
world as it now is.

Preface
We present an architectural approach to distributed and parallel programming using the C++ language. 
Particular attention is paid to how the C++ standard library, algorithms, and container classes behave in 
distributed and parallel environments. Methods for extending the C++ language through class libraries 
and  function  libraries  to  accomplish  distributed  and  parallel  programming  tasks  are  explained. 
Emphasis  is  placed  on  how  C++  works  with  the  new  POSIX  and  Single  UNIX  standards  for 
multithreading. Combining C++ executables with other language executables to achieve multilingual 
solutions  to  distributed  or  parallel  programming  problems  is  also  discussed.  Several  methods  of 
organizing software that support parallel and distributed programming are introduced.

We demonstrate how to remove the fundamental obstacles to concurrency. The notion of emergent 
parallelization  is  explored.  Our  focus  is  not  on  optimization  techniques,  hardware  specifics, 
performance comparisons, or on trying to apply parallel programming techniques to complex scientific 
or mathematical algorithms; rather, on how to structure computer programs and software systems to 
take  advantage  of  opportunities  for  parallelization.  Furthermore,  we  acquaint  the  reader  with  a 
multiparadigm approach to solving some of the problems that are inherent with distributed and parallel 
programming. Effective solutions to these problems often require a mix of several software design and 
engineering approaches. For instance, we deploy object-oriented programming techniques to tackle data 
race and synchronization problems. We use agent-oriented architectures to deal with multi-process and 
multithread  management.  Blackboards  are  used  to  minimize  communication  issues.  In  addition  to 
object-oriented, agent-oriented, and AI-oriented programming, we use parameterized programming to 
implement generalized algorithms that are suitable where concurrency is required. Our experience with 
the development of software of all sizes and shapes has led us to believe that successful software design 
and implementation demands versatility. The suggestions, ideas, and solutions we present in this book 
reflect that experience.

The Challenges

There are three basic challenges to writing parallel or distributed programs:



1. Identifying the natural parallelism that occurs within the context of a problem domain.

2. Dividing the software appropriately into two or more tasks that can be performed at the same 
time to accomplish the required parallelism.

3. Coordinating those tasks so that the software correctly and efficiently does what it is supposed 
to do.

These three challenges are accompanied by the following obstacles to concurrency:

Data race Deadlock detection

Partial failure Latency

Deadlock Communication failures

Termination detection Lack of global state

Multiple clock problem Protocol mismatch

Localized errors Lack of centralized resource allocation

This book explains what these obstacles are, why they occur, and how they can be managed.

Finally, several of the mechanisms we use for concurrency use TCP/IP as a protocol. Specifically the 
MPI  (Message  Passing  Interface)  library,  PVM (Parallel  Virtual  Machine)  library,  and  the  MICO 
(CORBA) library. This allows our approaches to be used in an Internet/Intranet environment, which 
means that programs cooperating in parallel may be executing at different sites on the Internet or a 
corporate intranet and communicating through message passing. Many of the ideas serve as foundations 
for infrastructure of Web services. In addition to the MPI and PVM routines, the CORBA objects we 
use can communicate from different servers accross the Internet. These components can be used to 
provide a variety of Internet/intranet services.

The Approach

We advocate a component approach to the challenges and obstacles found in distributed and parallel 
programming. Our primary objective is to use framework classes as building blocks for concurrency. 
The framework classes are supported by object-oriented mutexes, semaphores, pipes, and sockets. The 
complexity  of  task synchronization and communication is  significantly  reduced through the use of 
interface  classes.  We  deploy  agent-driven  threads  and  processes  to  facilitate  thread  and  process 
management.  Our  primary  approach  to  a  global  state  and  its  related  problems  involve  the  use  of 
blackboards.  We  combine  agent-oriented  and  object-oriented  architectures  to  accomplish 
multiparadigm solutions. Our multiparadigm approach is made possible using the support C++ has for 
object-oriented programming, parameterized programming, and structured programming.

Why C++?

There are C++ compilers available for virtually every platform and operating environment. The ANSI 
(American National Standards Institute) and ISO (International Standard Organization) have defined 
standards for the C++ language and its library. There are robust open-source implementations as well as 



commercial implementations of the language. The language has been widely adopted by researchers, 
designers, and professional developers around the world. The C++ language has been used to solve 
problems of all sizes and shapes from device drivers to large-scale industrial applications. The language 
supports  a  multiparadigm  approach  to  software  development  and  libraries  that  add  parallel  and 
distributed programming capabilities are readily available.

Libraries for Parallel and Distributed Programming

The MPICH, an implementation of MPI, the PVM library, and the Pthreads (POSIX Threads) library, 
are used to implement parallel programming using C++. MICO, a C++ implementation of the CORBA 
standard, is used to achieve distrbuted programming. The C++ Standard Library, in combination with 
CORBA and the Pthreads library, provides the support for agent-oriented and blackboard programming 
concepts that are discussed in this book.

The New Single UNIX Specification Standard

The new Single UNIX Specification Standard, Version 3, a joint effort between IEEE and the Open 
Group,  was  finalized  and  released  in  December  2001.  The  new  Single  UNIX  Specification 
encompasses  the  POSIX  standards  and  promotes  portability  for  application  programmers.  It  was 
designed to give software developers a single set of APIs to be supported by every UNIX system. It 
provides  a  reliable  road  map  of  standards  for  programmers  who  need  to  write  multitasking  and 
multithreading applications. In this book we rely on the Single UNIX Specification Standard for our 
discussions on process creations, process management, the Pthreads library, the new posix_spawn() 
routines,  the POSIX semaphores,  and FIFOs.  Appendix B in  this  book contains excerpts  from the 
standard that can be used as a reference to the material that we present.

Who is This Book For?

This book is written for software designers, software developers, application programmers, researchers, 
educators, and students who need an introduction to parallel and distributed programming using the C+
+ language. A modest knowledge of the C++ language and standard C++ class libraries is required. 
This book is not intended as a tutorial on programming in C++ or object-oriented programming. It is 
assumed that the reader will have a basic understanding of object-oriented programming techniques 
such as encapsulation, inheritance, and polymorphism. This book introduces the basics of parallel and 
distributed programming in the context of C++.

Development Environments Supported

The examples and programs presented in this book were developed and tested in the Linux and UNIX 
environments, specifically with Solaris 8, Aix, and Linux (SuSE, Red Hat). The PVM and MPI code 
was developed and tested on a 32-node Linux-based cluster. Many of the programs were tested on Sun 
Enterprise 450s. We used Sun's C++ Workshop, The Portland Group's C++ compiler, and GNU C++. 
Most examples will run in both the UNIX and Linux environments. In the cases where an example will 
not run in both environments, this fact is noted in the Program Profiles that are provided for all the 
complete program examples in the book
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Ancillaries

UML Diagrams

Many of the diagrams in this book use the UML (Unified Modeling Language) standard. In particular, 
activity  diagrams,  deployment  diagrams,  class  diagrams,  the  state  diagrams  are  used  to  describe 
important concurrency architectures and class relationships. Although a knowledge of the UML is not 
necessary,  familarity  is  helpful.  Appendix  A contains  an  explanation  and description  of  the  UML 
symbols and language that we use in this book.

Program Profiles

Each complete program in the book is accompanied by a program profile. The profile will contain 
implementation specifics such as headers required, libraries required, compile instructions,  and link 
instructions. The profile also includes a Notes section that will contain any special considerations that 
need to be taken when executing the program. Code that is not accompanied by a profile is meant for 
exposition purposes only.

Sidebars

We made every attempt to stay away from notation that is too theoretical for a introductory book such 
as this one. However, in some cases the theoretical or mathematical notation was unavoidable. In those 
cases we use the notation but we provide a detailed explanation of the notation in a sidebar.

Testing and Code Reliability

Although all examples and applications in this book were tested to ensure correctness, we make no 
warranties that the programs contained in this book are free of defects or error, are consistent with any 
particular standard or merchantability, or will meet your requirement for any particular application. 
They should not be relied upon for solving problems whose incorrect solution could result in injury to 
person or loss of property. The authors and publishers disclaim all liability for direct or consequential 
damages resulting from your use of the examples, programs, or applications present in this book.
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Chapter 1. The Joys of Concurrent Programming
"I suspect that concurrency is best supported by a library and that such a library can be 
implemented without major language extensions."

—Bjarne Stroustrup, inventor of C++

In this Chapter

• What is Concurrency?  

• The Benefits of Parallel Programming  

• The Benefits of Distributed Programming  

• The Minimal Effort Required  

• The Basic Layers of Software Concurrency  

• No Keyword Support for Parallelism in C++  

• Programming Environments for Parallel and Distributed Programming  

• Summary—Toward Concurrency  

The  software  development  process  now requires  a  working  knowledge  of  parallel  and  distributed 
programming.  The  requirement  for  a  piece  of  software  to  work  properly  over  the  Internet,  on  an 
intranet, or over some network is almost universal. Once the piece of software is deployed in one or 
more of these environments it  is subjected to the most rigorous of performance demands. The user 
wants instantaneous and reliable results. In many situations the user wants the software to satisfy many 
requests at the same time. The capability to perform multiple simultaneous downloads of software and 
data from the Internet is a typical expectation of the user. Software designed to broadcast video must 
also be able to render graphics and digitally process sound seamlessly and without interruption. Web 
server software is often subjected to hundreds of thousands of hits per day. It is not uncommon for 
frequently used e-mail servers to be forced to survive the stress of a million sent and received messages 
during business hours. And it's not just the quantity of the messages that can require tremendous work, 
it's also the content. For instance, data transmissions containing digitized music, movies, or graphics 
devour  network  bandwidth  and  can  inflict  a  serious  penalty  on  server  software  that  has  not  been 
properly designed. The typical computing environment is networked and the computers involved have 
multiple processors. The more the software does, the more it is required to do. To meet the minimal 
user's requirements, today's software must work harder and smarter. Software must be designed to take 
advantage of computers that have multiple processors. Since networked computers are more the rule 
than the exception, software must be designed to correctly and effectively run, with some of its pieces 
executing simultaneously on different computers. In some cases, the different computers have totally 
different  operating  systems  with  different  network  protocols!  To  accommodate  these  realities,  a 
software  development  repertoire  must  include  techniques  for  implementing  concurrency  through 
parallel and distributed programming.
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1.1 What is Concurrency?

Two events are said to be concurrent if they occur within the same time interval. Two or more tasks 
executing over the same time interval are said to execute concurrently. For our purposes, concurrent 
doesn't necessarily mean at the same exact instant. For example, two tasks may occur concurrently 
within the same second but with each task executing within different fractions of the second. The first 
task may execute for the first tenth of the second and pause, the second task may execute for the next 
tenth of the second and pause, the first task may start again executing in the third tenth of a second, and 
so on. Each task may alternate executing. However, the length of a second is so short that it appears that 
both tasks are  executing simultaneously.  We may extend this  notion to  longer time intervals.  Two 
programs performing some task within the same hour continuously make progress of the task during 
that hour, although they may or may not be executing at the same exact instant. We say that the two 
programs are executing concurrently for that hour. Tasks that exist at the same time and perform in the 
same  time  period  are  concurrent.  Concurrent  tasks  can  execute  in  a  single  or  multiprocessing 
environment. In a single processing environment, concurrent tasks exist at the same time and execute 
within  the  same  time  period  by  context  switching.  In  a  multiprocessor  environment,  if  enough 
processors are free, concurrent tasks may execute at the same instant over the same time period. The 
determining  factor  for  what  makes  an  acceptable  time  period  for  concurrency  is  relative  to  the 
application.

Concurrency techniques are used to allow a computer program to do more work over the same time 
period or time interval. Rather than designing the program to do one task at a time, the program is 
broken down in such a way that some of the tasks can be executed concurrently. In some situations, 
doing more work over the same time period is  not the goal.  Rather,  simplifying the programming 
solution is the goal. Sometimes it makes more sense to think of the solution to the problem as a set of 
concurrently executed tasks. For instance, the solution to the problem of losing weight is best thought 
of as concurrently executed tasks: diet and exercise. That is, the improved diet and exercise regimen are 
supposed to occur over the same time interval (not necessarily at the same instant). It is typically not 
very beneficial to do one during one time period and the other within a totally different time period. The 
concurrency of both processes is the natural form of the solution. Sometimes concurrency is used to 
make  software  faster  or  get  done  with  its  work  sooner.  Sometimes  concurrency  is  used  to  make 
software do more work over the same interval where speed is secondary to capacity. For instance, some 
web sites want customers to stay logged on as long as possible. So it's not how fast they can get the 
customers on and off of the site that is the concern—it's how many customers the site can support 
concurrently. So the goal of the software design is to handle as many connections as possible for as 
long a time period as possible. Finally, concurrency can be used to make the software simpler. Often, 
one  long,  complicated  sequence  of  operations  can  be  implemented  easier  as  a  series  of  small, 
concurrently executing operations. Whether concurrency is used to make the software faster, handle 
larger loads, or simplify the programming solution, the main object is software improvement using 
concurrency to make the software better.

1.1.1 The Two Basic Approaches to Achieving Concurrency

Parallel programming and distributed programming are two basic approaches for achieving concurrency 
with a piece of software.  They are two different programming paradigms that sometimes intersect. 
Parallel programming techniques assign the work a program has to do to two or more processors within 
a single physical or a single virtual computer. Distributed programming techniques assign the work a 
program has to do to two or more processes—where the processes may or may not exist on the same 
computer. That is, the parts of a distributed program often run on different computers connected by a 
network or at least in different processes. A program that contains parallelism executes on the same 
physical  or  virtual  computer.  The  parallelism within  a  program may be  divided  into  processes  or 



threads. We discuss processes in  Chapter 3 and threads in  Chapter 4. For our purposes, distributed 
programs can only be divided into processes. Multithreading is restricted to parallelism. Technically, 
parallel  programs  are  sometimes  distributed,  as  is  the  case  with  PVM  (Parallel  Virtual  Machine) 
programming. Distributed programming is sometimes used to implement parallelism, as is the case with 
MPI  (Message  Passing  Interface)  programming.  However,  not  all  distributed  programs  involve 
parallelism. The parts of a distributed program may execute at different instances and over different 
time periods.  For instance,  a software calendar program might be divided into two parts:  One part 
provides the user with a calendar and a method for recording important appointments and the other part 
provides the user with a set of alarms for each different type of appointment. The user schedules the 
appointments using part of the software, and the other part of the software executes separately at a 
different time. The alarms and the scheduling component together make a single application, but they 
are divided into two separately executing parts. In pure parallelism, the concurrently executing parts are 
all components of the same program. In distributed programs, the parts are usually implemented as 
separate programs. Figure 1-1 shows the typical architecture for a parallel and distributed program.

Figure 1-1. Typical architecture for a parallel and distributed program.

The parallel  application  in  Figure  1-1 consists  of  one  program divided  into  four  tasks.  Each task 
executes on a separate processor, therefore, each task may execute simultaneously. The tasks can be 
implemented by either a process or a thread. On the other hand, the distributed application in Figure 1-1 
consists of three separate programs with each program executing on a separate computer. Program 3 
consists of two separate parts that execute on the same computer. Although Task A and D of Program 3 
are on the same computer, they are distributed because they are implemented by two separate processes. 
Tasks within a parallel program are more tightly coupled than tasks within a distributed program. In 
general, processors associated with distributed programs are on different computers, whereas processors 
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associated with programs that involve parallelism are on the same computer. Of course, there are hybrid 
programs that are both parallel and distributed. These hybrid combinations are becoming the norm.

1.2 The Benefits of Parallel Programming

Programs that  are  properly designed to  take advantage of parallelism can execute  faster  than their 
sequential counterparts, which is a market advantage. In other cases the speed is used to save lives. In 
these cases faster equates to better. The solutions to certain problems are represented more naturally as 
a collection of simultaneously executing tasks. This is especially the case in many areas of scientific, 
mathematical,  and  artificial  intelligence  programming.  This  means  that  parallel  programming 
techniques  can  save  the  software  developer  work  in  some situations  by allowing the  developer  to 
directly implement data structures,  algorithms, and heuristics developed by researchers.  Specialized 
hardware can be exploited. For instance, in high-end multimedia programs the logic can be distributed 
to specialized processors for increased performance, such as specialized graphics chips, digital sound 
processors, and specialized math processors. These processors can usually be accessed simultaneously. 
Computers  with  MPP  (Massively  Parallel  Processors)  have  hundreds,  sometimes  thousands  of 
processors and can be used to solve problems that simply cannot realistically be solved using sequential 
methods.  With  MPP computers,  it's  the  combination  of  fast  with  pure  brute  force  that  makes  the 
impossible possible. In this category would fall environmental modeling, space exploration, and several 
areas  in  biological  research  such  as  the  Human  Genome  Project.  Further  parallel  programming 
techniques open the door to certain software architectures that are specifically designed for parallel 
environments.  For  example,  there  are  certain  multiagent  and  blackboard  architectures  designed 
specifically for a parallel processor environment.

1.2.1 The Simplest Parallel Model (PRAM)

The easiest method for approaching the basic concepts in parallel programming is through the use of 
the PRAM (Parallel Random Access Machine). The PRAM is a simplified theoretical model where 
there are n processors labeled as P1, P2, P3, ... Pn and each processor shares one global memory. Figure 

1-2 shows a simple PRAM.

Figure 1-2. A Simple PRAM.

All the processors have read and write access to a shared global memory. In the PRAM the access can 
be simultaneous. The assumption is that  each processor can perform various arithmetic and logical 
operations in parallel. Also, each of the theoretical processors in Figure 1-2 can access the global shared 
memory in one uninterruptible unit of time. The PRAM model has both concurrent and exclusive read 
algorithms. Concurrent read algorithms are allowed to read the same piece of memory simultaneously 
with no data corruption. Exclusive read algorithms are used to ensure that no two processors ever read 
the same memory location at the same time. The PRAM model also has both concurrent and exclusive 
write algorithms. Concurrent write algorithms allow multiple processors to write to memory,  while 
exclusive write algorithms ensure that no two processors write to the same memory at the same time. 
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Table  1-1 shows the  four  basic  types  of  algorithms  that  can  be  derived  from the  read  and  write 
possibilities.

Table 1-1. Four Basic Read-Write Algorithms

Read-Write Algorithm Type Meaning

EREW Exclusive read exclusive write

CREW Concurrent read exclusive write

ERCW Exclusive read concurrent write

CRCW Concurrent read concurrent write

We will refer to these algorithm types often in this book as we discuss methods for implementing 
concurrent  architectures.  The  blackboard  architecture  is  one of  the  important  architectures  that  we 
implement  using the  PRAM model  and it  is  discussed  in  Chapter  13.  It  is  important  to  note  that 
although PRAM is a simplified theoretical model, it is used to develop practical programs, and these 
programs can compete on performance with programs that were developed using more sophisticated 
models of parallelism.

1.2.2 The Simplest Parallel Classification

The PRAM gives us a simple model for thinking about how a computer can be divided into processors 
and memory and gives us some ideas for how those processors may access memory.  A simplified 
scheme for classifying the parallel computers was introduced by M.J. Flynn.[1] These schemes were 
SIMD (Single Instruction Multiple Data) and MIMD (Multiple Instruction Multiple Data). These were 
later  extended  to  SPMD (Single  Program Multiple  Data)  and  MPMD (Multiple  Program Multiple 
Data).  The  SPMD (SIMD)  scheme  allows  multiple  processors  to  execute  the  same  instruction  or 
program with each processor accessing different data. The MPMD (MIMD) scheme allows for multiple 
processors with each executing different programs or instructions and each with its own data. So in one 
scheme all  the processors  execute  the same program or instructions and in  the other  scheme each 
processor  executes  different  instructions.  Of  course,  there  are  hybrids  of  these  models  where  the 
processors  are  divided  up  and  some  are  SPMD  and  some  are  MPMD.  Using  SPMD,  all  of  the 
processors are simply doing the same thing only with different data. For example, we can divide a 
single puzzle up into groups and assign each group to a separate processor. Each processor will apply 
the same rules for trying to put together the puzzle, but each processor has different pieces to work 
with. When all of the processors are done putting their pieces together, we can see the whole. Using 
MPMD, each processor executes something different. Even though they are all trying to solve the same 
problem, they have been assigned a different aspect of the problem. For example, we might divide the 
work of securing a Web server as a MPMD scheme. Each processor is assigned a different task. For 
instance,  one  processor  monitors  the  ports,  another  processor  monitors  login  attempts,  another 
processor analyzes packet contents, and so on. Each processor works with its own data relative to its 
area of concern. Although the processors are each doing different work using different data, they are 
working toward a single solution: security. The parallel programming concepts that we discuss in this 
book are easily described using PRAM, SPMD (SIMD), and MPMD (MIMD). In fact, these schemes 
and  models  are  used  to  implement  practical  small-  to  medium-scale  applications  and  should  be 
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sufficient until you are ready to do advanced parallel programming.

[1] M.J. Flynn. Very high-speed computers. In Proceedings of the IEEE, 54, 1901-1909 
(December 1966).

1.3 The Benefits of Distributed Programming

Distributed  programming  techniques  allow software  to  take  advantage  of  resources  located  on  the 
Internet, on corporate and organization intranets, and on networks. Distributed programming usually 
involves  network programming in  one form or another.  That  is,  a program on one computer  on a 
network needs some hardware or software resource that belongs to another computer either on the same 
network or on some remote network. Distributed programming is all  about one program talking to 
another program over some kind of network connection, which may involve everything from modems 
to satellites. The distinguishing feature of distributed programs is they are broken into parts. Those parts 
are usually implemented as separate programs. Those programs typically execute on separate computers 
and  the  program's  parts  communicate  with  each  other  over  a  network.  Distributed  programming 
techniques provide access to resources that may be geographically distant. For example, a distributed 
program divided  into  a  Web  server  component  and  a  Web  client  component  can  execute  on  two 
separate computers. The Web server component can be located in Africa and the Web client component 
can be located in Japan. The Web client part is able to use software and hardware resources of the Web 
server component,  although they are separated by a great distance and almost  certainly located on 
different  networks  running  different  operating  environments.  Distributed  programming  techniques 
provide shared access to expensive hardware and software resources. For instance, an expensive, high-
end holographic printer may have print server software that provides print services to client software. 
The print  client software resides on one computer and the print  server software resides on another 
computer. Only one print server is needed to serve many print clients. Distributed computing can be 
used for redundancy and fail  over.  If  we divide the program up into a number of parts  with each 
running on different computers, then we may assign some of the parts the same task. If one of the 
computers  fails  for  some  reason  then  another  part  of  the  same  program executing  on  a  different 
computer picks up the work.  Databases can be used to hold billions,  trillions,  even quadrillions of 
pieces of information. It is simply not practical for every user to have a copy of the database. The 
problem is some users are located in different buildings than where the computer with the database is 
located. Some users are located in different cities, states, and in some instances, countries. Distributed 
programming techniques are used to allow users to share the massive database regardless of where they 
are located.

1.3.1 The Simplest Distributed Programming Models

The client-server model of distributed computing is perhaps the easiest to understand and the most 
commonly used. In this model, a program is divided up into two parts: One part is called the server and 
the other the client. The server has direct access to some hardware or software resource that the client 
wants to use. In most cases, the server is located on a different machine than the client. Typically, there 
is a many-to-one relationship between the server and the client, that is,  there is usually one server 
fulfilling  the  requests  of  many clients.  The  server  usually  mediates  access  to  a  large  database,  an 
expensive hardware resource, or an important collection of applications. The client makes requests for 
data, calculations, and other types of processing. A search engine is a good example of a client-server 
application.  Search  engines  are  used  to  locate  information  on  the  Internet  or  on  corporate  and 
organization intranets. The client is used to obtain a keyword or phrase that the user is interested in. The 
client software part then passes the request to the server software part. The server has the muscle to 
perform the massive search for the user's keyword or phrase. The server has either direct access to the 
information or to other servers that have access to the information. Ideally, the server finds the keyword 



or phrase the user requested and returns that information to the client component. Although the client 
and the server are separate programs on separate computers, they make up a single application. This 
division  of  a  piece  of  software  into  a  client  and  a  server  is  the  primary  method  of  distributed 
programming.  The  client-server  model  also  has  other  forms  depending  on  the  environment.  For 
instance,  the  term  producer-consumer  is  a  close  cousin  of  client-server.  Typically,  client-server 
applications refer to larger programs and producer-consumer refers to smaller programs. Usually when 
the programs are at the operating system level or lower they are called producer-consumer, and when 
they are  above the operating system level  they are  usually  called client-server  (however,  there  are 
always exceptions).

1.3.2 The Multiagent (Peer-to-Peer) Distributed Model

Although the client-server model is the most prevalent distributed programming model in use, it is not 
the only model. Agents are rational software components that are self directed, often autonomous, and 
can continuously execute.  Agents can both make requests of other software components and fulfill 
requests of other software components. Agents can cooperate within groups to perform certain tasks 
collectively. In this model there is no specific client or server. The agents form a kind of peer-to-peer 
model  where  each  of  the  components  are  on  somewhat  equal  footing  and  each  component  has 
something  to  offer  to  the  other.  For  example,  an  agent  that  is  providing  a  price  quote  for  the 
refurbishing of a vintage sports car might work together with other agents. Where one agent specializes 
in engine work, another specializes in body work, another specializes in interior design and so on. 
These  agents  may  cooperatively  and  collectively  come  up  with  the  most  competitive  quote  for 
refurbishing the car. The agents are distributed because each agent is located on a different server on 
the Internet. The agents use an agreed-upon Internet protocol to communicate. The client-server model 
is a natural fit for certain types of distributed programming and the peer-to-peer agent model is a natural 
fit for certain types of distributed programming. We explore both types in this book. The client-server 
and peer-to-peer models can be used to satisfy most distributed programming demands.

1.4 The Minimal Effort Required

Parallel and distributed programming come with a cost. Although there are many benefits to writing 
parallel  and distributed programming, there are also some challenges and prerequisites. We discuss 
some challenges in Chapter 2. We mention the prerequisites here. Before a program is written or a piece 
of  software  is  developed,  it  must  first  go  through  a  design  process.  For  parallel  and  distributed 
programs,  the  design  process  will  include  three  issues:  decomposition,  communication,  and 
synchronization.

1.4.1 Decomposition

Decomposition is the process of dividing up the problem and the solution into parts. Sometimes the 
parts are grouped into logical areas (i.e., searching, sorting, calculating, input, output, etc.). In other 
situations the parts are grouped by logical resource (i.e., file, communication, printer, database, etc.). 
The decomposition of the software solution amounts to the WBS (work breakdown structure). The 
WBS  determines  which  piece  of  software  does  what.  One  of  the  primary  issues  of  concurrent 
programming is identifying a natural WBS for the software solution at hand. There is no simple or 
cookbook  approach  to  identifying  the  WBS.  Software  development  is  the  process  of  translating 
concepts, ideas, patterns of work, rules, algorithms, or formulas into sets of instructions and data that 
can be executed or manipulated by a computer. This is largely a process of modeling. Software models 
are reproductions in software of some real-world task, process, or ideal. The purpose of the model is to 
imitate or duplicate the behavior and characteristics of some real-world entity in a particular domain. 
This process of modeling uncovers the natural WBS of a software solution. The better the model is 
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understood  and  developed  the  more  natural  the  WBS  will  be.  Our  approach  is  to  uncover  the 
parallelism or distribution within a solution through modeling. If parallelism doesn't naturally fit, don't 
force it. The question of how to break up an application into concurrently executing parts should be 
answered during the design phase and should be obvious in the model of the solution. If the model of 
the problem and the solution don't imply or suggest parallelism and distribution then try a sequential 
solution. If the sequential solution fails, that failure may give clues to how to approach the parallelism.

1.4.2 Communication

Once the software solution is decomposed into a number of concurrently executing parts, those parts 
will usually do some amount of communicating. How will this communication be performed if the parts 
are in different processes or different computers? Do the different parts need to share any memory? 
How will one part of the software know when the other part is done? Which part starts first? How will 
one  component  know if  another  component  has  failed?  These  issues  have  to  be  considered  when 
designing parallel or distributed systems. If no communication is required between the parts, then the 
parts don't really constitute a single application.

1.4.3 Synchronization

The WBS designates who does what. When multiple components of software are working on the same 
problem,  they  must  be  coordinated.  Some component  has  to  determine  when  a  solution  has  been 
reached. The components' order of execution must be coordinated. Do all of the parts start at the same 
time or does some work while others wait? What two or more components need access to the same 
resource? Who gets it first? If some of the parts finish their work long before the other parts, should 
they  be  assigned  new  work?  Who  assigns  the  new  work  in  such  cases?  DCS  (decomposition, 
communication,  and  synchronization)  is  the  minimum that  must  be  considered  when  approaching 
parallel  or  distributed  programming.  In  addition  to  considering  DCS,  the  location  of  DCS is  also 
important. There are several layers of concurrency in application development. DCS is applied a little 
differently in each layer.

1.5 The Basic Layers of Software Concurrency

In this book we are concerned with concurrency within the application as opposed to concurrency at the 
operating system level, or concurrency within hardware. Although the concurrency within hardware 
and the concurrency at the operating system level support application concurrency, our focus is on the 
application. For our purposes, concurrency occurs at:

• Instruction level

• Routine (function/procedure) level

• Object level

• Application level

1.5.1 Concurrency at the Instruction Level

Concurrency at the instruction level occurs when multiple parts of a single instruction can be executed 
simultaneously.  Figure  1-3 shows  how  a  single  instruction  can  be  decomposed  for  simultaneous 
execution.
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Figure 1-3. Decomposition of a single instruction.

In Figure 1-3, the component (A + B) can be executed at the same time as (C – D). This is an example 
of concurrency at the instruction level.  This kind of parallelism is normally supported by compiler 
directives and is not under the direct control of a C++ programmer.

1.5.2 Concurrency at the Routine Level

The WBS structure of a program may be along function lines, that is, the total work involved in a 
software solution is divided between a number of functions. If these functions are assigned to threads, 
then each function can execute on a different processor and if enough processors are available, each 
function can execute simultaneously. We discuss threads in more detail in Chapter 4.

1.5.3 Concurrency at the Object Level

The WBS of a software solution may be distributed between objects. Each object can be assigned to a 
different  thread,  or  process.  Using  the  CORBA  (Common  Object  Request  Broker  Architecture) 
standard, each object may be assigned to a different computer on the network or different computer on 
a different network. We discuss CORBA in more detail in  Chapter 8. Objects residing in different 
threads or processes may execute their methods concurrently.

1.5.4 Concurrency of Applications

Two or  more  applications  can  cooperatively  work  together  to  solve  some  problem.  Although  the 
application may have originally been designed separately and for different purposes, the principles of 
code reuse often allow applications to cooperate. In these circumstances two separate applications work 
together as a single distributed application. For example, the Clipboard was not designed to work with 
any one application but can be used by a variety of applications on the desktop. Some uses of the 
Clipboard had not been dreamed of during its original design.

The second and the third layers are the primary layers of concurrency that we will focus on in this book. 
We show techniques for implementing concurrency in these layers. Operating system and hardware 
issues are presented only where they are necessary in the context of application design. Once we have 
an appropriate WBS for a parallel programming or distributed programming design, the question is how 
do we implement it in C++.

1.6 No Keyword Support for Parallelism in C++

The C++ language does not include any keyword primitives for parallelism. The C++ ISO standard is 
for the most part silent on the topic of multithreading. There is no way within the language to specify 
that two or more statements should be executed in parallel. Other languages use built-in parallelism as a 
selling feature. Bjarne Stroustrup, the inventor of the C++ language, had something else in mind. In 
Stroustrup's opinion:

It  is  possible to design concurrency support  libraries that  approach built-in concurrency 
support  both  in  convenience  and efficiency.  By relying on libraries,  you can support  a 
variety of concurrency models, though, and thus serve the users that need those different 
models better than can be done by a single built-in concurrency model. I expect this will be 
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the direction taken by most people and that the portability problems that arise when several 
concurrency-support libraries are used within the community can be dealt with by a thin 
layer of interface classes.

Furthermore, Stroustrup says, "I recommend parallelism be represented by libraries within C++ rather 
than as a general language feature." The authors have found Stroustrup's position and recommendation 
on parallelism as a library the most practical option. This book is only made possible because of the 
availability of high-quality libraries that can be used for parallel and distributed programming. The 
libraries that we use to enhance C++ implement national and international standards for parallelism and 
distributed programming and are used by thousands of C++ programmers worldwide.

1.6.1 The Options for Implementing Parallelism Using C++

Although there are special versions of C++ that implement parallelism, we present methods on how 
parallelism can be implemented using the ISO (International Standard Organization) standard for C++. 
The library approach to parallelism is the most flexible. System libraries and user-level libraries can be 
used  to  support  parallelism in  C++.  System libraries  are  those  libraries  provided  by the  operating 
system environment. For example, the POSIX threads library is a set of system calls that can be used in 
conjunction with C++ to support parallelism. The POSIX (Portable Operating System Interface) threads 
are part  of the new Single UNIX Specification.  The POSIX threads are included in the IEEE Std. 
1003.1-2001. The Single UNIX Specification is sponsored by the Open Group and developed by the 
Austin  Common  Standards  Revision  Group.  According  to  the  Open  Group,  the  Single  UNIX 
Specification is:

• Designed to  give software developers a  single set  of APIs to  be supported by every UNIX 
system.

• Shifts the focus from incompatible UNIX system product implementations to compliance to a 
single set of APIs.

• It is the codification and dejure standardization of the common core of UNIX system practice.

• The basic objective is portability of both programmers and application source code.

The Single UNIX Specification Version 3 includes the IEEE Std 1003. 1-2001 and the Open Group 
Base Specifications Issue 6. The IEEE POSIX standards are now a formal part of the Single UNIX 
Specification  and vice  versa.  There  is  now a single  international  standard for  a  portable  operating 
system interface. C++ developers benefit because this standard contains APIs for creating threads and 
processes.  Excluding  instruction-level  parallelism,  dividing  a  program  up  into  either  threads  or 
processes is the only way to achieve parallelism with C++. The new standard provides the tools to do 
this. The developer can use:

• POSIX threads (also referred to as pthreads)

• POSIX spawn function

• the exec() family of functions

These are all supported by system API calls and system libraries. If an operation system complies with 
the Single UNIX Specification Version 3, then these APIs will be available to the C++ developer. 
These APIs are discussed in Chapters 3 and 4. They are used in many of the examples in this book. In 
addition to system-level libraries, user-level libraries that implement other international standards such 
as  the MPI (Message Passing Interface),  PVM (Parallel  Virtual  Machine),  and CORBA (Common 
Object Request Broker Architecture) can be used to support parallelism with C++.
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1.6.2 MPI Standard

The  MPI  is  the  standard  specification  for  message  passing.  The  MPI  was  designed  for  high 
performance on both massively  parallel  machines  and on workstation  clusters.  This  book uses  the 
MPICH implementation of the MPI standard. MPICH is a freely available, portable implementation of 
MPI. The MPICH provides the C++ programmer with a set of APIs and libraries that support parallel 
programming. The MPI is especially useful for SPMD and MPMD programming. The authors use the 
MPICH implementation of MPI on a 32-node cluster running Linux and an 8-node cluster running 
Solaris and Linux. Although C++ doesn't have parallel primitives built in, it  can take advantage of 
power libraries such as MPICH that does support parallelism. This is one of the benefits of C++. It is 
designed for flexibility.

1.6.3 PVM: A Standard for Cluster Programming

The PVM is a software package that permits a heterogeneous collection of computers hooked together 
by a network to be used as a single large parallel computer. The overall objective of the PVM system is 
to enable a collection of computers to be used cooperatively for concurrent or parallel computation. A 
PVM library implementation supports:

• Heterogeneity in terms of machines, networks, and applications

• Explicit message-passing model

• Process-based computation

• Multiprocessor support (MPP, SMP)

• Translucent access to hardware (applications can either ignore or take advantage of hardware 
differences)

• Dynamically configurable host pool (processors can be added and deleted at runtime and can 
include processor mixes)

The PVM is the easiest to use and most flexible environment available for basic parallel programming 
tasks that require the involvement of different types of computers running different operating systems. 
The  PVM library  is  especially  useful  for  several  single  processor  systems  that  can  be  networked 
together to form a virtual parallel processor machine. We discuss techniques for using PVM with C++ 
in Chapter 6. The PVM is the de facto standard for implementing heterogeneous clusters and is freely 
available and widely used. The PVM has excellent support for MPMD (MIMD) and SPMD (SIMD) 
models  of  parallel  programming.  The  authors  use  PVM  for  small-  to  medium-size  parallel 
programming tasks and the MPI for larger, more complex MPI tasks. PVM and MPI are both libraries 
that can be used with C++ to do cluster programming.

1.6.4 The CORBA Standard

CORBA  is  the  standard  for  distributed  cross-platform  object-oriented  programming.  We  mention 
CORBA here  under  parallelism because  implementations  of  the  CORBA standard  can  be  used  to 
develop  multiagent  systems.  Multiagent  systems offer  important  models  of  peer-to-peer  distributed 
programming.  Multiagent  systems  can  work  concurrently.  This  is  one  of  the  areas  where  parallel 
programming and distributed programming overlap.  Although the agents are executing on different 
computers,  they  are  executing  during  the  same  time  period,  working  cooperatively  on  a  common 
problem. The CORBA standard provides an open, vendor-independent architecture and infrastructure 
that computer applications use to work together over networks. Using the standard protocol IIOP, a 
CORBA-based program from any vendor, on almost any computer, operating system, programming 
language,  and  network,  can  interoperate  with  a  CORBA-based program from the  same or  another 
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vendor on almost any other computer operating system, programming language, and network. In this 
book we use the MICO implementation. MICO is a freely available and fully compliant implementation 
of the CORBA standard. MICO supports C++.

1.6.5 Library Implementations Based on Standards

MPICH, PVM, MICO, and POSIX threads are each library implementations based on standards. This 
means that software developers can rely on these implementations to be widely available and portable 
across  multiple  platforms.  These  libraries  are  freely  available  and  used  by  software  developers 
worldwide. The POSIX threads library can be used with C++ to do multithreaded programming. If the 
program is running on a computer that has multiple processors, then each thread can possibly run on a 
separate processor and thereby execute concurrently. If only a single processor is available, then the 
illusion  of  parallelism  is  provided  and  concurrency  is  achieved  through  the  process  of  context 
switching. POSIX threads are perhaps the easiest way to introduce parallelism within a C++ program. 
Whereas the MPICH, PVM, and MICO libraries will have to be downloaded or obtained (they are 
readily available), any operating system environment that is client with the POSIX standard or the new 
UNIX Specification Version 3 will have a POSIX threads implementation. Each library offers a slightly 
different model of parallelism. Table 1-2 shows how each library can be used with C++.

Table 1-2. MPICH, PVM, MICO, and POSIX Threads Used with C++

Libraries C++ Usage

MPICH Supports  large-scale,  complex  cluster  programming.  Strong support  for  SPMD model. 
Also supports SMP, MPP, and multiuser configurations.

PVM Supports  cluster  programming of  heterogeneous environments.  Easy to use for single-
user, small to medium cluster applications. Also supports MPP.

MICO Supports either distributed or object-oriented parallel programming. Contains nice support 
for agent and multiagent programming.

POSIX Supports parallel processing within a single application at the function or object level. Can 
be used to take advantage of SMP or MPP.

Whereas languages that depend on built-in support for parallelism are restricted to the models supplied, 
the  C++  developer  is  free  to  mix  and  match  parallel  programming  models.  As  the  nature  of  the 
applications change, a C++ developer can select different libraries to match the scenario.

1.7 Programming Environments for Parallel and Distributed Programming

The most common environments for parallel and distributed programming are clusters, MPPs, and SMP 
computers. Clusters are collections of two or more computers that are networked together to provide a 
single, logical system. The group of computers appear to the application as a single virtual computer. 
MPP  (Massively  Parallel  Processors)  is  a  single  computer  that  has  hundreds  of  processors.  SMP 
(Symmetric Multiprocessing) is a single system that has processors that are tightly coupled where the 
processors share memory and the data path. SMP processors share the resources and are all controlled 
by  a  single  operating  system.  This  book provides  a  gentle  introduction  to  parallel  and  distributed 
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programming,  therefore  we  focus  our  attention  on  small  clusters  of  8  to  32  processors  and  on 
multiprocessor machines with 2 to 4 processors. Although many of the techniques we discuss can be 
used  in  MPP  environments  or  in  large  SMP  environments,  our  primary  attention  is  on  moderate 
systems.

Summary—Toward Concurrency

Throughout this book we present an architectural approach to parallel and distributed programming. 
The emphasis is placed on uncovering the natural parallelism within a problem and its solution. This 
parallelism is captured within the software model for the solution. We suggest object-oriented methods 
to help manage the complexity of parallel and distributed programming. Our mantra is function follows 
form. We use the library approach to provide parallelism support for the C++ language. The libraries 
we recommend are based on national and international standards. Each library is freely available and 
widely used. Techniques and concepts presented in the book are vendor independent, nonproprietary, 
and rely on open standards and open architectures. The C++ programmer and software developer can 
use different parallel models to serve different needs because each parallelism model is captured within 
a library. The library approach to parallel and distributed programming gives the C++ programmer the 
greatest possible flexibility. While parallel and distributed programming can be fun and rewarding, it 
presents several  challenges.  In the next chapter we will  provide an overview of the most common 
challenges to parallel and distributed programming.



Chapter  2.  The  Challenges  of  Parallel  and  Distributed 
Programming
"The idea  that  you should  really  indicate  the  exact  values  of  any physical  quantity  — 
temperature, density, potential field strength or whatever ... is a bold extrapolation."

—Erwin Shrodinger, Causality and Wave Mechanics

In this Chapter

• The Big Paradigm Shift  

• Coordination Challenges  

• Sometimes Hardware Fails and Software Quits  

• Too Much Parallelization or Distribution Can Have Negative Consequences  

• Selecting a Good Architecture Requires Research  

• Different Techniques for Testing and Debugging are Required  

• The Parallel or Distributed Design Must Be Communicated  

• Summary  

In the basic sequential model of programming, a computer program's instructions are executed one at a 
time. The program is viewed as a recipe and each step is to be performed by the computer in the order 
and amount specified. The designer of the program breaks up the software into a collection of tasks. 
Each task is performed in order, and each task must wait its turn. Every program is perceived as having 
a beginning, middle, and end. The designer or developer envisions each program as a linear progression 
of tasks. Not only must the tasks march in single file, but the tasks are related so that if the first task 
cannot complete its work for some reason then the second task may never start. In other words, each 
task is made to wait on the result of the previous task's work before it can execute. In the sequential 
model tasks are often serially interdependent. This means that A needs something from B, B needs 
something from C, C needs something from D, and so on. If B fails for some reason, then C and D will 
never execute. In a sequential world the developer is accustomed to designing the software to perform 
step 1 first, then step 2, then step 3. This sequential model is so entrenched in the software design and 
development process that many programmers find it hard to see things any other way. The solution to 
every problem, the design of every algorithm, and the layout of every data structure all rely on the 
computer accessing each instruction or piece of data one at a time.

2.1 The Big Paradigm Shift

All  of  this  changes  in  the world  of  parallel  programming.  In  this  world,  multiple  instructions  can 
execute at the same instant. A single instruction might be broken down into smaller pieces with each 
piece  being  executed  simultaneously.  A program can  be  broken  into  multiple  tasks  that  can  each 
execute at the same time. Instead of one task, a program might consist of hundreds or thousands of 
routines executing concurrently. In the world of parallel programming, the sequence and location of 
things is not always predictable. Multiple tasks can start at the same time on any processor with no 
guarantee what task will finish first, in what order they'll finish, or on what processor they will execute. 
In  addition  to  tasks  executing  in  parallel,  a  single  task  may  have  concurrently  executing  parts  or 
subtasks. In some configurations, it is possible for the subtasks to run on separate processors, possibly 
separate  computers.  Figure  2-1 shows three  levels  of  parallelism that  are  possible  within  a  single 
computer program.
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Figure 2-1. The three levels of parallelism that are possible within a single computer program.

The programmer and developer's model of a program undergoes a big paradigm shift because of the 
three levels of parallelism shown in Figure 2-1 and how these levels of parallelism can be distributed to 
multiple processors.  Figure 2-2 illustrates how the three levels of parallelism are combined with the 
basic parallel processor configurations.
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Figure 2-2. The three levels of parallelism combined with the basic parallel processor configurations.

Notice in Figure 2-2 that multiple tasks can run on a single processor even when the computer has more 
than one processor. This situation can be created by operating system scheduling policies. Scheduling 
policies, process priorities, thread priorities, and input/output device performance all impact where and 
for how long a task, subtask, or partial instruction will execute.  Figure 2-2 emphasizes the different 
architectures that a programmer must face when moving from the sequential programming model to a 
parallel programming model. The model changes from a strictly ordered sequence of tasks to only a 
partially ordered (possibly unordered) collection of tasks. Parallelism turns order of execution, time of 
execution, and location of execution into wildcards. Any combination of these wildcards is subject to 
change values in often unpredictable ways.
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2.2 Coordination Challenges

If a program has routines that can execute in parallel, and these routines share any files, devices, or 
memory locations, then several coordination issues are introduced. For example, lets say we have an 
electronic bank withdrawal and deposit program that is divided into three tasks that can execute in 
parallel. We label the tasks A, B, C.

Task A receives requests from Task B to make withdrawals from an account. Task A also receives 
requests from Task C to make deposits to an account. Task A accepts and processes requests on a first-
come, first-serve basis. What if we have an account that has a balance of $1,000 and Task C wants to 
make a $100 deposit to the account and Task B wants to make a $1,100 withdrawal from the account? 
What happens if Task B and Task C both try to update the same account at the same time? What would 
the balance be? Obviously an account balance can only hold one value at a time. Task A can only apply 
one transaction at a time to the account, so there's a problem. If Task B's request executes a fraction of a 
second faster than Task C, then the account will have a negative balance. On the other hand, if Task C 
gets  to the account first,  then the account  will  not  have a negative balance.  So the balance of the 
account depends on which task happens to get its request to Task A first. Furthermore, we can execute 
Tasks B and C several times, each time starting with the same amounts, and sometimes Task B would 
execute a fraction of a second faster and sometimes Task C would execute faster. Clearly some form of 
coordination is in order.

To  coordinate  tasks  that  are  executing  in  parallel  requires  communication  between  the  tasks  and 
synchronization of their work. Four common types of problems occur when the communication or the 
synchronization is incorrect.

Problem #1 Data Race

If two or more tasks attempt to change a shared piece of data at the same time and the final value of the 
data depends simply on which tasks get there first, then a race condition has occurred. When two or 
more tasks are attempting to update the same data resource at the same time, the race condition is called 
data race. In our electronic banking program, which task gets to the account balance first turns out to be 
a matter of operating system scheduling, processor states, latency, and chance. This situation creates a 
race condition. Under these circumstances, what should the bank report as the account's real balance?

So while we would like our electronic banking program to be able to simultaneously handle many 
banking deposits and withdrawals, we need to coordinate the tasks in the program if the deposits and 
withdrawals happen to be applied to the same account. Whenever tasks concurrently share a modifiable 
resource, rules and policies will have to be applied to the task's access. For instance, in our banking 
program we might apply any deposits to the account before we apply any withdrawals. We might set a 
rule that only one transaction has access to an account at a time. If more than one transaction for the 
same account arrives at the same time, then the transactions must be held and organized according to 
some rule and then granted access one at a time. These organization rules help to accomplish proper 
synchronization.

Problem #2 Indefinite Postponement

Scheduling one or more tasks to wait until some event or condition occurs can be tricky. First, the event 
or condition must take place in a timely fashion. Second, it requires carefully placed communications 
between tasks. If one or more tasks are waiting for a piece of communication before they execute and 
that communication either never comes, comes too late, or is incomplete, then the tasks may never 
execute. Likewise, if the event or condition that we assumed would eventually happen actually never 
occurs,  then the tasks that  we have suspended will  wait  forever.  If  we suspend one or more tasks 
waiting on some condition or event that never occurs, this is known as indefinite postponement. In our 



electronic banking example, if we set up rules that cause the withdrawal tasks to wait until all deposit 
tasks are completed, then the withdrawal tasks could be headed for indefinite postponement.

The assumption is that there are deposit tasks. If no deposit requests are made, what will cause the 
withdrawal  tasks  to  execute?  What  if  the  reverse  happens,  that  is,  what  if  deposit  requests  are 
continuously made to the same account? As long as a deposit is in progress, no withdrawal can be 
made. This situation can indefinitely postpone withdrawals.

Indefinite  postponement  might  take  place  if  no deposit  tasks  appear  or  if  deposit  tasks  constantly 
appear. What if deposit requests appear correctly but we fail to properly communicate the event? So as 
we try to coordinate our parallel task's access to some shared data resource, we have to be mindful of 
situations  that  can  create  indefinite  postponement.  We  discuss  techniques  for  avoiding  indefinite 
postponement in Chapter 5.

Problem #3 Deadlock

Deadlock is another waiting-type pitfall. To illustrate an example of deadlock, lets assume that the three 
tasks in our electronic banking program example are working with two accounts instead of one. Recall 
that Task A receives withdrawal requests from Task B and deposit requests from Task C. Tasks A, B, 
and C can execute concurrently. However, Tasks B and C may only update one account at a time. Task 
A grants access on a first-come, first-serve basis. Lets say that Task B has exclusive access to Account 
1, and Task C has exclusive access to Account 2. But Task B needs access to Account 2 to complete its 
processing and Task C needs  access to Account  1 to complete  its  processing.  Task B holds on to 
Account 1 waiting for Task C to release Account 2 and Task C holds on to Account 2 waiting for Task 
B to release Account 1. Tasks B and C are engaged in a deadly embrace, also known as a deadlock. 
Figure 2-3 shows the deadlock situation between Tasks B and C.

Figure 2-3. The deadlock situation between Tasks B and C.

The form of deadlock shown in  Figure 2-3 requires concurrently executing tasks that have access to 
some shared writeable data to wait on each other for access to that shared data. In Figure 2-3 the shared 
data are Accounts 1 and 2. Both tasks have access to these accounts. It happens that instead of one task 
getting access to both accounts at the same time, each task got access to one of the accounts. Since Task 
B can't release Account 1 until it  gets Account 2, and Task C can't release Account 2 until it  gets 
Account 1, the electronic banking program is locked. Notice that Tasks B and C can drive another 
task(s) into indefinite postponement. If other tasks are waiting on access to Accounts 1 or 2 and Tasks 
B and C are engaged in a deadlock, then those tasks are waiting for a condition that will never happen. 
In attempting to coordinate concurrently executing tasks, deadlock and indefinite postponement are two 
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of the ugliest obstacles that must be overcome.

Problem #4 Communication Difficulties

Many commonly found parallel environments (e.g., clusters) often consist of heterogeneous computer 
networks. Heterogeneous computer networks are systems that consist of different types of computers 
often running different operating systems with different network protocols. The processors involved 
may  have  different  architectures,  different  word  sizes,  and  different  machine  languages.  Besides 
different operating systems, different scheduling and priority schemes might be in effect.  To make 
matters worse, each system might have different qualities of data transmission. This makes error and 
exception handling particularly challenging.  The heterogeneous nature of the system might include 
other differences. For instance, we might need to share data and logic between programs written in 
different  languages  or  developed  using  different  software  models.  The  solution  might  be  partially 
implemented in Fortran,  C++, and Java.  This introduces interlanguage communication issues. Even 
when  the  distributed  or  parallel  environment  is  not  heterogeneous,  there  is  the  problem  of 
communicating between two or more processes or between two or more threads. Because each process 
has its own address space, sharing variables, parameters, and return values between processes requires 
the use of IPC (inter-process communication) techniques. While IPC is not necessarily difficult, it adds 
another level of design, testing, and debugging to the system.

The POSIX specification supports five basic mechanisms used to accomplish communication between 
processes:

• Files with lock and unlock facilities

• Pipes (unnamed and named, also called fifos)

• Shared memory and messaging

• Sockets

• Semaphores

Each of these IPC mechanisms have strengths, weaknesses, traps, and pitfalls that the software designer 
and developer must manage in order to facilitate reliable and efficient communication between two or 
more processes. Communication between two or more threads (sometimes called lightweight processes) 
is easier because threads share a common address space. This means that each thread in the program 
can easily pass parameters, get return values from functions, and access global data. However, if the 
communication is not appropriately designed, then deadlock, indefinite postponement, and other data 
race conditions can easily occur. Both parallel and distributed programming have these four types of 
coordination problems in common.

Although purely parallel processing systems are different from purely distributed processing systems, 
we have purposely blurred the lines between the coordination problems in a distributed system versus 
the coordination problems in a parallel system. This is partly because there is an overlap between the 
kinds  of  problems  encountered  in  parallel  programming  and  those  encountered  in  distributed 
programming. It's also partly because the solutions to the problems in one area are often applicable to 
problems in the other. However, the primary reason we lose the distinction is that hybrid systems that 
are part parallel and part distributed are quickly becoming the norm. The state of the art in parallel 
computing  involves  clusters,  beowolfs,  and  grids.  Exotic  cluster  configurations  is  comprised  of 
commodity,  off-the-shelf  parts  that  are  readily  available.  These  architectures  involve  multiple 
computers with multiple processors. Furthermore, single processor systems are on the decline. So, in 
the future purely distributed systems will be built with computers that have multiple processors (forcing 
the hybrid issue). This means that as a practical matter the software designer and developer will most 
likely be faced with problems of distribution and parallelization. Therefore, we discuss the problems in 



the  same  space.  Table  2-1 presents  a  matrix  of  the  combinations  of  parallel  and  distributed 
programming with hardware configurations.

Table 2-1. A Matrix of the Combinations of Parallel and Distributed Programming with Hardware Configurations

 Single Computer Multiple Computers

Parallel 
programming

Accomplished  with  multiple  processors 
and  breaking  up  the  logic  into  multiple 
threads or processes. Threads or processes 
can  run  on  different  processors.  IPC 
required to coordinate tasks.

Accomplished  with  libraries  such  as 
PVM. This requires the type of message 
passing  normally  associated  with 
distributed programming.

Distrubuted 
programming

Multiple  processors  are  not  necessary. 
The logic may be broken up into multiple 
processers  or  threads.  IPC  required  to 
coordinate tasks.

Accomplished  with  sockets  and 
components  such  as  CORBA  ORB 
(Object  Request  Broker).  Can  use 
communication  that  is  normally 
associated with parallel programming.

Notice in Table 2-1 that there are configurations where parallelism is accomplished by using multiple 
computers.  This  can be the case using  the  PVM library.  Likewise,  there  are  configurations  where 
distribution can be accomplished on a single computer using multiple processes, or threads. The fact 
that multiple processes or threads are involved means that the work of the program is "distributed." The 
combinations  in  Table  2-1 imply  that  coordination  problems  that  are  normally  associated  with 
distributed programming can pop up in parallel programming situations and problems that are normally 
associated with parallel programming can appear in distributed programming situations.

Regardless of the hardware configuration, there are two basic mechanisms for communicating between 
two  or  more  tasks:  shared  memory,  and  message  passing.  To  effectively  use  the  shared  memory 
mechanism,  the  programmer  must  constantly  be  aware  of  data  race,  indefinite  postponement,  and 
deadlock  pitfalls.  The  message  passing  scheme  offers  other  showstoppers  such  as  interrupted 
transmissions  (partial  execution),  garbled  messages,  lost  messages,  wrong  messages,  too  long 
messages, late messages, early messages, and so on. Much of this book is about the effective use of 
both mechanisms.

2.3 Sometimes Hardware Fails and Software Quits

When multiple processors are cooperating to provide the solution to some problem, what happens if one 
or more of the processors fail? Should the program halt or should the work be redistributed somehow? 
When  multiple  computers  are  involved  in  the  solution  to  some  problem,  what  happens  if  the 
communications link between two or more of the computers is temporarily interrupted? What if instead 
of the communications link being interrupted, the traffic is so slow that processes on each end of the 
communications  time  out?  How  should  the  software  respond  in  these  situations?  If  we  have  50 
computers cooperatively solving a problem and only two of the computers fail, should the other 48 pick 
up the work? If in our electronic banking programming we have a $1,000 withdrawal and deposit tasks 
executing simultaneously and two of the tasks are deadlocked, should we shut down the server task? 
What do we do about the two tasks that  are locked? What if the withdrawal and deposit  tasks are 
working properly and for some reason the server task locks up? Should we terminate all the pending 
withdrawal and deposit tasks? What do we do about partial failures or partial executions? These kinds 
of considerations are not necessary in single computer sequential programs. Sometimes the failure is a 
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result of some administration or security policy. For instance, if we have 1,000 routines working on 
some problem and several of the routines need write access to a file but don't have the write access, this 
could cause indefinite  postponement,  deadlock,  or partial  failure.  What if  some of the routines are 
blocked because they don't have security access to the resources they need? Should the entire system be 
shut down in such cases? How can the information or processing performed be useful if there are 
hardware interruptions, communications failures, and partial executions? Yet these situations represent 
normal  processing  within  distributed  and  parallel  environments.  In  this  book,  we  present  several 
software architectures and programming techniques that can be used to manage these situations.

2.4 Too Much Parallelization or Distribution Can Have Negative Consequences

There is a point where the overhead in managing multiple processors outweighs the speedup and other 
advantages  gained  from parallelization.  The  old adage  "you can never  have enough processors"  is 
simply not true. Communication between computers or synchronization between processors comes at a 
cost. The complexity of the synchronization or the amount of communication between processors can 
require  so  much  computation  that  the  performance  of  the  tasks  that  are  doing  the  work  can  be 
negatively impacted. How many processes, tasks, or threads should a program be divided into? Is there 
an optimal number of processors for any given parallel program? At what point does adding more 
processors or computers to the computation pool slow things down instead of speeding them up? It 
turns out that the numbers change depending on the program. Some scientific simulations may max out 
at  several  thousand  processors,  while  for  some  business  applications  several  hundred  might  be 
sufficient.  For  some client-server  configurations,  eight  processors  are  optimal  and  nine  processors 
would cause the server to perform poorly.

There is the work and resources involved in managing parallel hardware and the work involved in 
managing concurrently executing processes and threads in software. The limit of software processes 
might be reached before we've reached the optimum number of processors or computers. Likewise, we 
might  see  diminishing  returns  in  the  hardware  before  we've  reached  the  optimum  number  of 
concurrently executing tasks.

2.5 Selecting a Good Architecture Requires Research

There are many software architectures that support concurrency. The correct architecture needs to be 
matched with  the  WBS (Work Breakdown Structure)  of  a  piece  of  software.  Not  all  parallel  and 
distributed architectures are created equal. While some distributed architectures would work fine in a 
Web environment, they would fail immediately in a real-time environment. For instance, distributed 
architectures  that  support  long  latency  times  that  would  be  acceptable  in  a  Web  environment  are 
unacceptable for many real-time environments. Compare the distributed processing in a Webbased e-
mail  system  to  the  distributed  processing  that  takes  place  with  banking  ATMs  (automated  teller 
machines). Latency that is present in many e-mail systems would simply be unacceptable in real-time 
systems such as ATMs. Certain distributed architectures (some asynchronous models) manage latency 
times better than others. Care must also be taken to select the proper parallel processing architectures. 
For instance,  vector processing techniques may work well  for certain mathematical  and simulation 
problems,  but  are  ineffective  when  applied  to  multiagent  planning  algorithms.  Table  2-2 shows 
commonly found software architectures that support parallel and distributed programming.

The four basic models listed in Table 2-2 and their variations provide the basic foundations for all the 
concurrency architectures (i.e., agent, blackboard, object-oriented) that we discuss in this book. It is 
necessary to become familiar with each of these models and their applications to parallel and distributed 
programming. We provide an introduction to these models and the bibliography contains material that 
covers more advanced treatment  of each of these models.  It  is  best  to find the natural  or inherent 
parallelism in the work being done or in the solution to a problem. The architecture chosen should 
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match this  natural  or  inherent  parallelism as closely as  possible.  For  instance,  the parallelism in a 
solution may be better described using a peer-to-peer model, where all workers are considered equal, as 
opposed to a boss worker model, where there is a master process managing all the other processes as 
subordinates.

Table 2-2. Commonly Found Software Architectures that Support Parallel and Distributed Programming

Model Architecture Distributed 
Programming

Parallel 
Programming

Host node also called

• master/slave

• • boss/worker

• • loosely (client 
server)

Master control tasks that monitors 
and delegates work to subordinate 
tasks.

Peer or node only All tasks are basically equal and 
work is distributed evenly.

 

Vector processing 
loosely pipeline or array 
processing

One worker for each element of the 
array or stage in the pipeline.

Tree (parent–child) Dynamically generated workers in a 
parent–child relationship. Useful in 
these types of algorithms:

• recursion

• recursion

• AND/OR

• tree processing



2.6 Different Techniques for Testing and Debugging are Required

When testing a sequential program the developer can trace the logic of a program in a step-by-step 
manner. If the developer starts with the same data and makes sure the system is in the same state, then 
the outcome or flow of the logic is predictable. The programmer can find bugs in the software by 
starting the program in the necessary state, using the appropriate input and then tracing through the 
logic step-by-step. Testing and debugging in the sequential model depends on the predictability of the 
program's initial state, and current state given the specified input.

This changes with parallel and distributed environments. It is difficult to reproduce the exact context of 
parallel or distributed tasks because of operating system scheduling policies, dynamic workloads on the 
computer,  processor  time  slices,  process  and  thread  priorities,  communication  latency,  execution 
latency, and the random chance involved in parallel and distributed contexts. To reproduce the exact 
state the environment was in during testing and debugging requires that every task the operating system 
was working on be recreated. The processor scheduling state must be known. The status of virtual 
memory and context switching all must be reproduced exactly. Interrupt and signal conditions must be 
recreated. In some cases, networking traffic would have to be recreated! Even the testing and debugging 
tools impact the exact environment. This means that recreating the same sequence of events in order to 
test or debug a program is often out of the question. The reason these things would have to be recreated 
is because they can all help to determine which process or thread can execute and on what processor 
they can execute. Moreover, it is the particular mix of executing processes and threads that could be the 
reason for a deadlock, indefinite postponement, data race, or another kind of problem. Although some 
of these issues also affect sequential programming, they don't disrupt the assumptions of the sequential 
model.  The kind of predictability that  is present in the sequential model is simply not available in 
concurrency programming. This forces the developer to acquire new tactics for testing and debugging 
programs. It also requires that the developer find new ways to prove program correctness.

2.7 The Parallel or Distributed Design Must Be Communicated

There  is  also  the  challenge  of  how  to  accurately  capture  a  parallel  or  distributed  design  in 
documentation.  We  must  be  able  to  describe  the  work  breakdown  structure  as  well  as  the 
synchronization and communication between tasks, objects, processes, and threads. Designers must be 
able to effectively communicate to developers. Developers must be able to communicate with those that 
must maintain and administer the system. Ideally, this should be done using a standard notation and 
representation  that  is  readily  available  to  all  concerned.  However,  finding  a  single  documentation 
language that is broadly understood and can clearly represent the multiparadigm nature of some of these 
systems is elusive. We have chosen the UML (Unified Modeling Language) for this purpose. Table 2-3 
lists the seven UML diagrams that are helpful for multithreaded, parallel, or distributed programs.

Table 2-3. Seven UML Diagrams Helpful for Documenting Multithreaded, Parallel, and Distributed Programs

UML Diagrams Descriptions

Activity diagram A type of state diagram in which most (if not all) of the states represent activity 
and most of the transitions (if not all) are activated by completion of an activity 
in the source states.

Interaction A type of diagram that shows the interaction among a set of objects; the 
interaction is described as a message exchanged among them. These diagrams 
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UML Diagrams Descriptions

include:

• collaboration diagrams

• sequence diagrams

• activity diagrams

State/concurrent 
state diagram

A diagram that shows the sequence of an object's transformation as it state 
diagram responds to events. In the case of concurrent state diagram, these 
transformations can occur during the same time interval.

Sequence diagram An interaction diagram that shows the organization of the structure of objects 
that receive and send messages.

Collaboration 
diagram

An interaction diagram that shows the organization of the structure of objects 
that receive and send messages.

Deployment 
diagram

A diagram that shows the runtime configuration of processing nodes, hardware, 
and software components in a system.

Component 
diagram

An interaction diagram that shows the dependencies and organization among a 
set of physical modules of code (packages) in a system.

The seven diagram types in Table 2-3 are only a subset of the diagram types available in the UML, but 
these types of diagrams are immediately applicable to what we want to capture in our concurrency 
designs.  In  particular,  the  UML's  activity,  deployment,  and  state  diagrams  are  very  useful  in 
communicating parallel and distributed processing behavior. Since the UML is the de facto standard for 
communicating object-oriented and agent-oriented designs,  we rely upon its  use in  this  book.  The 
Appendix contains a description and explanation for the notation and symbols used in these diagrams.

Summary

Parallel and distributed programming present challenges in several areas. New approaches to software 
design and architectures must be adopted. Many of the fundamental assumptions that are held in the 
sequential model of programming don't apply in the realm of parallel and distributed programming. The 
four primary coordination problems, data race, indefinite postponement, deadlock, and communication 
synchronization, are among the major obstacles to programs that require concurrency. Every aspect of 
the  software  development  life  cycle  is  impacted  when  the  requirements  include  parallelism  or 
distribution from the initial design down to the testing and documentation. In this book, we present 
architectural approaches to many of these problems. In addition to the architectural approach, we take 
advantage of the multiparadigm capabilities of C++ to provide techniques for managing the complexity 
of parallel and distributed programs.
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Chapter 3. Dividing C++ Programs into Multiple Tasks
"Hence,  whatever  parallel  processes  may  be  going  on  at  a  lower  (neural)  level,  at  the 
symbolic level the human mind is fundamentally a serial machine, accomplishing its work 
through temporal sequences of processes, each typically requiring hundreds of milliseconds 
for execution."

—Herbert A Simon, The Machine As Mind

In this Chapter

• Process: A Definition  

• Anatomy of a Process  

• Process States  

• Process Scheduling  

• Context Switching  

• Creating a Process  

• Terminating a Process  

• Process Resources  

• What are Asynchronous and Synchronous Processes?  

• Dividing the Program into Tasks  

• Summary  

Concurrency  in  a  C++  program  is  accomplished  by  factoring  your  program  into  either  multiple 
processes or multiple threads. While there are variations on how the logic for a C++ program can be 
organized (e.g,  within objects,  functions,  generic templates),  the options for (with the exception of 
instruction level) parallelization is accounted for through the use of multiple processes and threads. This 
chapter  focuses  on  the  notion  of  a  process  and  how C++ programs  can  be  divided  into  multiple 
processes.

3.1 Process: A Definition

A process is a unit of work created by the operating system. It is important to note that processes and 
programs  are  not  necessarily  equivalent.  A  program  may  consist  of  multiple  processes.  In  some 
situations, a process might not be associated with any particular program. Processes are artifacts of the 
operating system and programs are artifacts of the developer. Current operating systems such as UNIX/
Linux are capable of managing hundreds or even thousands of concurrently loaded processes.

In order for a unit of work to be called a process it must have an address space assigned to it by the 
operating system. It must have a process id. It must have a state and an entry in the process table. 
According to the POSIX standard, it must have one or more flows of controls executing within that 
address space and the required system resources for those flows of control.  A process has a set of 
executing  instructions  that  reside  in  the  address  space  of  that  process.  Space  is  allocated  for  the 
instructions, any data that belongs to the process, and stacks for function calls and local variables.
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3.1.1 Two Kinds of Processes

When a process executes, the operating system assigns the process to a processor. The process executes 
its instructions for a period a time. The process is preempted so another process can be assigned the 
processor. The operating system scheduler switches between the code of one process, user, or system to 
the code of another process, giving each process a chance to execute their instructions. There are user 
and  system  processes.  Processes  that  execute  system  code  are  called  system  processes.  System 
processes  administer  to  the  whole  system.  They  perform  housekeeping  tasks  such  as  allocating 
memory, swapping pages of memory between internal and secondary storage, checking devices, and so 
on.  They  also  perform tasks  on  behalf  of  the  user  processes  such  as  fulfill  I/O  requests,  allocate 
memory, and so on. User processes execute its own code and sometimes they make system function 
calls. When a user process executes its own code, it is in user mode. In user mode, the process cannot 
execute certain privileged machine instructions. When a user process makes a system function call, for 
example read(), write(), open(), it is executing operating system instructions. What occurs is the user 
process is put on hold until the system call has completed. The processor is given to the kernel to 
complete the system call.  At that time the user process is said to be in kernel mode and cannot be 
preempted by any user processes.

3.1.2 Process Control Block

Processes have characteristics used for identification and determining their behavior during execution. 
The kernel maintains data structures and provides system functions that allow the user to have access to 
this information. Some information is stored in the PCB (process control block). The information stored 
in the PCB describes the process to the operating system. This information is needed in order for the 
operating system to manage each process.  When the operating system switches between a process 
utilizing the CPU to another process, it saves the current state of the executing process and its context to 
the PCB save area in order to restart the process the next time it is assigned to the CPU. The PCB is 
read and changed by various modules of the operating system. Modules concerned with the monitoring 
the operating system's performance, scheduling, allocating resources, and interrupt processing access 
and/or modify the PCB. PCB information includes:

• current state and priority of the process

• process, parent, and child identifiers

• pointers to allocated resources

• pointers to location of the process's memory

• pointer to the process's parent and child processes

• processor utilized by process

• control and status registers

• stack pointers

The information stored in the PCB can be organized as information concerned with process control 
such as the current state and priority of the process, pointers to parent/child PCBs, allocated resources, 
and  memory.  This  also  includes  any  scheduling-related  information,  process  privileges,  flags, 
messages, and signals that have to do with communication between processes (IPC, or interprocess 
communication).  The  process  control  information  is  required  by  the  operating  system in  order  to 
coordinate the concurrently active processes. Stack pointers and the content of user, control, and status 
registers describe information concerned with the state of the processor. When a process is running, 
information is  placed in the registers  of the CPU. Once the operating system decides to switch to 



another process, all the information in those registers has to be saved. When the process gains the use of 
the  CPU  again,  this  information  can  be  restored.  Other  information  has  to  do  with  process 
identification. This is the process id (PID), and the parent id (PPID). These identification numbers are 
unique for each process. They are positive, nonzero integers.

3.2 Anatomy of a Process

The address space of a process is divided into three logical segments: text (program code), data and 
stack segments. Figure 3-1 shows the logical layout of a process. The text segment is at the bottom of 
the address space. The text segment contains the instructions to be executed, called the program code. 
The data segment above it contains the initialized global, external, and static variables for the process. 
The stack segment contains locally allocated variables and parameters passed to functions. Because a 
process can make system function calls as well as user-defined function calls, two stacks are maintained 
in the stack segment, the user-stack and the kernel-stack. When a function call is made, a stack-frame is 
constructed and pushed onto either the user or kernel stack depending on whether the process is in user 
or kernel mode.  The stack segment grows downward toward the data segment.  The stack frame is 
popped from the stack when the function returns. The text, data, stack segments, and process control 
block are part of what forms the process image.

Figure 3-1. The address space of a process divided into the text, data, and stack segments. This is the logical layout of 
a process.

The address space of a process is virtual. Virtual storage dissociates the addresses referenced in an 
executing process from the addresses actually available in internal memory. This allows the addressing 
of storage space much larger than what is available. The segments of the process's virtual address space 
are contiguous blocks of memory. Each segment and physical address space are broken up into chunks 
called pages. Each page has a unique page frame number. The virtual page frame number is used as an 
index into the process's page tables. The page table entries contain a physical page frame number, thus 
mapping the virtual page frames to physical page frames. This is depicted in Figure 3-2. As illustrated, 
virtual address space is contiguous but it is mapped to physical pages in any order.
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Figure 3-2. The contiguous virtual page frames mapped to pages in physical memory.

Although  the  virtual  address  space  of  each  process  is  protected  to  prevent  another  process  from 
accessing it,  the text segment of a process can be shared among several processes.  Figure 3-2 also 
shows how two processes can share the same program code. The same physical page frame number is 
stored in the page table entries of both processes' page tables. As illustrated in Figure 3-2, process A 
virtual page frame 0 is mapped to physical page frame 5 as well as process B's virtual page frame 2.

In order for the operating system to manage all the processes stored in internal memory, it creates and 
maintains  process  tables.  Actually,  the  operating  system has  a  table  for  all  of  the  entities  that  it 
manages. Keep in mind that the operating system manages not only processes but all the resources of 
the  computer  including  devices,  memory,  and  files.  Some  of  the  memory,  devices,  and  files  are 
managed on behalf  of  the  user  processes.  This  information  is  referenced in  the  PCB as  resources 
allocated to the process. The process table will have an entry for each process image in memory. Each 
entry contains the process and parent process id, real and effective user id and group id, list of pending 
signals, the location of the text, data, and stack segments, and the current state of the process. When the 
operating system needs to access a process, the process is looked up in the process table and then the 
process image is located in memory. This is depicted in Figure 3-3.
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Figure 3-3. The operating system control tables. Each entry in the process table stores represents a process in the 
system.

3.3 Process States

During a process' execution, the process's state changes. The state of the process is the current condition 
or status of the process. In the UNIX environment, a process can be in the following states:

• running

• runnable (ready)

• zombied

• waiting (blocked)

• stopped

The process changes its state when certain circumstances created by the process or the operating system 
exist. The state transition is the circumstance that causes the process to change its state. Figure 3-4 is 
the state diagram for the UNIX environment. The state diagram has nodes and directed edges between 
the nodes. Each node represents the state of the process. The directed edges between the nodes are state 
transitions.  Table 3-1 lists the state transitions with a brief description. As  Figure 3-4 and  Table 3-1 
show, only certain transitions are allowed between states. For example, there is a transition, an edge, 
between ready and running but there is no transition between sleeping and running, meaning there are 
circumstances that cause a process to move from the ready state to the running state but there are no 
circumstances that cause a process to move from the sleeping state to a running state.
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Figure 3-4. The process states and transitions in the UNIX/Linux environments.

When a process is created, it is ready to execute its instructions but must first wait until the processor is 
available. Each process is only allowed to use a processor for a discrete interval called a time slice. 
Processes waiting to use a processor are placed in a ready queues. Only processes in the ready queues 
are selected (by the scheduler) to use the processor. Processes in the ready queues are runnable. When 
the processor is available, a runnable process is assigned a processor by the dispatcher. When the time 
slice has expired, the process is removed from the processor, whether it has finished executing all its 
instructions or not. The process is placed back in the ready queue to wait for its next turn to use the 
processor. A new process is selected from a ready queue and is given its time slice to execute. System 
processes are not preempted. When they are given the processor, they run until completion. If the time 
slice has not expired, a process may voluntarily give up the processor if it cannot continue to execute. 
The process may have made a request to access an I/O device by making a system call or it may need to 
wait on a synchronization variable to be released. Processes that cannot continue to execute because 
they are waiting for an event to occur are in a sleeping state. They are placed in a queue with other 
sleeping processes. They are removed from that queue and placed back in the ready queue when the 
event occurrs. The processor may be taken away from a process before its time slice has run out if a 
process  with  a  higher  priority,  like  a  system process,  is  runnable.  The  preempted  process  is  still 
runnable and therfore placed back in the ready queue.

Table 3-1. Process Transitions

State transitions Descriptions

READY RUNNIN
G (dispatch)

The process is assigned to the processor.

RUNNING READ
Y (timer runout)

The time slice the process is assigned to the processor has run out. The 
process is placed back in the ready queue.

RUNNING READ
Y (preempt)

The process has been preempted before the time slice ran out. This can occur 
if a process with a higher priority is runnable. The process is placed back in 



State transitions Descriptions

the ready queue.

RUNNING SLEEP
ING (block)

The process gives up the processor before the time slice has run out. The 
process may need to wait for an event or has made a system call, for example, 
a request for I/O. The process is placed in a queue with other sleeping 
processes.

SLEEPING READ
Y (unblock)

The event the process was waiting for has occured or the system call has 
completed, for example, I/O request is filled. The process is placed back in 
the ready queue.

RUNNING STOP
PED

The process gives up the processor because it has received a signal to stop.

STOPPED READ
Y

The process has received the signal to continue and is placed back in the 
ready queue.

RUNNING ZOMB
IED

The process has been terminated and awaits the parent to retrieve its exit 
status from the process table.

ZOMBIED EXIT The parent process has retrieved the exit status and the process exits the 
system.

RUNNING EXIT The process has terminated, the parent has retrieved the exit status, and the 
process exits the system.

A running process can receive a signal to stop executing. The stopped state is different from a sleeping 
state because the time slice has not expired nor has the process made any requests of the system. The 
process may receive a signal to stop because it is being debugged or some situation in the system has 
occured. The process makes a transition from running state to stopped state. Later, the process may be 
awakened or destroyed.

When a process has executed all its instructions, it exits the system. The process is removed from the 
process table, the PCB is destroyed, and all of its resources are deallocated and returned to the system 
pool of available resources. A process that is unable to continue executing and cannot exit the system is 
zombied. A zombied process does not use any system resources but it still maintains an entry in the 
process table. When the process tables contain too many zombied processes, the performance of the 
system is affected, which can possibly cause the system to reboot.



3.4 Process Scheduling

When a ready queue contains several processes, the scheduler must determine which process should be 
assigned to  a  processor first.  The scheduler  maintains  data  structures  that  allow it  to schedule the 
processes in an efficient manner. Each process is given a priority class and placed in a priority queue 
with other runnable processes with the same priority class. There are multiple priority queues, each 
representing a different priority class used by the system. These priority queues are stratified and placed 
in a dispatch array called the multilevel priority queue, illustrated in  Figure 3-5. Each element in the 
array points to a priority queue. The scheduler assigns the process at the head of the nonempty highest 
priority queue to the processor.

Figure 3-5. The multilevel priority queue in which each entry of the dispatch array points to a ready queue of 
processes with the same priority level.

Priorities can be dynamic or static. Once a static priority of a process is set,  it  cannot be changed. 
Dynamic priorities can be changed. Processes of the highest priority can monopolize the use of the 
processor.  If  the  priority  of  a  process  is  dynamic,  the  initial  priority  can  be  adjusted  to  a  more 
appropriate  value.  The  process  is  placed  in  a  priority  queue  that  has  a  higher  priority.  A process 
monopolizing the processor can also be given a lower priority or other processes can be given a higher 
priority than that process. In the UNIX/Linux environments, the range of priority levels is from -20 to 
19. The higher the value, the lower the priority.

When assigning priority to a user process, what the process spends most of its time doing should be 
considered.  Some processes  are  CPU intensive.  CPU-intensive processes  use the processor  for  the 
whole time slice. Some processes spend most of their time waiting for I/O or some other event to occur. 
When such a process is ready to use a processor, it should be given the processor immediately so it can 
make its next request for I/O. Processes that are interactive may require a high priority to ensure good 
response time. System processes have a higher priority than user processes.

3.4.1 Scheduling Policy

The processes are placed in a priority queue according to a scheduling policy. Two of the scheduling 

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03fig05


policies used by the UNIX/Linux systems are FIFO (First-In-First-Out) and round-robin (RR) policies. 
Figure  3-6(a)  shows  the  FIFO  scheduling  policy.  With  a  FIFO  scheduling  policy,  processes  are 
assigned a processor according to the arrival time in the queue. When a running process time slice has 
expired, it is placed at the head of its priority queue. When a sleeping process becomes runnable, the 
process is placed at the end of its priority queue. A process can make a system call and give up a 
processor to another process with the same priority level. The process will be placed at the end of its 
priority queue.

Figure 3-6.  The behavior of  the First-In-First-Out (FIFO) and round-robin (RR) scheduling policies.  The FIFO 
scheduling  policy  assigns  processes  to  the  processor  according to  its  arrival  time in  the  queue.  The 
process runs until completion. The RR scheduling policy assigns processes using FIFO scheduling but 
when the time slice runs out the process is placed at the back of the ready queue.

In a round-robin scheduling policy, all processes are considered equal.  Figure 3-6(b) depicts the RR 
scheduling policy. RR scheduling is the same as FIFO scheduling with an exception: when the time 
slice expires, the process is placed at the back of the queue and the next process in the queue is assigned 
the processor.

3.4.2 Using the ps Utility

The ps utility generates a report that summarizes execution statistics for the current processes. This 
information can be used to monitor the status of current processes. Table 3-2 lists the common headers 
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and the meaning of the output for the ps utility for the Solaris/Linux environments. In a multi-processor 
environment,  the ps utility is  quite useful to monitor the state,  CPU and memory usage,  processor 
utilized, priority, and start time of the current processes executing. Command options control which 
processes are listed and what information is displayed about each process. In the Solaris environment, 
by default (no command options used), information about processes with the same effective user id and 
controlling terminal  of  the calling invoker  is  displayed.  In  the  Linux environment,  by default,  the 
processes  with  the  same  user  id  as  the  invoker  are  displayed.  In  both  environments,  the  only 
information that will be displayed is PID, TTY, TIME and COMMAND. These are some of the options 
that control which processes are displayed:

-t 
term

List the processes associated with the terminal specified by term

-e All current processes

-a (Linux) All processes with tty terminal except the session leaders

 (Solaris) Most frequently requested processes except group leaders and processes not 
associated with a terminal

-d All current processes except session leaders

T (Linux) All processes in this terminal

a (Linux) All processes including those of other users

r (Linux) Only running processes

Table 3-2. Common Headers Used for ps Utility in the Solaris/Linux Environments

Headers Description

USER, UID Username of process owner

PID Process ID

PPID Parent process ID

PGID ID of process group leader

SID ID of session leader



Headers Description

%CPU Percentage of CPU time used by the process in the last minute

RSS Amount of real RAM currently used by the process in k

%MEM Percentage of real RAM used by the process in the last minute

SZ Size of virtual memory of the process's data and stack in k or pages

WCHAN Address of an event for which a process is sleeping

COMMAND CMD Command name and arguments

TT, TTY Process's controlling terminal

S, STAT Current state of the process

TIME Total CPU time used by the process (HH:MM:SS)

STIME, START Time or date the process started

NI Nice value of the process

PRI Priority of the process

C, CP Short-term CPU-use factor used by the scheduler to compute PRI

ADDR Memory address of a process

LWP ID of the lwp (thread)

NLWP The number of lwps

Synopsis
(Linux)
ps -[Unix98 options]
   [BSD-style options]
   --[GNU-style long options



(Solaris)
ps [-aAdeflcjLPy] [-o format] [-t termlist][-u userlist]
   [-G grouplist][-p proclist] [-g pgrplist] [-s sidlist]

The following list contains some of the command options used to control the information displayed 
about the processes:

-f full listings

-l long format

-j jobs format

Below is an example of using the ps utility in Solaris/Linux environments:

ps -f

This will display information about the default processes in each environment.  Figure 3-7 shows the 
output in the Solaris environment. The command options can also be used in tandem. Figure 3-7 also 
shows the output of using -l and -f together in the Solaris environment:

ps -lf

Figure 3-7 Output of ps -f and ps -lf in the Solaris environment.

//SOLARIS

$ ps -f
     UID   PID  PPID  C    STIME    TTY  TIME CMD
 cameron  2214  2212  0 21:03:35 pts/12  0:00 -ksh
 cameron  2396  2214  2 11:55:49 pts/12  0:01 nedit

$ ps -lf
F S     UID  PID  PPID  C  PRI NI     ADDR  SZ    WCHAN    STIME   TTY TIME  CMD
8 S cameron 2214  2212  0   51 20 70e80f00 230 70e80f6c 21:03:35 pts/12 0:00 -ksh
8 S cameron 2396  2214  1   53 24 70d747b8 843 70152aba 11:55:49 pts/12 0:01 nedit

The l command option shows the additional headers: F, S, C, PRI, NI, ADDR, and WCHAN. The P 
command option will display the PSR header. Under this header is the number of the processor to 
which the process is assigned or bound.

Figure 3-8 shows the output of the ps utility using the Tux command options in the Linux environment. 
The  %CPU,  %MEM,  and  STAT  information  is  displayed  for  the  processes.  In  a  multiprocessor 
environment,  this  information  can  be  used  to  monitor  which  processes  are  dominating  CPU  and 
memory usage. The STAT header shows the state or status of the process. Table 3-3 lists how the status 
is encoded and their meanings. The STAT header can reveal additional information about the status of 
the process:

D (BSD) Disk wait

P (BSD) Page wait

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03table03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03fig08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03fig07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03fig07


X (System V) Growing: waiting for memory

W (BSD) Swapped out

K (AIX) Available kernel process

N (BSD) Niced: execution priority lowered

> (BSD) Niced: execution priority artificially raised

< (Linux) High priority process

L (Linux) Pages are locked in memory

Figure 3-8 Output of ps Tux in the Linux environment.

//Linux

[tdhughes@colony]$ ps Tux
USER       PID %CPU %MEM   VSZ  RSS   TTY  STAT   START  TIME COMMAND
tdhughes 19259  0.0  0.1  2448 1356  pts/4    S   20:29  0:00 -bash
tdhughes 19334  0.0  0.0  1732  860  pts/4    S   20:33  0:00 /home/tdhughes/pv
tdhughes 19336  0.0  0.0  1928  780  pts/4    S   20:33  0:00 /home/tdhughes/pv
tdhughes 19337 18.0  2.4 26872 24856 pts/4    R   20:33  0:47 /home/tdhughes/pv
tdhughes 19338 18.0  2.3 26872 24696 pts/4    R   20:33  0:47 /home/tdhughes/pv
tdhughes 19341 17.9  2.3 26872 24556 pts/4    R   20:33  0:47 /home/tdhughes/pv
tdhughes 19400  0.0  0.0  2544  692  pts/4    R   20:38  0:00 ps Tux
tdhughes 19401  0.0  0.1  2448 1356  pts/4    R   20:38  0:00 -bash

These codes will precede the status codes. If an N precedes the status, this means that the process is 
running at a lower priority level. If a process has a status SW<, this means the process is sleep, swapped 
out, and has a high priority level.

3.4.3 Setting and Returning the Process Priority

The priority level of a process can be changed by using the nice() function. Each process has a nice 
value that is used to calculate the priority level of the calling process. A process inherits the priority of 
the  process  that  created  it.  The  priority  of  a  process  can  lowered  by  raising  its  nice  value.  Only 
superuser and kernel processes can raise their priority levels.

Synopsis
#include <unistd.h>
int nice(int incr);



A low nice value raises the priority level of the process. The incr parameter is the value added to the 
current nice value of the calling process. The incr can be negative or positive. The nice value is a non-
negative number. A positive incr value will raise the nice value, therefore lowering the priority level. A 
negative incr value will lower the nice value, therefore raising the priority level. If the incr value raises 
the nice value above or below its limits, the nice value of the process will be set to the highest or lowest 
limit accordingly. If successful, the nice() function will return the new nice value of the process. If 
unsuccessful, the function will return -1 and the nice value is not changed.

Synopsis
#include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int value);

The setpriority() function sets the nice value for a process, process group, or user. The getpriority() 
returns the priority of a process, process group, or user. Example 3.1 shows the syntax to the functions 
setpriority() and getpriority() to set and return the nice value of the current process.

Example 3.1 Using setpriority() and getpriority().

#include <sys/resource.h>

//...
id_t pid = 0;
int which  = PRIO_PROCESS;
int value = 10;
int nice_value;
int ret;
nice_value = getpriority(which,pid);
if(nice_value < value) {
    ret = setpriority(which,pid,value);
}
//...

In Example 3.1, the priority of the calling process is being returned and set. If the calling process's nice 
value is < 10, the nice value of the process is set to 10. The target process is determined by the values 
stored in the which and who parameters. The which parameter can specify a process, process group, or 
user. It can have the following values:

PRIO_PROCESS Indicates a process

PRIO_PGRP Indicates a process group

PRIO_USER Indicates a user

Depending on the value of which, the who parameter is the id number of a process, process group, or 
effective user. In  Example 3.1, which is assigned PRIO_PROCESS. A 0 value for who indicates the 
current process, process group, or user. In  Example 3.1, the who is set  to 0, indicating the current 
process. The value parameter for setpriority() shall be the new nice value for the specified process, 
process group, or user. The range of nice value in the Linux environment is -20 to 19. In Example 3.1, 
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the value of nice is set to 10 if the current nice value is less than 10. Unlike the function nice(), the 
value passed to setpriority() is the actual value of nice and not an offset to be added to the current nice 
value.

In a process with multiple threads, the modification of the priority will affect the priority of all the 
threads in that process. If successful, getpriority() will return the nice value of the specified process. If 
successful, setpriority() will return 0. If unsuccessful, both functions will return -1. The return value -1 
is  a  legitimate nice value for a  process.  To determine if  an error has occurred,  check the external 
variable errno.

3.5 Context Switching

A context switch occurs when the use of the processor is switched from one process to another process. 
When a context switch occurs, the system saves the context of the current running process and restores 
the context of the next process selected to use the processor. The PCB of the preempted process is 
updated. The process state field is changed from the running to the appropriate state (runnable, blocked, 
zombied,  etc.).  The  contents  of  the  processor's  registers,  state  of  the  stack,  user  and  process 
identification and privileges, and scheduling and accounting information are saved and updated.

The system must keep track of the status of the process's I/O and other resources, and any memory 
management data structures. The preempted process is placed in the appropriate queue.

A context switch occurs when:

• a process is preempted

• a process voluntarily gives up the processor

• a process makes an I/O request or needs to wait for an event

• a process switches from user mode to kernel mode

When the preempted process is selected again to use the processor, its context is restored and execution 
continues where it left off.



3.6 Creating a Process

To run any program the operating system must first create a process. When a new process is created, a 
new entry is placed in the main process table. A new PCB is created and initialized and the process 
identification portion of the PCB contains a unique process id number and the parent process id. The 
program counter is set to point to the program entry point and the system stack pointers are set to define 
the stack boundaries for the process. The process is initialized with any of the attributes requested. If 
the process is not given a priority value, it is given the lowest priority value by default. The process 
initially does not own any resources unless there is an explicit request for resources or they have been 
inherited from the creator process. The state of the process is runnable and placed in the runnable or 
ready queue.  Address  space  is  allocated  for  the  process.  How much space  to  be set  aside  can  be 
determined by default based on the type of process. The size can also be set as a request by the creator 
of the process. The creator process can pass the size of the address space to the system at the time the 
process is created.

3.6.1 Parent–Child Process Relationship

A process that creates or spawns another process is a parent process to the spawned child process. The 
init process is the parent of all user processes. The init process is the very first process visible to the 
UNIX system when booted  up.  The  init  process  brings  the  system up,  runs  other  programs when 
necessary, and starts daemons. It has a PID of 1. The child process has its own unique PID, PCB, and a 
separate  entry  in  the  process  table.  The  child  process  can  also  spawn  a  process.  An  executing 
application can create a tree of processes. For example, a parent process searches a hard drive for a 
specified HTML document. The HTML document name is written to a global data structure like a list, 
which contains all the request for documents. Once the document is located, it is removed from the 
request list and the path is written to another global data structure, which contains the paths of located 
documents. To ensure a good response to the user requests, the process has a limit of five requests 
pending in the list. Once the limit has been reached, two new processes are spawned to handle to work 
load. For each process that reaches its limits, two new processes are spawned. Figure 3-9 shows a tree 
of processes created in this manner. A process has only one parent process, but a parent process can 
have many children.
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Figure 3-9. A tree of processes. A process spawns two new processes if a certain condition is met.

A child process can be created with its own executable image or as a duplication of the parent process. 
As  a  duplicate  of  the  parent,  the  child  inherits  many  of  the  attributes  of  the  parent,  including  its 
environment, priority and scheduling policy, resource limits, open files, and shared memory segments. 
If the child process advances a file's position pointer, or closes the file, this will also be seen by the 
parent process. If the parent allocates any additional resources after the child has been created, they are 
not accessible to the child. In turn, if the child process allocates any resources, they are not accessible 
by the parent.

Some attributes of the parent are not inherited by the child. As mentioned earlier, the child does not 
inherit the parent's PID or PCB. Of course, each process will have different parents. The child does not 
inherit  any  file  locks  created  by  the  parent  or  any  pending  signals.  Timing  information  such  as 
processor usage and creation time are reset for the child process. Although these processes have this 
relationship, they function as separate processes. The program and stack counters operate separately. 
Because the data segments are copied,  not shared,  the child can change the values of its variables 
without  affecting the parent's  copy.  The  child  and parent  share the code segment  and execute  the 
instructions immediately following the system call that creates the child process. They do not execute 
those instructions in lock step because they compete for the processor with all  the other processes 
loaded in the memory.

Once created, the child process image can be replaced with another executable image. The code, data, 
and stack segments as well as its heap is over-written with the new process image. The new process 
preserves  its  PID and  PPID.  Table  3-3 lists  the  attributes  preserved  by  the  new process  after  its 
executable  image has  been  replaced.  It  also  lists  the  system calls  that  return  these  attributes.  The 
environment variables are also preserved unless new environment variables were specified at time of 
the executable was replaced. Files that were open before the executable was replaced will still be open 
afterward. The new process will create files with the same file permissions. The CPU time will not be 
reset.
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Table 3-3. Attributes Preserved by the New Process After Its Process Image Has Been Replaced with a New Process 
Image

Attributes preserved Description

Process ID getpid()

Parent Process ID getppid()

Process Group ID getpgid()

Session membership getsid()

Real User ID getuid()

Real Group ID getgid()

Supplementary Group IDs getgroups()

Time left on an alarm signal alarm()

Nice value nice()

Time used so far times()

Process signal mask sigprocmask()

Pending signals sigpending()

File size limit ulimit()

Resource limit getrlimit()

File mode creation mask umask()

Current working directory getcwd()

Root directory  



3.6.1.1 The pstree Utility

The pstree utility in the Linux environment displays a tree of processes. It shows the running processes 
in a tree structure. The root of the tree is the init process.

Synopsis
pstree [-a] [-c] [-h | -Hpid] [-l] [-n] [-p] [-u] [-G] | -U]
[pid | user]
pstree -V

These are some of the options that can be used with this utility:

-a Show command-line arguments

-h Highlight the current process and its ancestors

-H Like -h but highlight the specified process instead

-n Sort processes with the same ancestor by PID instead of by name

-p Show PIDs

Figure 3-10 shows the output of pstree -h in the Linux environment.

Figure 3-10 Output of pstree -h in the Linux environment.

ka:~ # pstree -h
init-+-applix
     |-atd
     |-axmain
     |-axnet
     |-cron
     |-gpm
     |-inetd
     |-9*[kdeinit]
     |-kdeinit    -+-kdeinit
     |         |-kdeinit---bash---gimp---script-fu
     |         '-kdeinit---bash          -+-man---sh---sh---less
     |                          '-pstree
     |-kdeinit---cat
     |-kdm-+-X
     |     '-kdm---kde---ksmserver
     |-kflushd
     |-khubd
     |-klogd
     |-knotify
     |-kswapd
     |-kupdate
     |-login---bash
     |-lpd
     |-mdrecoveryd
     |-5*[mingetty]
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     |-nscd---nscd---5*[nscd]
     |-sshd
     |-syslogd
     |-usbmgr
     '-xconsole

3.6.2 Using the fork() Function Call

The fork() call creates a new process that is a duplication of the calling process, the parent. The fork() 
returns two values if it succeeds, one to the parent and one to the child process. It will return 0 to the 
child process and return the PID of the child to the parent process. The parent and child processes 
continue  to  execute  from the  instruction  immediately  following  the  fork()  call.  If  not  successful, 
meaning no child process was created, -1 is returned to the parent process.

Synopsis
#include <unistd.h>

pid_t fork(void);

The fork() will fail if the system does not have the resources to create another process. If there is a limit 
to  the  number  of  child  processes  the  parent  can  spawn  or  the  number  of  system-wide  executing 
processes and that limit has been exceeded, the fork() will fail. In that case, errno will be set to indicate 
the error.

3.6.3 Using the exec Family of System Calls

The exec family of functions replaces the calling process image with a new process image. The fork() 
call creates a new process that is a duplication of the parent process where the exec function replaces 
the duplicate process image with a new one. The new process image is a regular executable file and is 
immediately executed. The executable can be specified as a path or a file-name. These functions can 
pass command-line arguments to the new process. Environment variables can also be specified. There 
is no return value if the function is not successful because the process image that contained the call to 
the exec is overwritten. If unsuccessful, -1 is returned to the calling process.

All of the exec() functions can fail under these conditions:

• Permissions are denied

Search permission is denied for the executable's file directory

Execution permission is denied for the executable file

• Files do not exist

Executable file does not exist

Directory does not exist

• File is not executable

File is not executable because it is open for writing by another process

File is not an executable file

• Problems with symbolic links



Loop  exists  when  symbolic  links  are  encountered  while  resolving  the  pathname  to  the 
executable

Symbolic links cause the pathname to the executable to be too long

The exec functions are used with the fork(). The fork() creates and initializes the child process with the 
duplicate of the parent. The child process then replaces its process image by calling an exec(). Example 
3.2 shows an example of the fork-exec usage.

Example 3.2 Using the fork-exec system calls.

//...
RtValue = fork();
if(RtValue == 0){
   execl("/path/direct","direct",".");
}

In Example 3.2, the fork() function is called and the return value is stored in RtValue. If RtValue is 0, 
then  it  is  the  child  process.  The  execl()  function  is  called.  The  first  parameter  is  the  path  to  the 
executable module,  the second parameter is the execution statement,  and the third parameter is the 
argument. direct is utility that lists all the directories and subdirectories from a given directory. There 
are six versions of the exec functions, each having a different calling convention and use.

3.6.3.1 execl() Functions

The execl(), execle(), execlp() functions pass the command-line arguments as a list. The number of 
command-line arguments should be known at compile time in order for these functions to be useful.

• int execl(const char *path,const char *arg0,.../*,
(char *)0 */);

path is the pathname to the program executable. It can be specified as an absolute pathname or a 
relative pathname from the current directory. The next arguments are the list the command-line 
arguments, from arg0 to argn. There can be n number of arguments. The list is to be followed by 
a NULL pointer.

• int execle(const char *path,const char *arg0,.../*,
(char *)0 *, char *const envp[]*/);

This function is identical to execl() except it has an additional parameter, envp[]. This parameter 
contains the new environment for the new process. envp[] is a pointer to a null-terminated array 
of null-terminated strings. Each string has the form:

name=value

where name is the name of the environment variable and value is the string to be stored. envp[] 
can be assigned in this manner:

char *const envp[] = {"PATH=/opt/kde2:/sbin",
"HOME=/home",NULL};

PATH and HOME are the environment variables in this case.

• int execlp(const char *file,const char *arg0,.../*,
(char *)0 */);

file is the name of the program executable. It uses the PATH environment variable to locate the 
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executables. The remaining arguments list the command-line arguments as explained for execl() 
function.

These are examples of the syntax of the execl() functions using these arguments:

char *const args[] = {"direct",".",NULL};
char *const envp[] = {"files=50",NULL};
execl("/path/direct","direct",".",NULL);
execle("/path/direct","direct",".",NULL,envp);
execlp("direct","direct",".",NULL);

Each shows the syntax of how each execl() function creates a process that executes the direct program.

Synopsis
#include <unistd.h>

int execl(const char *path,const char *arg0,.../*,(char *)0 */);
int execle(const char *path,const char *arg0,.../*,
          (char *)0 *,char *const envp[]*/);
int execlp(const char *file,const char *arg0,.../*,(char *)0 */);
int execv(const char *path,char *const arg[]);
int execve(const char *path,char *const arg[],
           char *const envp[]);
int execvp(const char *file,char *const arg[]);

3.6.3.2 execv() Functions

The execv(), execve(), and execvp() functions pass the command-line arguments in a vector of pointers 
to null-terminated strings. The number of command-line arguments should be known at compile time in 
order for these functions to be useful. argv[0] is usually the execution statement.

• int execv(const char *path,char *const arg[]);

path is the pathname to the program executable. It can be specified as an absolute pathname or 
relative pathname to the current directory. The next argument is the null-terminated vector that 
contains the command-line arguments as null-terminated strings.  There can be n number of 
arguments.  The  vector  is  to  be followed by a  NULL pointer.  arg[]  can  be assigned in  this 
manner:

char *const arg[] = {"traverse",".", ">","1000",NULL};

This is an example of a function call:

execv("traverse",arg);

In this case, the traverse utility will list all files in the current directory larger than 1000 bytes.

• int execve(const char *path,char *const arg[],char
*const envp[]);

This function is identical to execv() except it has the additional parameter envp[], described 
earlier.

• int execvp(const char *file,char *const arg[]);



file is the name of the program executable. The next argument is the null-terminated vector that 
contains the command-line arguments as null-terminated strings. There can be n number of 
arguments. The vector is to be followed by a NULL pointer.

These are examples of syntax of the execv() functions using these arguments:

char *const arg[] = {"traverse",".", ">","1000",NULL};
char *const envp[] = {"files=50",NULL};
execv("/path/traverse",arg);
execve("/path/traverse",arg,envp);
execvp("traverse",arg);

Each shows the syntax of how each execv() function creates a process that executes the traverse 
program.

3.6.3.3 Determining Restrictions on exec() Functions

There is a limit on the size argv[] and envp[] can be when passed to the exec() functions. The sysconf() 
can be used to determine the maximum size of command-line arguments plus the size of environment 
variables for the exec() functions that accept the envp[] parameter. To return the size, name should have 
the value _SC_ARG_MAX.

Synopsis
#include <unistd.h>

long sysconf(int name);

Another restriction when using exec() and the other functions used to create processes is the maximum 
number of simultaneous processes allowed per user id.  To return this number,  name has the value 
_SC_CHILD_MAX.

3.6.3.4 Reading and Setting Environment Variables

Environment  variables  are  null-terminated  strings  that  store  system-dependent  information  such  as 
paths to directories that contain commands, libraries, functions, and procedures used by a process. They 
can also be used to transmit any useful  user-defined information between the parent and the child 
processes. They provide a mechanism for providing specific information to a process without having it 
hardcoded in the program code. System environment variables are predefined and common to all shells 
and processes in that  system. The variables are initialized by startup files. Below are the common 
system variables:

$HOME The absolute pathname of your home directory

$PATH A list of directories to search for commands

$MAIL The absolute pathname of your mailbox

$USER Your user id

$SHELL The absolute pathname of your login shell



$TERM Your terminal type

They can be stored in a file or in an environment list. The environment list will contain pointers to null-
terminated strings. The variable:

extern char **environ

points to the environment list when the process begins to execute. These strings will have the form:

name=value

as explained earlier. Processes initialized with the functions execl(), execlp(), execv(), and execvp() will 
inherit the environment of the parent process. Processes initialized with the functions execve() and 
execle() set the environment for the new process.

There are functions and utilities that can be called to examine, add, or modify environment variables. 
The getenv() is used to determine whether a specific variable has been set. The parameter name is the 
environment variable in question. The function will return NULL if the specified variable has not been 
set. If the variable has been set, the function will return a pointer to a string containing the value.

Synopsis
#include <stdlib.h>

char *getenv(const char *name);
int setenv(const char *name, const char *value,
           int overwrite);
void unsetenv(const char *name);

For example:

string Path;

Path = getenv("PATH");

the string Path is assigned the value contained in the predefined environment PATH.

The  setenv()  is  used  to  change  or  add  a  variable  to  the  environment  of  the  calling  process.  The 
parameter name contains the name of the environment variable to be changed or added. It is assigned 
the value stored in value. If the name variable already exists, then the value is changed to value if the 
overwrite parameter is nonzero. If overwrite is 0, the content of the specified environment variable is 
not modified. setenv() return 0 if it is successful and -1 if unsuccessful. The unsetenv() removes the 
environment variable specified by name.

3.6.4 Using system() to Spawn Processes

The system() is used to execute a command or executable program. The system() causes the execution 
of fork-exec, and a shell. The system() function executes a fork() and the child process calls an exec() 
with a shell that executes the given command or program.



Synopsis
#include <stdlib.h>

int system(const char *string);

The string parameter can be a system command or the name of an executable file. If successful, the 
function returns the termination status of the command or return value (if any) of the program. Errors 
can happen at several levels, the fork() or exec() functions may fail or the shell may not be able to 
execute the command or program.

The function returns a value to the parent process. The function returns 127 if the exec() fails and -1 if 
some other error occurs. The return code of the command is returned if the function succeeds. This 
function does not affect the wait status of any of the children processes.

3.6.5 The POSIX Functions for Spawning Processes

Similar to the system() and fork-exec method of process creation, the posix_spawn() functions create 
new child  processes  from specified  process  images.  But  the  posix_spawn()  functions  create  child 
processes can be created with more fine-grained control. These functions control the attributes the child 
process inherits from the parent process including:

• file descriptors

• scheduling policy

• process group id

• user and group id

• signal mask

They also control whether signals ignored by the parent will be ignored by the child or reset to a default 
action.  Controlling  file  descriptors  allow  the  child  process  independent  access  to  the  data  stream 
independent opened by the parent. Being able to set the child's process group id affects how the child's 
job control will relate to that of the parent. The child's scheduling policy can be set to be different from 
the scheduling policy of the parent.

Synopsis
#include <spawn.h>

int posix_spawn(pid_t *restrict pid, const char *restrict path,
                const posix_spawn_file_actions_t *file_actions,
                const posix_spawnattr_t *restrict attrp,
                char *const argv[restrict],
                char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid, const char *restrict file,
                 const posix_spawn_file_actions_t *file_actions,
                 const posix_spawnattr_t *restrict attrp,
                 char *const argv[restrict],
                 char *const envp[restrict]);

The difference between these two functions is posix_spawn() has a path parameter and posix_spawnp() 



has  a  file  parameter.  The path  parameter  in  the posix_spawn()  function  is  the absolute  or  relative 
pathname to the executable program file. The file parameter in the posix_spawnp() function is the name 
of the executable program. If the parameter contains a slash, then file will be used as a pathname. If not, 
then the path to the executable is determined by the PATH environment variable.

The file_action parameter is a pointer to a posix_spawn_file_actions_t structure:

struct posix_spawn_file_actions_t{
{
   int __allocated;
   int __used;
   struct __spawn_action *actions;
   int __pad[16];
};

The posix_spawn_file_actions_t is a data structure that contains information about the actions to be 
performed in the new process with respect to file descriptors.  The file_action parameter is  used to 
modify the parent's set of open file descriptors to a set of file descriptors for the spawned child process. 
This structure can contain several file action operations to be performed in the sequence in which they 
were added to the spawn file action object. These file action operations are performed on the open file 
descriptors of the parent process. These operations can duplicate, reset, add, delete or close a specified 
file descriptors on behalf of the child process even before it's spawned. If the file_action parameter is a 
null  pointer,  then the file  descriptors opened by the parent  process will  remain open for the child 
process  without  any  modifications.  Table  3-4 lists  the  functions  used  to  add  file  actions  to  the 
posix_spawn_file_actions object.

The attrp parameter points to a posix_spawnattr_t structure:

struct posix_spawnattr_t
{
   short int __flags;
   pid_t __pgrp;
   sigset_t __sd;
   sigset_t __ss;
   struct sched_param __sp;
   int __policy;
   int __pad[16];
};

This structure contains information about the scheduling policy, process group, signals and flags for the 
new process. The descriptions of individual attributes are as follows:

__flags Used to indicate which process attributes are to be modified in the spawned process.

__pgrp The id of the process group to be joined by the new process.

__sd Represents the set of signals to be forced to use default signal handling by the new process.

__ss Represents the signal mask to be used by the new process.

__sp Represents the scheduling parameter to be assigned to the new process.
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__policy Represents the scheduling policy to be used by the new process.

Table 3-4. Functions Used to Add File Actions to the posix_spawn_file_actions Object

File Action Attributes Functions Descriptions

int
posix_spawn_file_actions_addclose
 (posix_spawn_file_actions_t
  *file_actions, int fildes);

Adds a close() action to a spawn file action object 
specified by file_actions. This causes the file descriptor 
fildes to be closed when the new process is spawned using 
this file action object.

int
posix_spawn_file_actions_addopen
 (posix_spawn_file_actions_t
  *file_actions, int fildes,
  const char *restrict path,
  int oflag, mode_t mode);

Adds an open() action to a spawn file action object 
specified by file_actions. This causes the file named path 
with the returned file descriptor fildes to be opened when 
the new process is spawned using this file action object.

int
posix_spawn_file_actions_adddup2
 (posix_spawn_file_actions_t
  *file_actions, int fildes,
  int new fildes);

Adds a dup2() action to spawn a file action object specified 
by file_actions. This causes the file descriptor fildes to be 
duplicated with the file descriptor newfildes when the new 
process is spawned using this file action object.

int
posix_spawn_file_actions_destroy
 (posix_spawn_file_actions_t
  *file_actions);

Destroys the specified file_actions object. This causes the 
object to be uninitialized. The object can then become 
reinitialized using posix_spawn_file_actions_init().

int
posix_spawn_file_actions_destroy
 (posix_spawn_file_actions_t
 *file_actions);

Initializes the specified file_actions object. Once 
initialized, it will contain no file actions to be performed.

They are bitwise-inclusive OR of 0 or more of the following:

POSIX_SPAWN_RESETIDS

POSIX_SPAWN_SETPGROUP

POSIX_SPAWN_SETSIGDEF

POSIX_SPAWN_SETSIGMASK

POSIX_SPAWN_SETSCHEDPARAM

POSIX_SPAWN_SETSCHEDULER

Table 3-5 lists the functions used to set and retrieve the individual attributes contained in the 
posix_spawnattr_t structure.
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Table 3-5. Functions Used to Set and Retrieve the Individual Attributes Contained in the posix_spawnattr_t 
Structure

Spawn Process Attributes functions Descriptions

int posix_spawnattr_getflags
(const posix_spawnattr_t *restrict
 attr, short *restrict flags);

Returns the value of the __flags attribute stored in the 
specified attr object.

int posix_spawnattr_setflags
(posix_spawnattr_t *attr,
 short flags);

Sets the value of the __flags attribute stored in the 
specified attr object to flags.

int posix_spawnattr_getpgroup
(const posix_spawnattr_t *restrict
 attr, pid_t *restrict pgroup);

Returns the value of the __pgroup attribute stored in the 
specified attr object and stores it in the pgroup 
parameter.

int posix_spawnattr_setpgroup
(posix_spawnattr_t *attr,
 pid_t pgroup);

Sets the value of the __pgroup attribute stored in the 
specified attr object to the pgroup parameter if 
POSIX_SPAWN_SETPGROUP is set in the __flags 
attribute.

int posix_spawnattr_getschedparam
(const posix_spawnattr_t *restrict
 attr, struct sched_param *restrict
 schedparam);

Returns the value of the __sp attribute stored in the 
specified attr object and stores it in the schedparam 
parameter.

int posix_spawnattr_setschedparam
(posix_spawnattr_t *attr
 const struct sched_param *restrict
 schedparam);

Sets the value of the __sp attribute stored in the 
specified attr object to the schedparam parameter if 
POSIX_SPAWN_SETSCHEDPARAM is set in the 
__flags attribute.

int posix_spawnattr_getschedpolicy
(const posix_spawnattr_t *restrict
 attr, int *restrict schedpolicy);

Returns the value of the __policy attribute stored in the 
specified attr object and stores it in the schedpolicy 
parameter.

int posix_spawnattr_setschedpolicy
(posix_spawnattr_t *attr,
 int schedpolicy);

Sets the value of the __policy attribute stored in the 
specified attr object to the schedpolicy parameter if 
POSIX_SPAWN_SETSCHEDULER is set in the 
__flags attribute.

int posix_spawnattr_getsigdefault
(const posix_spawnattr_t *restrict
 attr, sigset_t *restrict
 sigdefault);

Returns the value of the __sd attribute stored in the 
specified attr object and stores it in the sigdefault 
parameter.

int posix_spawnattr_setsigdefault
(posix_spawnattr_t *attr,

Sets the value of the __sd attribute stored in the 



Spawn Process Attributes functions Descriptions

const sigset_t *restrict
 sigdefault);

specified attr object to the sigdefault parameter if 
POSIX_SPAWN_SETSIGDEF is set in the __flags 
attribute.

int posix_spawnattr_getsigmask
(const posix_spawnattr_t *restrict
 attr, sigset_t *restrict sigmask);

Returns the value of the __ss attribute stored in the 
specified attr object and stores it in the sigmask 
parameter.

int posix_spawnattr_setsigmask
(posix_spawnattr_t *restrict attr,
 const sigset_t *restrict sigmask);

Sets the value of the __ss attribute stored in the specified 
attr object to the sigmask parameter if 
POSIX_SPAWN_SETSIGMASK is set in the __flags 
attribute.

int posix_spawnattr_destroy
(posix_spawnattr_t *attr);

Destroys the specified attr object. The object can then 
become reinitialized using posix_spawnattr_init().

int posix_spawnattr_init
(posix_spawnattr_t *attr);

Initializes the specified attr object with default values 
for all of the attributes contained in the structure. The 
object can then become reinitialized using 
posix_spawnattr_init().

Example 3.3 shows how the posix_spawn() function can be used to create a process.

Example 3.3 Spawning a process, using the posix_spawn() function, that calls the ps utility.

#include <spawn.h>
#include <stdio.h>
#include <errno.h>
#include <iostream>
{

   //...
   posix_spawnattr_t X;
   posix_spawn_file_actions_t Y;
   pid_t Pid;
   char *const argv[] = {"/bin/ps","-lf",NULL};
   char *const envp[] = {"PROCESSES=2"};
   posix_spawnattr_init(&X);
   posix_spawn_file_actions_init(&Y);
   posix_spawn(&Pid,"/bin/ps",&Y,&X,argv,envp);
   perror("posix_spawn");
   cout << "spawned PID: " << Pid << endl;
   //...
   return(0);

}

In  Example  3.3,  the  posix_spawnattr_t  and  posix_spawn_file_actions_t  objects  are  initialized.  The 
posix_spawn() function is called with the arguments: PID, the path, Y, X, and argv, which contains the 
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command as the first element and the argument as the second, and the envp, the environment list. If the 
posix_spawn() function is  successful,  then the value stored in Pid will  be the PID of the spawned 
process. perror will display:

posix_spawn: Success

and the Pid is sent to output. The spawned process, in this case, executes:

/bin/ps -lf

These functions return the process id of the child process to the parent process in the pid parameter and 
returns 0 as the return value. If the function is unsuccessful, no child process is created, thus no pid is 
returned and an error value is returned as the return value of the function.

Errors can occur on three levels when using the spawn functions. An error can occur if the file_actions 
or attr objects are invalid. If this occurs after the function has successfully returned (the child process 
was spawned), then the child process may have an exit status of 127. If the spawn attribute functions 
cause an error, then the error produced for that particular function (listed in  Tables 3-4 and  3-5) is 
returned. If the spawn function has already successfully returned, then the child process may have an 
exit status of 127.

Errors can also occur when attempting to spawn the child process. These errors would be the same 
errors produced by fork() or exec() functions. If they occur, they will be the return values for the spawn 
functions. If the child process produces an error, it is not returned to the parent process. In order for the 
parent process to be aware that the child has produced an error, other mechanisms would have to be 
used since it will not be stored in the child's exit status. Interprocess communication can be used or the 
child could set some flag visible to the parent.

3.6.6 Identifying the Parent and Child with Process Management Functions

There are two functions that return the calling process's PID and the parent process's PID .getpid() 
returns the process id of the calling process. getppid() returns the parent id of the calling process. These 
functions are always successful, therefore no errors are defined.

Synopsis
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);
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3.7 Terminating a Process

When a process is terminated, the PCB is erased and the address space and resources used by the 
terminated process are deallocated. An exit code is placed in its entry in the main process table. The 
entry is removed once the parent has accepted the exit code. The termination of the process can occur 
under several conditions:

• All instructions have executed.

• The process makes an explicit return or makes a system call that terminates the process.

• Child processes may automatically terminate when the parent has terminated.

• The parent sends a signal to terminate its child processes.

Abnormal termination of a process can occur when the process itself does something that it shouldn't:

• The process requires more memory than the system can provide.

• The process attempts to access resources it is not allowed to access.

• The process attempts to perform an invalid instruction or a prohibited computation.

The termination of a process can also be initiated by a user when the process is interactive.

The parent process is responsible for the termination/deallocation of its children. The parent process 
should  wait  until  all  its  child  processes  have  terminated.  When  a  parent  process  retrieves  a  child 
process's exit code, the child process exits the system normally. The process is in a zombied state until 
the parent accepts the signal. If the parent never accepts the signal because it has already terminated and 
exited the system or because it is not waiting for the child process, the child remains in the zombied 
state until the init process (the original system process) accepts its exit code. Many zombied processes 
can negatively affect the performance of the system.

3.7.1 The exit(), kill() and abort() Calls

There are two functions a process can call for self termination, exit() and abort(). The exit() function 
causes a normal termination of the calling process. All open file descriptors associated with the process 
will be closed. The function will flush all open streams that contain unwritten buffered data, then the 
open streams are closed. The status parameter is the process's exit status. It is returned to the waiting 
parent  process,  which  is  then  restarted.  The  value  of  status  may  be  0,  EXIT_FAILURE,  or 
EXIT_SUCCESS.  The 0 value  means  the  process  has  terminated  successfully.  The  waiting  parent 
process only has access to the lower 8 bits of status. If the parent process is not waiting for the process 
to terminate, the zombied process is adopted by the init process.

The abort() function causes an abnormal termination of the calling process. An abnormal termination of 
the process causes the same effect as fclose() on all open streams. A waiting parent process will receive 
a signal that the child process aborted. A process should only abort when it encounters an error that it 
cannot deal with programmatically.

Synopsis
#include <stdlib.h>

void exit(int status);
void abort(void);



The kill() function can be used to cause the termination of another process. The kill() function sends a 
signal to the processes specified or indicated by the parameter pid. The parameter sig is the signal to be 
sent to the specified process. The signals are listed in the header <signal.h>. To kill a process, sig has 
the value SIGKILL. The calling process must have the appropriate privileges to send a signal to the 
process, or it has a real or effective user id that matches the real or saved set user-ID of the process that 
receives the signal. The calling process may have permission to send only certain signals to processes 
and not others. If the function successfully sends the signal, 0 is returned to the calling process. If it 
fails, -1 is returned.

The calling process can send the signal to one or several processes under these conditions:

pid  > 
0

The signal will be sent to the process whose PID is equal to the pid.

pid  = 
0

The signal will be sent to all the processes whose process group id is the same as the calling 
process.

pid  = 
-1

The signal will be sent to all processes for which the calling process has permission to send 
that signal.

pid  < 
-1

The signal will be sent to all processes whose process id group is equal to the absolute value 
of pid and for which the calling process has permission to send that signal.

Synopsis
#include <signal.h>

int kill(pid_t pid, int sig);



3.8 Process Resources

In order for a process to perform whatever task it is instructed to perform, it may need to write data to a 
file, send data to a printer, or display data to a screen. A process may need input from the user via the 
keyboard  or  input  from a  file.  Processes  can  also use  other  processes,  such as  a  subroutine,  as  a 
resource. Subroutines, files, semaphores, mutexes, keyboards, and display screens are all examples of 
resources that can be utilized by a process. A resource is anything used by a process at any given time 
as a source of data, a means to process, compute, or display data or information.

In order for a process to access a resource, it must first make a request to the operating system. If the 
resource is available, the operating system allows the process to use the resource. The process uses the 
resource, then releases it so it will be available to other processes. If the resource is not available, the 
request  is  denied and the process must  wait.  When the resource becomes available,  the process  is 
awakened. This is the basic approach to resource allocation.  Figure 3-11 shows a resource allocation 
graph, which shows which processes hold resources and which processes are requesting resources. In 
Figure 3-11, process B makes a request for resource 2, which is held by process C. Process C makes a 
request for resource 3, which is held by process D.

Figure  3-11.  A  resource-allocation  graph  that  shows  which  processes  hold  resources  and  which  processes  are 
requesting resources.

When more than one request to access a resource is granted, the resource is sharable, which is shown in 
Figure 3-11 as well. Process A shares resource 1 with process D. A resource may allow many processes 
concurrent access or may only allow one process limited time before allowing another process access. 
An example of this type of shared resource is the processor. A process is assigned a processor for a 
short interval and then another process is assigned the processor. When only one request to access a 
resource is granted at a time and that occurs after the resource has been released by another process, the 
resource  is  unshared  and  the  process  has  exclusive  access  to  the  resource.  In  a  multiprocessor 
environment, it is important to know whether a shared resource can be accessed simultaneously or by 
only one process at a time in order to avoid some of the pitfalls inherent in concurrency.

Some resources can be changed or modified by a process. Other resources will not allow a process to 
change it. The behavior of shared modifiable or unmodifiable resources is determined by the resource 
type.

S 3.1 Resource Allocation Graph
Resource allocation graphs are directed graphs that show how the resources in a system are 
allocated. The graph consists of a set of vertices V and a set of edges E. The set of vertices is 
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partitioned into two types:

P = {P1, P2,..., Pn)

R = {R1, R2,..., Rm}

Set P is the set of all the processes in the system and set R is the set of all resources in the 
system. A directed edge from a process to a resource is called a request edge and a directed 
edge from a resource to a process is called an assignment edge. These directed edges are 
denoted:

Pi Rj Request edge: Process Pi requests an instance of resource type Rj

Rj Pi Assignment egde : Instance of resource type Rj has been allocated to 

Process Pi

Each process in the resource-allocation graph is depicted as a circle and each resource is 
depicted as a square. Since there may be many instances of a resource type, each instance of 
the resource type is represented as a dot within the square. A request edge points to the 
perimeter  of  the  resource  square  but  an  assignment  edge  originates  from the  dot  to  the 
perimeter of the process circle.

The resource-allocation graph in Figure 3-11. depicts the following:

Sets P, R, and E

P = {Pa, Pb, Pc, Pd}

R = {R1, R2, R3}

E = {R1 Pa, R1 Pd, Pb R2, R2 Pc, Pc R3, R3 Pd}

3.8.1 Types of Resources

There are three basic types of resources: hardware, data, and software. Hardware resources are physical 
devices connected to the computer. Examples of hardware resources are processors, main memory, and 
all other I/O devices including printers, hard disk, tape, and zip drives, monitors, keyboards, sound, 
network, graphic cards, and modems. All these devices can be shared by several processes.

Some hardware resources are preempted to allow different processes access. For example, a processor 
is preempted to allow different processes time to run. RAM is another example of a shared, preemptible 
resource.  When a  process  is  not  executing,  some of  the  physical  page frames it  occupies  may be 
swapped out to secondary storage in order for another process to be swapped in to occupy those now-
available page frames. A range of memory can only be occupied by the page frames of one process at 
any given time. An example of a shared, nonpreemptible resource is a printer. When a printer is shared, 
the jobs sent to the printer by each process is stored in a queue. Each job is printed to completion before 
another job starts. The printer is not preempted by any waiting printer jobs unless the current job is 
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canceled.

Data resources such as objects;  system data such as environment  variables,  files,  and handles,  and 
globally defined variables such as semaphores and mutexes are all resources shared and modified by 
processes. Regular files and files associated with physical devices such as the printer can be opened in 
such a manner, restricting the type of access processes have to that file. Processes may be granted only 
read or write access, or read/write access. A child process inherits the parent process's resources and 
access rights to those resources existing at the time the child's process was created. The child process 
can advance the file pointer, close, modify, or overwrite the contents of a file opened by the parent. 
Shared memory and files with write permission require their access to be synchronized. Shared data 
such as semaphores or mutexes can be used to synchronize access to other shared data resources.

Shared libraries are examples of software resources. Shared libraries provide a common set of services 
or functions to processes. Processes can also share applications, programs, and utilities. In such a case, 
only one copy of the program(s) code is brought into memory. There will be separate copies of the data, 
one for each user (process). Program code that is not changed (also called reentrant) can be accessed by 
several processes simultaneously.

3.8.2 POSIX Functions to Set Resource Limits

POSIX defines functions that restrict a process's ability to use certain resources. The operating system 
sets  limitations  on  a  process's  ability  to  utilize  system resources.  These  resource  limits  affect  the 
following:

• size of the process's stack

• size of file and core file creation

• amount of CPU usage (size of time slice)

• amount of memory usage

• number of open file descriptors

The operating system sets a hard limit on resource usage by a process. The process can set or change 
the soft limit of its resources but its value should not exceed the hard limit set by the operating system. 
A process can lower its hard limit but this value should be greater than or equal to the soft limit. When 
a process lowers its hard limit, it is irreversible. Only processes with special privileges can raise their 
hard limit.

Synopsis
#include <sys/resource.h>

int setrlimit(int resource, const struct rlimit *rlp);
int getrlimit(int resource, struct rlimit *rlp);

int getrusage(int who, struct rusage *r_usage);

The setrlimit() function is used to set limits on the consumption of specified resources. This function 
can set both hard and soft limits. The parameter resource represents the resource type. Table 3-6 lists 
the values for resource with a brief description. The soft and hard limits of the specified resource are 
represented by the rlp parameter. The rlp parameter points to a struct rlimit that contains two objects of 
type rlim_t:
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struct rlimit
{
      rlim_t rlim_cur;
      rlim_t rlim_max;
};

rlim_t is an unsigned integer type. rlim_cur contains the current or soft limit. rlim_max contains the 
maximum or hard limit. rlim_cur and rlim_max can be assigned any value. They can also be assigned 
these symbolic constants defined in the header <sys/resource.h>:

RLIM_INFINITY Indicates no limit

RLIM_SAVED_MAX Indicates an unrepresentable saved hard limit

RLIM_SAVED_CUR Indicates an unrepresentable saved soft limit

The soft or hard limit can be set to RLIM_INFINITY, which means the resource is unlimited.

Table 3-6. Values for resource

Resource 
definitions

Descriptions

RLIMIT_CORE Maximum size of a core file in bytes that may be created by a process.

RLIMIT_CPU Maximum amount of CPU time in seconds that may be used by a process.

RLIMIT_DATA Maximum size of a process data segment in bytes.

RLIMIT_FSIZE Maximum size of a file in bytes that may be created by a process.

RLIMIT_NOFILE A number 1 greater than the maximum value that the system may assign to a 
newly created file descriptor.

RLIMIT_STACK Maximum size of a process stack in bytes

RLIMIT_AS Maximum size of a process total available memory in bytes.

The getrlimit() returns the soft and hard limit of the specified resource in the rlp object. Both functions 
return 0 if successful and -1 if unsuccessful. Example 3.4 contains an example of a process setting the 
soft limit for file size in bytes.
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Example 3.4 Using setrlimit() to set the soft limit for file size.

#include <sys/resource.h>

//...
struct rlimit R_limit;
struct rlimit R_limit_values;

//...
R_limit.rlim_cur = 2000;
R_limit.rlim_max = RLIM_SAVED_MAX;
setrlimit(RLIMIT_FSIZE,&R_limit);
getrlimit(RLIMIT_FSIZE,&R_limit_values);
cout << "file size soft limit: " << R_limit_values.rlim_cur
     << endl;

//...

In  Example 3.4, the file size soft limit is set to 2000 bytes and the hard limit is set to the hard limit 
maximum. R_limit and the RLIMIT_FSIZE are passed to the setrlimit() function. getrlimit() are passed 
RLIMIT_FSIZE and R_limit_value. The soft value is sent to cout.

The  getrusage()  function  returns  information  about  the  measures  of  resources  used  by  the  calling 
process. It also returns information about the terminated child process the calling process is waiting for. 
The parameter who can have these values:

RUSAGE_SELF
RUSAGE_CHILDREN

If  the  value  for  who is  RUSAGE_SELF,  then  the  information  returned will  pertain  to  the  calling 
process. If the value for who is RUSAGE_CHILDREN, then the information returned is pertaining to 
the calling process's children. If the calling process did not wait for its children, then the information 
pertaining to the child process is discarded. The information is returned in the r_usage. r_usage points 
to  a  struct  rusage  that  contains  information  listed  and  described  in  Table  3-7.  If  the  function  is 
successful, it returns 0, if unsuccessful, it returns -1.
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3.9 What are Asynchronous and Synchronous Processes?

Asynchronous processes execute independent of each other. Process A runs until completion without 
any regard to process B. Asynchronous processes may or may not have a parent–child relationship. If 
process A creates process B, they can both execute independently but at some point the parent retrieves 
the exit status of the child. If they do not have a parent–child relationship, they may share the same 
parent.

Table 3-7. Information Contained in struct rusage

struct rusage Attributes Description

struct timeval ru_utime User time used

struct timeval ru_sutime System time used

long ru_maxrss Maximum resident set size

long ru_maxixrss Shared memory size

long ru_maxidrss Unshared data size

long ru_maxisrss Unshared stack size

long ru_minflt Number of page claims

long ru_majflt Number of page faults

long ru_nswap Number of page swaps

long ru_inblock Block input operations

long ru_oublock Block output operations

long ru_msgsnd Number of messages sent

long ru_msgrcv Number of messages received

long ru_nsignals Number of signals received

long ru_nvcsw Number of voluntary context switches



struct rusage Attributes Description

long ru_nivcsw Number of involuntary context switches

Asynchronous processes may execute serially, simultaneously, or overlap. These scenarios are depicted 
in  Figure  3-12.  In  case 1,  process  A runs  until  completion,  process  B runs  until  completion,  then 
process  C  runs  until  completion.  This  is  serial  execution  of  these  processes.  Case  2  depicts 
simultaneous execution  of  processes.  Processes  A and B are  active  processes.  While  process  A is 
running, process B is sleeping. At some point both processes are sleeping. Process B awakens before 
process A, process A awakens, and now both processes are running at the same time. This shows that 
asynchronous processes may execute simultaneously only during certain intervals of their execution. In 
case 3, the execution of processes A and B overlaps.

Figure 3-12. Possible scenarios of asynchronous and synchronous processes.

Asynchronous processes may share resources  like a file  or memory.  This may or may not  require 
synchronization or cooperation of the use of the resource. If the processes are executing serially (case 
1), then they will not require any synchronization. For example, all three processes, A, B, and C, may 
share a global variable. Process A writes to the variable before it terminates, then when process B runs, 
it reads the data stored in the variable and before it terminates it writes to the variable. When it runs, 
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process C reads data from the variable. But in cases 2 and 3, the processes may attempt to modify the 
variable at the same time, thus requiring synchronization of its use.

For  our  purposes,  we  define  synchronous  processes  as  processes  with  inter-leaved  execution,  one 
process  suspends  its  execution  until  another  process  finishes.  For  example,  process  A,  the  parent 
process,  executes  and creates  process  B,  the child  process.  Process  A suspends its  execution until 
process B runs until completion. When process B terminates, its exit code is placed in the process table. 
Process A is informed that process B has terminated. Process A can resume additional processing, then 
terminate or it can immediately terminate. Process A and process B are synchronous processes. Figure 
3-12 contrasts synchronous and asynchronous execution of processes A and B.

3.9.1  Synchronous  and  Asynchronous  Processes  Created  with  fork(),  exec(),  system(),  and 
posix_spawn() Functions

Processes  created  by  fork(),  fork-exec,  and  posix_spawn()  functions  will  create  asynchronous 
processes.  When using the  fork()  function,  the parent  process  image is  duplicated.  Once  the child 
process  has  been  created,  the  function  returns  to  parent  the  child's  PID and  a  return  value  of  0, 
indicating  process  creation  was successful.  The parent  does  not  suspend execution;  both processes 
continue  to  execute  independently  from  the  statement  immediately  preceding  the  fork().  Child 
processes created using the fork-exec combination initializes  the child's  process  image with a new 
process image. The exec() functions do not return to the parent process unless the initialization was not 
successful. The posix_spawn() functions create the child process images and initialize it  within one 
function call.  The PID is  returned to the posix_spawn() as well  as a return value indicating if  the 
process was spawned successfully. After posix_spawn() returns, both processes are executing at the 
same time. Processes created by the system() function will create synchronous processes. A shell is 
created that executes the system command or executable file. The parent process is suspended until the 
child process terminates and the system() call returns.

3.9.2 The wait() Function Call

Asynchronous processes can suspend execution until a child process terminates by executing the wait() 
system call. After the child process terminates, a waiting parent process collects the child's exit status, 
which prevents zombied processes. The wait() function obtains the exit status from the process table. 
The status parameter points to a location that contains the exit status of the child process. If the parent 
process has more than one child process and several of them have terminated, the wait() function only 
retrieves  the  exit  status  for  one  child  process  from the  process  table.  If  the  status  information  is 
available before the execution of the wait() function, the function will return immediately. If the parent 
process does not have any children, the function returns with an error code. The wait() function can also 
be called when the calling process is  to  wait  until  a  signal  is  delivered then perform some signal 
handling action.

Synopsis
#include <sys/wait.h>

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

The waitpid()  function is  the  same as  wait()  except  it  takes  an additional  parameter,  pid.  The  pid 
parameter specifies a set of child processes for which the exit status is retrieved. Which processes are in 
the set is determined by the value of pid:
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pid > 0 A single child process.

pid = 0 Any child process whose group id is the same as the calling process.

pid < -1 Any child processes whose group id is equal to the absolute value of pid.

pid = -1 Any child processes.

The options parameter determines how the wait should behave and can have the value of the following 
constants defined in the header <sys/wait.h>:

WCONTINUED Reports  the exit  status  of  any  continued child  process  specified  by pid)  whose 
status has not been reported since it continued.

WUNTRACED Reports  the exit  status of any child process (specified by pid) that  has stopped 
whose status has not been reported since they stopped.

WNOHANG The calling process is not suspended if the exit status for the specified child process 
is not available.

These constants can be logically OR'ed and passed as the options parameter (e.g., WCONTINUED || 
WUNTRACED).

Both functions return the PID of the child process whose exit status was obtained. If the value stored in 
status is 0, then the child process has terminated under these conditions:

• Process returned 0 from the function main()

• Process called some version of exit() with a 0 argument

• Process was terminated because the last thread of the process terminated

Table 3-8 lists the macros in which the value of the exit status can be evaluated.

Table 3-8. Macros in Which the Value of the Exit Status Can be Evaluated

Macros for evaulating 
status

Description

WIFEXITED Evaluates to nonzero if status was returned by a normally terminated child 
process.

WEXITSTATUS if WIFEXITED is nonzero, this evaluates to the low-order 8 bits of the status 
argument  the  terminated  child  process  passed  to  _exit(),  exit(),  or  value 
returned from main().

WIFSIGNALED Evaluates  to  nonzero  if  status  was  returned  from  a  child  process  that 
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Macros for evaulating 
status

Description

terminated because it was sent a signal that was not caught.

WTERMSIG If WIFSIGNALED is nonzero, this evaluates to the number of the signal that 
caused the child to terminate.

WIFSTOPPED Evaluates  to  nonzero  if  status  was  returned  from  a  child  process  that 
currently stopped.

WSTOPSIG If WIFSTOPPED is nonzero, this evaluates to the number of the signal that 
caused the child process to stop.

WIFCONTINUED Evaluates to nonzero if status was returned from a child process that has 
continued from a job control stop.



3.10 Dividing the Program into Tasks

When considering dividing your program into multiple tasks, you are introducing concurrency into your 
program.  In  a  single  processor  environment,  concurrency  is  implemented  with  multitasking.  This 
accomplished by process switching. Each process executes for a short interval, then the processor is 
given  to  another  process.  This  occurs  so  quickly  that  it  gives  the  illusion  that  the  processes  are 
executing simultaneously. In a multiprocessor environment, processes belonging to a single program 
can all  be assigned to the same processor  or different  processors.  If  the processes  are  assigned to 
different processors, then the processes will execute in parallel.Two levels for concurrent processing 
within an application or system are the process level and the thread level. Concurrent processing on the 
thread level is called multithreading, which will be discussed in the next chapter. The key to dividing 
your program into concurrent tasks is identifying where concurrency occurs, and where you can take 
advantage  of  it.  Sometimes  concurrency  is  not  absolutely  necessary.  Your  program  may  have  a 
concurrency interpretation yet serially execute just fine. The concurrency might benefit your program 
with increased speed and less complexity. Some programs have natural parallelism, while others are 
naturally  sequential  by nature.  Some programs have  dual  interpretations.  When decomposing  your 
program into functions  or objects,  the top-down approach is  used to break down the program into 
functions and the bottom-up approach is used to break down the program into objects. Once this is 
done, it is necessary to determine which functions or objects are best served as separate programs or 
subprograms while others will be executed by threads. These subprograms will be executed by the 
operating system as processes. The separate or processes perform the tasks you have designated them to 
do.

A program separated into tasks can execute simultaneously in three ways:

1. Divide the program into a main task that creates a number of subtasks.

2. Divide the program into a set of separate binaries.

3. Divide the program into several types of tasks in which each task type is responsible for creating 
only certain tasks as needed.

These approaches are depicted in Figure 3-13.
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Figure 3-13. Approaches that can be used to divide a program up into separate tasks.

For example, a rendering program can use these approaches. Rendering describes the process of going 
from a database representation of a 3D object to a shaded 2D projection on a view surface (computer 
screen). The image is represented as shaded polygons that exact the form of the object. The stages of 
the render process are shown in Figure 3-14. It can be broken down into separate tasks:
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Figure 3-14. The stages of the render process.

1. Set up the data structure for polygon mesh models.

2. Apply linear transformations.

3. Cull back-facing polygons.

4. Perform rasterization.

5. Apply hidden surface removal algorithm.

6. Shade the individual pixels.

The first task is representing the object as an array of polygons in which each vertex in the polygon uses 
3D world coordinates. The second task is applying linear transformations to the polygon mesh model. 
These transformations are used to position objects into a scene and to create the view point or view 
surface (what is seen by the observer from the view point they are observing the scene or object). The 
third task is culling back-facing surfaces of the objects in the scene. This means lines generated from 
the back portion of objects not visible from the view point are removed. This is also called back-face 
elimination. The fourth task is converting the vertex-based model to a set of pixel coordinates. The fifth 
task is removing any hidden surfaces. If there are objects interacting in the seen, objects behind others, 
for example, these surfaces are removed. The sixth task is shading the surfaces.

Each task is saved separately and compiled into standalone executable files. Task1, Task2, and Task3 
are executed sequentially and Task4, Task5, and Task6 are executed simultaneously. In Example 3.5, 
approach 1 is used to execute our rendering program.

Example 3.5 Using approach 1 to create processes.

#include <spawn.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>
#include <errno.h>
#include <unistd.h>

int main(void)
{
   posix_spawnattr_t Attr;
   posix_spawn_file_actions_t FileActions;
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   char *const argv4[] = {"Task4",...,NULL};
   char *const argv5[] = {"Task5",...,NULL};
   char *const argv6[] = {"Task6",...,NULL};
   pid_t Pid;
   int stat;
   //...

   // execute first 3 tasks synchronously
   system("Task1 ...");
   system("Task2 ...");
   system("Task3 ...");

   // initialize structures
   posix_spawnattr_init(&Attr);
   posix_spawn_file_actions_init(&FileActions);

   // execute last 3 tasks asynchronously
   posix_spawn(&Pid,"Task4",&FileActions,&Attr,argv4,NULL);
   posix_spawn(&Pid,"Task5",&FileActions,&Attr,argv5,NULL);
   posix_spawn(&Pid,"Task6",&FileActions,&Attr,argv6,NULL);

   // like a good parent, wait for all your children
   wait (&stat);
   wait (&stat);
   wait (&stat);
   return(0);
}

In Example 3.5, from main() Task1, Task2, and Task3 are executed using the system() function. Each 
of  these  tasks  is  performed  synchronously  to  the  parent  process.  Task4,  Task5,  and  Task6  are 
performed asynchronously to the parent process using posix_spawn() functions. The ellipse (...) is used 
to indicate whatever files the tasks require. Parent process calls three wait() functions. Each waits for 
one of the Task4, Task5, and Task6 to terminate.

Using approach 2, the rendering program can be launched from a shell script. The advantage of using a 
shell script is all of the shell commands and operators can be used. For our render program, the & and 
&& metacharacters are used to manage the execution of the task:

Task1 ... && Task2 ... && Task3
Task4 ... & Task5 ... & Task6

Here,  Task1,  Task2,  and  Task3  are  executing  sequentially  under  the  condition  the  previous  task 
executed  successfully  by  using  the  &&  metacharacter.  Task4,  Task5,  and  Task6  executed 
simultaneously  using  the  &  metacharacter.  The  UNIX/Linux  environments  use  metacharacters  to 
control the way commands are executed. These are some of the metacharacters that can be used to 
control execution of several commands:

&
&

Commands  separated  by  &&  tokens  causes  the  next  command  to  be  executed  only  if  the 
previous command executes successfully.

|| Commands separated by || tokens causes the next command to be executed only if the previous 
command fails to execute successfully.

; Commands separated by ; tokens causes the next command to be executed next in the sequence.
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& Commands separated by & tokens causes all the commands to be executed simultaneously.

Using approach 3, the tasks are categorized. When decomposing a program, it is a good technique to 
see if  there  are  categories  of  tasks  present.  For  example,  some tasks  are  concerned with  the  user 
interface, creating it,  extracting input from it,  sending it  to output,  and so on. Other tasks perform 
computations, manage data, and so on. This is a useful technique when designing a progam. It can also 
be used in implementing a program. In our render-program, we can group tasks into several categories:

• Tasks that perform linear transformations

Viewing transformations

Scene transformations

• Tasks that perform rasterization

Line drawing

Solid area filling

Rasterizing polygons

• Tasks that perform surface removal

Hidden surface

Back-surface elimination

• Tasks that perform shading

Pixel

Scheme

Categorizing our tasks will allow our program to be more general. Processes only create other processes 
of a certain category of work as needed. For example, if our program is to render a single object and not 
a scene, then it would not be necessary to spawn a process that performs hidden surface removal; back-
surface elimination may be sufficient. If the object is not to be shaded, then it would not be necessary to 
spawn a task that performs shading; only line drawing rasterization would be nesssary. A parent process 
or a shell script can be used to launch our program using approach 3. The parent can determine what 
type of rendering is necessary and pass that information to each of the dedicated processes so that they 
will know which processes to spawn. The information can also be redirected to each of the dedicated 
processes from the shell script. In Example 3.6, approach 3 is used.

Example 3.6 Using approach 3 to create processes. The tasks are launched from a parent process.

#include <spawn.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>
#include <errno.h>
#include <unistd.h>

int main(void)
{
   posix_spawnattr_t Attr;
   posix_spawn_file_actions_t FileActions;
   pid_t Pid;
   int stat;
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   //...

   system("Task1 ..."); //performed regardless of the type
                          rendering used

   // determine what type of rendering is needed, this can be
   // obtained from the user or by performing some other type
   // of analysis, communicate this to other tasks through
   // arguments

   char *const argv4[] = {"TaskType4",...,NULL};
   char *const argv5[] = {"TaskType5",...,NULL};
   char *const argv6[] = {"TaskType6",...,NULL};

   system("TaskType2 ...");
   system("TaskType3 ...");

   // initialize structures
   posix_spawnattr_init(&Attr);
   posix_spawn_file_actions_init(&FileActions);

   posix_spawn(&Pid,"TaskType4",&FileActions,&Attr,argv4,
              NULL);
    posix_spawn(&Pid,"TaskType5",&FileActions,&Attr,argv5,
                NULL);
   if(Y){
            posix_spawn(&Pid,"TaskType6",&FileActions,&Attr,
                       argv6,NULL);

   }
   // like a good parent, wait for all your children
   wait(&stat);
   wait(&stat);
   wait(&stat);
   return(0);

}

  // Each TaskType will be similar

//...

int main(int argc, char *argv[])
{
    int Rt;

    //...

  if(argv[1] == X){

     // initialize structures
     //...
     posix_spawn(&Pid,"TaskTypeX",&FileActions,&Attr,...,
                NULL);
   }

   else{

          // initialize structures
          //...



          posix_spawn(&Pid,"TaskTypeY",&FileActions,&Attr,
                      ...,NULL);
   }

   wait(&stat);
   exit(0);

}

In  Example  3.6,  each  task  type  will  determine  what  processes  need  to  be  spawned  based  on  the 
information passed to it from the parent or shell script.

3.10.1 Processes Along Function and Object Lines

Processes can be spawned from functions called from main(), as in Example 3.7.

Example 3.7 The mainline which calls the function.

int main(int argc, char *argv[])
{
    //...

    Rt = func1(X, Y, Z);

    //...
}

// This is the function definition

int func1(char *M, char *N, char *V)
{
   //...

   char *const args[] = {"TaskX",M,N,V,NULL};

   Pid = fork();
   if(Pid == 0)
   {
       exec("TaskX",args);

   }
   if(Pid > 0)
   {
       //...
   }

   wait(&stat);
}

In  Example 3.7 func1() is called with three arguments. These arguments are passed to the spawned 
process.

Processes can also be spawned from methods that belong to objects. The objects can be declared in any 
process, as in Example 3.8.

Example 3.8 A process declaring an object.

//...
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my_object MyObject;

//...

// Class declaration and definition

class my_object
{
public:

     //...
    int spawnProcess(int X);
    //...

};

int my_object::spawnProcess(int X)
{

   //...

   // posix_spawn() or system()

   //...

}

In Example 3.8, the object can create any number of processes from whatever method necessary.

Summary

Concurrency in a C++ program is accomplished by factoring your program into either multiple 
processes or multiple threads. A process is a unit of work created by the operating system. It is an 
artifact of the operating system where programs are artifacts of the developer. A program may consist 
of multiple processes that might not be associated with any particular program. Operating systems are 
capable of managing hundreds even thousands of concurrently loaded processes.Some information and 
attributes of a process are stored in the process control block (PCB) used by the operating system to 
identify the process. This information is needed by the operating system to manage each process. The 
operating system multitasks between processes by performing a context switch. It saves the current 
state of the executing process and its context to the PCB save area in order to restart the process the 
next time it is assigned to the CPU. When the process is utilizing a processor, it is in a running state. 
When it is waiting to use the CPU, it is in a ready state. The ps utility can be used to monitor the 
executing processes on the system.Processes that create other processes have a parent–child relationship 
with the created process. The creator of the process is the parent and the created process is the child 
process. Child processes inherit many attributes from the parent. The parent's key responsibility is to 
wait for the child process so it can exit the system. There are several system calls that can be used to 
create processes: fork(), fork-exec, system(), and posit_spawn(). fork(), fork-exec(), and posix_spawn() 
creates processes that are asynchronous to the parent process where system() creates a child process that 
is synchronous to the parent process. Asynchronous parents can call the wait() function and at that point 
synchronously wait for child processes to terminate or retrieve exit codes for already terminated child 
processes. A program can be divided into several processes. These processes can be spawned from a 
parent process, or launched from a shell script as separate binaries. Dedicated processes can spawn 
other processes as needed that only perform certain types of work. Processes can be spawned from 
functions or from methods.
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Chapter 4. Dividing C++ Programs into Multiple Threads
"As our computer systems become more complicated, this kind of abstraction gives us hope 
of being able to continue to manage them."

—Andrew Koening and Barbara Moo, Ruminations on C++

In this Chapter

• Threads: A Definition  

• The Anatomy of a Thread  

• Thread Scheduling  

• Thread Resources  

• Thread Models  

• Introduction to the Pthread Library  

• The Anatomy of a Simple Threaded Program  

• Creating Threads  

• Managing Threads  

• Thread Safety and Libraries  

• Dividing Your Program into Multiple Threads  

• Summary  

The work of a sequential program can be divided between routines within a program. Each routine is 
assigned a specific task, and the tasks are executed one after another. The second task cannot start until 
the first task finishes, the third task cannot start until the second task finishes, and so on. This scheme 
works  fine until  performance and complexity  boundaries  are  encountered.  In some cases,  the only 
solution to a performance problem is to allow the program to do more than one task simultaneously. In 
other situations the work that routines within a program have to do is so involved that it makes sense to 
think  of  the  routines  as  mini-programs  within  the  main  program.  Each  mini-program  executes 
concurrently within the main program. Chapter 3 presented methods for breaking a single process up 
into  multiple  processes,  where  each  process  executes  a  separate  program.  This  method  allows  an 
application to do more than one thing at a time. However, each process has its own address space and 
resources.  Because  each  program is  in  a  separate  address  space,  communication  between  routines 
becomes  an  issue.  Interprocess  communication  techniques  such  as  pipes,  fifos,  and  environment 
variables are needed to communicate between the separately executing parts. Sometimes it is desirable 
to have a single program do more than one task at a time without dividing the program into multiple 
programs.  Threads  can  be  used  in  these  circumstances.  Threads  allow  a  single  program  to  have 
concurrently executing parts, where each part has access to the same variables, constants, and address 
space. Threads can be thought of as mini-programs within a program. When a program is divided into 
separate  processes,  as  we did in  Chapter  3,  there  is  a  certain  amount  of  overhead associated with 
executing each of the separate programs. Threads require less overhead to execute. Threads can be 
thought  of  as  lightweight  processes,  offering  many  of  the  advantages  of  processes  without  the 
communication requirements that separate processes require. Threads provide a means to divide the 
main flow of control into multiple, concurrently executing flows of control.
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4.1 Threads: A Definition

A thread is a stream of executable code within a UNIX or Linux process that has the ability to be 
scheduled. A thread is a lighter burden on the operating system to create, maintain, and manage because 
very little information is associated with a thread. This lighter burden suggests that a thread has less 
overhead compared to a process. All processes have a main or primary thread. The main thread is a 
process's flow of control or thread of execution. A process can have multiple threads and therefore have 
as many flows of control as there are threads. Each thread will execute independently and concurrently 
with its own sequence of instructions. A process with multiple threads is called multithreaded. Figure 4-
1 shows the multiple flows of control of a process with multiple threads.

Figure 4-1. The flows of control of a multithreaded process.

4.1.1 Thread Context Requirements

All threads within the same process exist in the same address space. All of the resources belonging to 
the process are shared among the threads. Threads do not own any resources. Any resources owned by 
the process are sharable among all of the threads of that process. Threads share file descriptors and file 
pointers but each thread has its own program pointer, register set, state, and stack. The threads' stacks 
are all within the stack segment of its process. The data segment of the process is shared with its thread. 
A thread can read and write to the memory locations of its process and the main thread has access to the 
data. When the main thread writes to memory, any of the child threads can have access to the data. 
Threads can create other threads within the same process. All the threads in a single process are called 
peers. Threads can also suspend, resume, and terminate other threads within its process.

Threads are executing entities that compete independently for processor usage with threads of the same 
or  different  processes.  In  a  multiprocessor  system,  threads  within  the  same  process  can  execute 
simultaneously on different processors. The threads can only execute on processors assigned to that 
particular process. If processors 1, 2, and 3 are assigned to process A, and process A has three threads, 
then a thread will be assigned to each processor. In a single processor environment, threads compete for 
processor usage. Concurrency is achieved through context switching. Context switches take place when 
the operating system is multitasking between tasks on a single processor. Multitasking allows more than 
one task to execute at the same time on a single processor. Each task executes for a designated time 
interval.  When  the  time  interval  has  expired  or  some event  occurs,  the  task  is  removed  from the 
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processor and another task is assigned to it. When threads are executing concurrently within a single 
process, then the process is multithreaded. Each thread executes a subtask allowing these subtasks of 
the  process  to  execute  independently  without  regard  to  the  process's  main  flow  of  control.  With 
multithreading, the threads can compete for a single processor or be assigned to different processors. In 
any case, a context switch occurring between threads of the same process requires fewer resources than 
a  context  switch  occurring  between  threads  of  different  processes.  A  process  uses  many  system 
resources to  keep track of its  information and a process context  switch takes time to  manage that 
information. Most of the information contained in the process context describes the address space of the 
process and resources owned by the process. When a switch occurs between threads in different address 
spaces, a process context switch must take place. Since threads within the same process do not have 
their own address space or resources, less information tracking is needed. The context of a thread only 
consists  of  an  id,  a  stack,  a  register  set,  and  a  priority.  The  register  set  contains  the  program or 
instruction pointer and the stack pointer. The text of a thread is contained in the text segment of its 
process. A thread context switch will take less time and use fewer system resources.

4.1.2 Threads and Processes: A Comparison

There are many aspects of a thread that are similar to a process. Threads and processes have an id, a set 
of registers, a state, a priority, and adhere to a scheduling policy. Like a process, threads have attributes 
that describe it to the operating system. This information is contained in a thread information block 
similar to a process information block. Threads and child processes share the resources of its parent 
process. The resources opened by the process (main thread) are immediately accessible to the threads 
and child processes of the parent process. No additional initialization or preparation is needed. Threads 
and child processes are independent entities from its parent or creator and compete for processor usage. 
The creator of the process or thread exercises some control over the child process or thread. The creator 
can cancel, suspend, resume, or change the priority of the child process or thread. A thread or process 
can alter its attributes and create new resources but cannot access the resources belonging to other 
processes. However, threads and processes differ in several ways.

4.1.2.1 Differences between Threads and Processes

The major difference between threads and processes is each process has its own address space and 
threads don't. If a process creates multiple threads, all the threads will be contained in its address space. 
This is why they share resources so easily and interthread communication is so simple. Child processes 
have their own address space and a copy of the data segment. Therefore, when a child changes its 
variables or data, it does not affect the data of its parent process. A shared memory area has to be 
created in order for parent and child processes to share data. Interprocess communication mechanisms, 
such as pipes and fifos, are used to communicate or pass data between them. Threads of the same 
process can pass data and communicate by reading and writing directly to any data that is accessible to 
the parent process.

4.1.2.2 Threads Controlling Other Threads

Whereas  processes  can  only  exercise  control  over  other  processes  in  which  it  has  a  parent–child 
relationship, threads within a process are considered peers and are on an equal level regardless of who 
created whom. Any thread that has access to the thread id of another thread in the same process can 
cancel, suspend, resume, or change the priority of that thread. In fact, any thread within a process can 
kill the process by canceling the main or primary thread. Canceling the main thread would result in 
terminating all the threads of the process—killing the process. Any changes to the main thread may 
affect all the threads of the process. When changing the priority of the process, all the threads within the 
process that inherited that priority and have not changed its priorities would also be altered. Table 4-1 
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summarizes the similarities and differences between threads and processes.

4.1.3 Advantages of Threads

There are several advantages of using multiple threads to manage the subtasks of an application as 
compared to using multiple processes. These advantages include:

• Less system resources needed for context switching

• Increased throughput of an application

• No special mechanism required for communication between tasks

• Simplify program structure

Table 4-1. Similarities and Differences between Threads and Processes

Similarities  Between  Threads 
and Processes

Differences Between Threads and Processes

• Both have an id, set of 
registers, state, priority, 
and scheduling policy.

• Both have attributes that 
describe the entity to the 
OS.

• Both have an information 
block.

• Both share resources with 
the parent process.

• Both function as 
independent entities from 
the parent process.

• The creator can exercise 
some control over the 
thread or process.

• Both can change their 
attributes.

• Both can create new 
resources.

• Neither can access the 
resources of another 
process.

• Threads share the address space of the process that created 
it; processes have their own address.

• Threads have direct access to the data segment of its 
process; processes have their own copy of the data 
segment of the parent process.

• Threads can directly communicate with other threads of its 
process; processes must use interprocess communication 
to communicate with sibling processes.

• Threads have almost no overhead; processes have 
considerable overhead.

• New threads are easily created; new processes require 
duplication of the parent process.

• Threads can exercise considerable control over threads of 
the same process; processes can only exercise control over 
child processes.

• Changes to the main thread (cancellation, priority change, 
etc.) may affect the behavior of the other threads of the 
process; changes to the parent process does not affect 
child processes.



4.1.3.1 Context Switches during Low Processor Availability

When creating a process, the main thread may be the only thread needed to carry out the function of the 
process.  If  the  process  has  many  concurrent  subtasks,  multiple  threads  can  provide  asynchronous 
execution of the subtasks with less overhead for context switching. When processor availability is low 
or there is only a single processor, concurrently executing processes involve heavy overhead because of 
the context switching required. Under the same condition using threads, a process context switch would 
only occur when a thread from a different process is the next thread to be assigned the processor. Less 
overhead means less system resources used and less time taken for context switching. Of course, if 
there are enough processors to go around then context switching is not an issue.

4.1.3.2 Better Throughput

Multiple threads can increase the throughput of an application. With one thread, an I/O request would 
halt the entire process. With multiple threads, as one thread waits for an I/O request, the application can 
continue executing. As one thread is blocked, another can execute. The entire application does not wait 
for each I/O request to be filled. Other tasks can be performed that does not depend on the blocked 
thread.

4.1.3.3 Simpler Communication between Concurrently Executing Parts

Threads do not require special mechanisms for communication between subtasks. Threads can directly 
pass and receive data from other threads. This also saves system resources that would have to be used in 
the setup and maintenance of  special  communication mechanisms if  multiple  processes were used. 
Threads communicate by using the memory shared within the address space of the process. Processes 
can also communicate by shared memory but processes have separate address spaces and therefore the 
shared memory exists outside the address space of both processes. This increases the time and space 
used to maintain and access the shared memory.  Figure 4-2 illustrates the communication between 
processes and threads.

Figure 4-2. Communication between threads of a single process and communication between multiple processes.
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4.1.3.4 Simplify Program Structure

Threads can be used to simplify the program structure of an application. Each thread is assigned a 
subtask or subroutine for which it is responsible. The thread will independently manage the execution 
of the subtask. Each thread can be assigned a priority reflecting the importance of the subtask it is 
executing to the application. This will result in more easily maintained code.

4.1.4 Disadvantages of Threads

The easy accessibility threads have to the memory of a process has its disadvantages. For example:

• Threads can easily pollute address space of a process.

• Threads will require synchronization for concurrent read/write access to memory.

• One thread can kill the entire process or program.

• Threads only exist within a single process and are therefore not reusable.

4.1.4.1 Threads Can Corrupt Process Data Easier

It's easier for threads to corrupt the data of a process through data race because multiple threads have 
write access to the same piece of data. This is not so with processes. Each process has its own data and 
other processes don't have access unless special programming is done. The separate address spaces of 
processes protect  the data.  The fact  that  threads share the same address  space exposes  the data  to 
corruption. For example, a process has three threads, A, B, and C. Threads A and B write to a memory 
location and Thread C reads the value and uses it in a calculation. Threads A and B may both attempt to 
write to the memory location at the same time. Thread B overwrites the data written by Thread A before 
Thread C gets a chance to read it. The threads need to be synchronized so that Thread C can read the 
data deposited in the memory location by Thread A before Thread B overwrites it. Synchronization is 
needed to prevent  either  thread from overwriting the values before the data  is  used.  The issues of 
synchronization between threads will be discussed in Chapter 5.

4.1.4.2 One Bad Thread Can Kill the Entire Program

Since threads don't have their own address space, they are not isolated. If a thread causes a fatal access 
violation, this may result in the termination of the entire process. Processes are isolated. If one process 
corrupts its address space, the problems are restricted to that process. A process can have an access 
violation that causes the process to terminate and all of the other processes will continue executing if 
the violation isn't too bad. Data errors can be restricted to a single process. Errors caused by a thread are 
more  costly  than  errors  caused  by  processes.  Threads  can  create  data  errors  that  affect  the  entire 
memory space of all the threads. Processes can protect its resources from indiscriminate access by other 
processes. Threads share resources with all the other threads in the process. A thread that damages a 
resource affects the whole process or program.

4.1.4.3 Threads are Not as Reusable by Other Programs

Threads are dependent and cannot be separated from the process in which they reside. Processes are 
more  independent  than  threads.  An application  can  divide  tasks  among many processes  and those 
processes can be packaged as modules that can be used in other applications. Threads cannot exist 
outside the process that created it and therefore are not reusable.  Table 4-2 lists the advantages and 
disadvantages of threads.
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Table 4-2. Advantages and Disadvantages of Threads

Advantages of Threads Disadvantages of Threads

• Less system resources needed for context 
switching

• Increased throughput of an application

• No special mechanism required for 
communication between tasks

• Simplification of program structure

• Require synchronization for concurrent 
read/write access to memory

• Can easily pollute address space of its 
process

• Only exist within a single process and 
therefore not reusable



4.2 The Anatomy of a Thread

The layout of a thread is embedded in the layout of a process. As discussed in Chapter 3, a process has 
a code, data, and stack segment. The thread shares the code and data segment with the other threads of 
the process. Each thread has its own stack allocated in the stack segment of the process's address space. 
The thread's stack size is set when the thread is created. If the creator of the thread does not specify the 
size of the thread's stack, a default size is assigned by the system. The default size of the stack is system 
dependent and will depend on the maximum number of threads a process can have, the allotted size of a 
process's address space, and the space used by system resources. The thread's stack size must be large 
enough for any functions called by the thread, any code that is external to the process like library code, 
and local variable storage. A process with multiple threads should have a stack segment large enough 
for all  of  its  thread's  stacks.  The address  space allocated to  the process limits  the stack size,  thus 
limiting the size possible for each thread's stack. Figure 4-3 shows the layout of a process that contains 
multiple threads.

Figure 4-3. Layout of a process that contains multiple threads.
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In Figure 4-3, the process contains two threads and the thread's stacks are located in the stack segment 
of the process. Each thread executes different functions: thread A executes function 1 and thread B 
executes function 2.

4.2.1 Thread Attributes

The attributes of a process are what describe the process to the operating system. The operating system 
uses this information to manage processes and distinguish one process from another. The process shares 
almost everything with its thread including its resources and environment variables. The data segment, 
text segment, and all resources are associated with the process and not the threads. Everything a thread 
needs to operate is supplied and defined by the process. What distinguishes threads from one another is 
the id, the set of registers that defines the state of the thread, its priority, and its stack. These attributes 
are what give each thread their identity. Like the process, the information about a thread is stored in 
data structures and returned by functions supplied by the operating system. Some information about a 
thread is contained in a structure called the thread information block, created at the time the thread is 
created.

The thread id is a unique value that identifies each thread during its lifetime in a process. The priority of 
a thread determines which threads are given preferential access to an available processor at a given 
time. The state of the thread is the condition a thread is in at any given time. The set of registers for a 
thread includes the program counter and the stack pointer. The program counter contains the address of 
the instruction the thread is to execute and the stack pointer points to the top of the thread's stack.

The POSIX thread library defines a thread attribute object that encapsulates the properties of the thread 
accessible  and  modifiable  to  the  creator  of  the  thread.  The  thread  attribute  defines  the  following 
attributes:

• scope

• stack size

• stack address

• priority

• detached state

• scheduling policy and parameters

A thread attribute object can be associated with one thread or multiple threads. When an attribute object 
is used, it is a profile that defines the behavior of a thread or group of threads. All the threads that use 
the attribute object take on all the properties defined by the attribute object. Figure 4-3 also shows the 
attributes associated with each thread. As you can see, both threads A and B share an attribute object 
but they maintain their separate thread ids and set of registers. Once the attribute object is created and 
initialized, it can be referenced in any calls to the thread creation function. Therefore, a group of threads 
can  be  created  that  has  a  "small  stack,  low priority"  or  "large  stack,  high  priority  and detached." 
Detached threads are threads that are not synchronized with other threads in the process. In other words, 
there  are  no  threads  waiting  for  the  detached  thread  to  exit.  Therefore,  once  the  thread  exits,  its 
resources, namely thread id, can be instantly reused. Several methods can be invoked to set and retrieve 
the values of these attributes. Once a thread is created, its attributes cannot be changed while the thread 
is in use.

The scope attribute describes which threads a particular thread will compete with for resources. Threads 
contend for resources within two contention scopes: process scope (threads of the same process) and 
system scope (all threads in the system). Threads compete with threads within the same process for file 
descriptors while threads with system-wide contention scope compete for resources that are allocated 
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across  the  system (e.g.,  real  memory).  Threads  compete  with  threads  that  have process  scope and 
threads from other processes for processor usage depending on the contention scope and the allocation 
domains  (the  set  of  processors  to  which  it  is  assigned).  A  thread  that  has  system  scope  will  be 
prioritized and scheduled with respect to all of the system-wide threads.  Table 4-3 lists the settable 
properties for the POSIX thread attribute object with a brief description.

4.3 Thread Scheduling

When a process is scheduled to be executed, it is the thread that utilizes the processor. If the process has 
only one thread, it is the primary thread assigned to a processor. If a process has multiple threads and 
there  are  multiple  processors,  all  of  the  threads  are  assigned to  a  processor.  Threads  compete  for 
processor usage either with all the threads from active processes in the system or just the threads from a 
single process. The threads are placed in the ready queues sorted by their priority value. The threads in 
the queue with the same priority are scheduled to processors according to a scheduling policy. When 
there are not enough processors to go around, then a thread with a higher priority can preempt an 
executing thread. If the newly active thread is of the same process as the preempted thread, then the 
context switch is between threads. If the newly active thread is of another process, a process context 
switch occurs and then the thread context switch is performed.

Table 4-3. Settable Properties for the Thread Attribute Object

Settable  Thread 
Attributes

Functions Description

detachstate int 
pthread_attr_setdetachstat
e (pthread_attr_t *attr,int 
detachstate);

The detachstate attribute controls whether the newly 
created thread is detachable. If detached, the thread's 
flow of control cannot be joined to any thread.

guardsize int 
pthread_attr_setguardsize(
pthread_attr_t *attr,size_t 
guardsize);

The guardsize attribute controls the size of the guard 
area for the newly created thread's stack. It creates a 
buffer zone the size of guardsize at the overflow end 
of the stack.

inheritsched int 
pthread_attr_setinheritsch
ed(pthread_attr_t *attr,int 
inheritsched);

The inheritsched attribute determines how the 
scheduling attributes of the newly created thread will 
be set. It determines whether the new thread's 
scheduling attributes are inherited from the creating 
thread or set by an attribute object.

param int 
pthread_attr_setschedpara
m(pthread_attr_t *restrict 
attr,const struct 
sched_param *restrict 
param);

The param attribute is a structure that can be used to 
set the priority of the newly created thread.
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Settable  Thread 
Attributes

Functions Description

schedpolicy int 
pthread_attr_setschedpoli
cy(pthread_attr_t *attr,int 
policy);

The schedpolicy determines the scheduling policy of 
the newly created thread.

contentionscope int 
pthread_attr_setscope(pthr
ead_attr_t *attr,int 
contentionscope);

The contentionscope attribute determines which set of 
threads the newly created thread will compete with for 
processor usage. A process scope means the thread 
will compete with the set of threads of the same 
process; system scope means the thread will compete 
with system-wide threads (this includes threads from 
other processes).

stackaddr 
stacksize

int 
pthread_attr_setstack(pthr
ead_attr_t *attr,void 
*stackaddr,size_t 
stacksize);

The stackaddr and stacksize attributes determine the 
base address and minimum size in bytes of the stack 
for the newly created thread.

stackaddr int 
pthread_attr_setstackaddr(
pthread_attr_t *attr,void 
*stackaddr);

The stackaddr attribute determines the base address of 
the stack for the newly created thread.

stacksize int 
pthread_attr_setstacksize(
pthread_attr_t *attr,size_t 
stacksize);

The stacksize attribute determines the minimum size 
in bytes of the stack for the newly created thread.

4.3.1 Thread States

Threads have the same states and transitions mentioned in Chapter 3 that processes have. Figure 4-4 is a 
duplication of the state diagram 3.4 from Chapter 3. To review, there are four commonly implemented 
states:  runnable,  running  (active),  stopped,  and  sleeping  (blocked).  A  thread  state  is  the  mode  or 
condition a thread is in at any given time. A thread is in a runnable state when it is ready for execution. 
All runnable threads are placed in a ready queue with other threads with the same priority that are ready 
to be executed. When a thread is selected and assigned to a processor, the thread is in the running state. 
A thread  is  preempted once it  has  executed  for  its  time slice  or  when a  thread of  higher  priority 
becomes runnable. The thread is then placed back into the ready queue. A thread is in the sleeping state 
if it is waiting for an event to occur or I/O request to complete. A thread is stopped when it receives a 
signal to stop executing. It remains in that state until it receives a signal to continue. Once the signal is 
received, the thread moves from the stopped to a runnable state. As the thread moves from one state to 
another, it undergoes a state transition that signals some event has occurred. When a thread changes 
from the runnable to the running state it is because the system has selected that thread to run—the 
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thread has been dispatched. A thread is preempted if its makes an I/O request or some other request of 
the kernel or for some external reason.

Figure 4-4. Thread states and transitions.

One thread can determine the state of an entire process. The state of a process with one thread is 
synonymous  with  the  state  of  its  primary  thread.  If  the  primary  thread  is  sleeping,  the  process  is 
sleeping.  If  the primary  thread  is  running,  the process  is  running.  For  a  process  that  has  multiple 
threads, all threads of the process would have to be in a sleeping or stopped state in order to consider 
the whole process sleeping or stopped. On the other hand, if one thread is active (runnable or running) 
then the process is considered active.

4.3.2 Scheduling and Thread Contention Scope

The contention scope of the thread determines which set of threads a thread will compete with for 
processor usage. If a thread has process scope, it will only compete with the threads of the same process 
for processor usage. If the thread has system scope, it will compete with its peers and with threads of 
other  processes  for  processor  usage.  For  example,  in  Figure  4-5,  there  are  two  processes  in  a 
multiprocessor environment of three processors. Process A has four threads and Process B has three 
threads. Process A has three threads that have process scope and one thread with system scope. Process 
B has two threads with process scope and one thread with system scope.  Process A's threads with 
process  scope  competes  for  processor  A and  Process  B's  threads  with  process  scope  compete  for 
processor C. Process A and B's threads with system scope compete for processor B.
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Figure 4-5. Scheduling with process and system scope threads in a multiprocessor environment.

NOTE:

Threads should have system scope when modeling true real-time behavior in your application.

4.3.3 Scheduling Policy and Priority

The scheduling policy and priority of the process belong to the primary thread. Each thread can have its 
own scheduling policy and priority separate from the primary thread. Threads have an integer priority 
value that has a maximum and minimum value. A priority scheme is used to determine which thread is 
assigned the processor. Each thread has a priority and the thread with the highest priority is executed 
before  the  threads  of  lower  priority.  When  threads  are  prioritized,  tasks  that  require  immediate 
execution or response from the system are allotted the processor  time it  requires.  In a  preemptive 
operating system, executing threads are preempted if a thread of higher priority and the same contention 
scope is available. For example, in  Figure 4-5, threads with process scope compete for the processor 
with threads of the same process that also have process scope. Process A has two threads with priority 3 
in which one is assigned the processor. Once the thread with priority 2 becomes runnable, the active 
thread is preempted and the processor is given to the thread with higher priority. Yet, in Process B, it 
has two process scope threads that have priority 1, a higher priority than 2. One thread is assigned the 
processor. Although the other thread with priority 1 is runnable, it does not preempt Process A's thread 
with priority 2. The thread with system scope and a lower priority is not preempted by any of the 
threads of Process A or B. They only compete for processor usage with other threads that have system 
scope.

As discussed in Chapter 3, the ready queues are organized as a sorted list in which each element is a 
priority level. Each priority level in the list is a queue of threads with the same priority level.  All 
threads of the same priority level are assigned to the processor using a scheduling policy: FIFO, round-
robin, or other. With the FIFO (First-In, First-Out) scheduling policy, when the time slice expires the 
thread is placed at the head of the queue of its priority level. Therefore, the thread will run until it 
completes execution, it sleeps, or it receives a signal to stop. When a sleeping thread is awakened, it is 
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placed  at  the  end  of  the  queue  of  its  priority  level.  Round-robin  scheduling  is  similar  to  FIFO 
scheduling except the thread is placed at the end of the queue when the time slice expires and the 
processor is given to the next thread in the queue.

The round-robin scheduling policy considers all threads to be of equal priority and each thread is given 
the processor for only a time slice.  Task executions are interweaved. For example,  a program that 
searches files for specified keywords is divided into two threads. One thread, thread 1, searches for all 
files with a specified file extension and places the path of the file into a container. Another thread, 
thread 2, extracts the name of the files from the container, searches each file for the specified keywords, 
then writes the name of the files that contains all the keywords to a file. If the threads used a round-
robin scheduling policy with a single processor, thread 1 would use its time slice to find files and insert 
the paths into the container. Thread 2 would use its time slice to extract file names and then perform the 
keyword search. In a perfect world, this interweaves the execution of threads 1 and 2. But thread 2 may 
execute first when there are no files in the container or thread 1 may only get as far as finding a file, the 
time slice expiring before it  had a chance to insert  the file name into the container.  This situation 
requires synchronization, which will be discussed briefly later in this chapter and in  Chapter 5. The 
FIFO scheduling policy allows each thread to run until execution is complete. Using the same example, 
thread 1 would have time to locate all the files and insert the paths into the container. Thread 2 would 
then extract the filenames and perform its keyword search on each file. In a perfect world, this would be 
the end of the program. But thread 2 may be assigned to a processor before thread 1 and there would be 
no files in the container to search. Thread 1 would then execute, locate, and insert file names into the 
container but no keyword search would be performed. The program would fail. With FIFO scheduling, 
there is no interweaving of the execution of these tasks. A thread assigned to a processor dominates the 
processor until it completes execution. This scheduling policy can be used for applications where a set 
of threads need to complete as soon as possible. The "other" scheduling policy can be user-defined 
customization of a scheduling policy. For example, the FIFO scheduling policy can be customized to 
allow random unblocking of threads.

4.3.3.1 Changing Thread Priority

The priorities of threads should be changed in order to speed up the execution of threads on which other 
threads depend. They should not be changed in order for a specific thread to get more processor time. 
This  will  affect  the  overall  performance  of  the  system.  High-priority  class  threads  receive  more 
processor time than threads of a lower class because they are executed more frequently. Threads of 
higher  priority  will  dominate  the  processor,  preventing  other  threads  of  lower  priority  valuable 
processor time. This is called starvation. Systems that use dynamic priority mechanisms respond to this 
situation by assigning priorities that last for short periods of time. The system adjusts the priority of 
threads in order for threads of lower priority execution time. This will improve the overall performance 
of the system.

The temptation to ensure that a process or specific thread runs to completion is to give it the highest 
priority  but  this  will  affect  the  overall  performance  of  the  system.  Such  threads  may  preempt 
communications over networks, causing the loss of data. Threads that control the user interface may be 
drastically affected, causing the keyboard, mouse, and screen response to be sluggish. Some systems 
prevent user processes and threads from having a higher priority than system processes. Otherwise, 
system processes or threads would be prevented from responding to critical system changes. Generally 
speaking, most user processes and threads fall in the category of normal or regular priority.
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4.4 Thread Resources

Threads share most of its resources with other threads of the same process. Threads do own resources 
that define the thread's context. This includes the thread id, set of registers including the stack pointer 
and program counter, and stack. Threads must share other resources such as the processor, memory, and 
file descriptors required in order for it to perform its task. File descriptors are allocated to each process 
separately and threads of the same process compete for access to these descriptors. In memory, the 
processor, and other globally allocated resources, threads contend with other threads of its process as 
well as the threads of other processes for access to these resources.

A thread can allocate additional resources such as files or mutexes, but they are accessible to all the 
threads of the process. There are limits on the resources that can be consumed by a single process. 
Therefore, all the threads in combination must not exceed the resource limit of the process. If a thread 
attempts to consume more resources than the soft resource limit defines, it  is sent a signal that the 
process's resource limit has been reached. Threads that allocate resources must be careful not to leave 
resources in an unstable state when they are canceled. A thread that has opened a file or created a mutex 
may be terminated, leaving the file open or the mutex locked. If the file has not been properly closed 
and the  application  is  terminated,  this  may  result  in  damage  to  the  file  or  loss  of  data.  A thread 
terminating after locking a mutex prevents access to whatever critical section that mutex is protecting. 
Before it terminates, a thread should perform some cleanup, preventing these unwanted situations from 
occurring.

4.5 Thread Models

The purpose of a thread is to perform work on behalf of the process. If a process has multiple threads, 
each thread performs some subtask as part of the overall task to be performed by the process. Threads 
are  delegated  work  according  to  a  specific  strategy  or  approach  that  structures  how delegation  is 
implemented. If the application models some procedure or entity, then the approach selected should 
reflect that model. Some common models are:

• delegation (boss–worker)

• peer-to-peer

• pipeline

• producer-consumer

Each model has its own WBS (Work Breakdown Structure) that determines who is responsible for 
thread  creation  and under  what  conditions  threads  are  created.  For  example,  there  is  a  centralized 
approach where a single thread creates other threads and delegates work to each thread. There is an 
assembly-line approach where threads perform different work at different stages. Once the threads are 
created, they can perform the same task on different data sets, different tasks on the same data set, or 
different tasks on different data sets. Threads can be categorized to only perform certain types of tasks. 
For example, there can be a group of threads that only perform computations, process input, or produce 
output.

It may be true that what is to be modeled is not homogeneous throughout the process and it may be 
necessary to mix models.  In  Chapter 3,  we discussed a rendering process.  Tasks 1,  2, and 3 were 
performed  sequentially  and  tasks  4,  5,  and  6  can  be  performed simultaneously.  Each  task  can  be 
executed by a different thread. If multiple images were to be rendered, threads 1, 2, and 3 can form the 
pipeline of the process. As thread 1 finishes, the image is passed to thread 2 while thread 1 performs its 
work on the next image. As these images are buffered, threads 4, 5, and 6 can use a workpile approach. 
The thread model is a part of the structuring of parallelism in your application where each thread can be 
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executing on a different processor. Table 4-4 lists the thread models with a brief description.

Table 4-4. Thread Models

Thread 
Models

Description

Delegation 
model

A central thread (boss) creates the threads (workers), assigning each worker a task. 
Each worker is assigned a task by the boss thread. The boss thread may wait until 
each thread completes that task.

Peer-to-peer 
model

All the threads have an equal working status. Threads are called peer threads. A peer 
thread creates all the threads needed to perform the tasks but performs no delegation 
responsibilities.  The peer  threads can process requests  from a single  input  stream 
shared by all the threads or each thread may have its own input stream.

Pipeline An assembly-line approach to processing a stream of input in stages. Each stage is a 
thread that performs work on a unit of input. When the unit of input has been through 
all the stages, then the processing of the input has been completed.

Producer–
consumer 
model

A producer thread produces data to be consumed by the consumer thread. The data is 
stored in a block of memory shared by the producer and consumer threads.

4.5.1 Delegation Model

In the delegation model, a single thread (boss) creates the threads (workers) and assigns each a task. It 
may be necessary for the boss thread to wait until each worker thread completes its task. The boss 
thread delegates the task each worker thread is to perform by specifying a function. As each worker is 
assigned its task, it is the responsibility of each worker thread to perform that task and produce output 
or synchronize with the boss or other thread to produce output.

The boss thread can create threads as a result of requests made to the system. The processing of each 
type of request can be delegated to a thread worker. In this case, the boss thread executes an event loop. 
As events occur, thread workers are created and assigned their duties. A new thread is created for every 
new request that enters the system. Using this approach may cause the process to exceed its resource or 
thread limits. Alternatively, a boss thread can create a pool of threads that are reassigned new requests. 
The boss thread creates a number of threads during initialization and then each thread is suspended until 
a request is added to their queue. As requests are placed in the queue, the boss thread signals a worker 
thread to process the request.  When the thread completes, it dequeues the next request. If none are 
available, the thread suspends itself until the boss signals the thread that more work is available in the 
queue. If all the worker threads are to share a single queue, then the threads can be programmed to only 
process certain types of requests. If the request in the queue is not of the type a particular thread is to 
process, the thread can again suspend itself. The primary purpose of the boss thread is to create all the 
threads,  place work in the queue,  and awaken worker threads when work is  available.  The worker 
threads check the request in the queue, perform the assigned task, and suspend itself if  no work is 
available. All the worker threads and the boss thread execute concurrently.  Figure 4-6 contrasts these 
two approaches for the delegation model.
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Figure 4-6. The two approaches to the delegation model.

4.5.2 Peer-to-Peer Model

Where the delegation model has a boss thread that delegates tasks to worker threads, in the peer-to-peer 
model all  the threads have an equal working status.  Although there is a single thread that initially 
creates all the threads needed to perform all the tasks, that thread is considered a worker thread and 
does no delegation. In this model, there is no centralized thread. The worker (peer) threads have more 
responsibility.  The peer  threads  can process  requests  from a  single  input  stream shared  by all  the 
threads or each thread may have its own input stream for which it is responsible. The input can also be 
stored in a file or database. The peer threads may have to communicate and share resources. Figure 4-7 
shows the peer-to-peer thread model.
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Figure 4-7. Peer-to-peer thread model.

4.5.3 Pipeline Model

The pipeline model is characterized as an assembly line in which a stream of items are processed in 
stages. At each stage, work is performed on a unit of input by a thread. When the unit of input has been 
through all  the stages,  then the processing of  the input  has  been completed.  This approach allows 
multiple inputs to be processed simultaneously. Each thread is responsible for producing its interim 
results or output, making them available to the next stage or next thread in the pipeline. The last stage 
or thread produces the result of the pipeline.

As the input moves down the pipeline, it may be necessary to buffer units of input at certain stages as 
threads  process  previous  input.  This  may cause  a  slowdown in  the  pipeline  if  a  particular  stage's 
processing is slower than other stages, causing a backlog. To prevent backlog, it may be necessary for 
that  stage to create additional threads to process incoming input.  The stages of work in a pipeline 
should be balanced where one stage does not take more time than the other stages. Work should be 
evenly distributed throughout the pipeline. More stages and therefore more threads may also be added 
to the pipeline. This will also prevent backlog. Figure 4-8 shows the pipeline model.

Figure 4-8. The pipeline model.
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4.5.4 Producer-Consumer Model

In the producer-consumer model, there is a producer thread that produces data to be consumed by the 
consumer thread. The data is stored in a block of memory shared between the producer and consumer 
threads. The producer thread must first produce data, then the consumer threads retrieve it. This process 
will  require  synchronization.  If  the  producer  thread  deposits  data  at  a  much  faster  rate  than  the 
consumer thread consumes it, then the producer thread may at several times overwrite previous results 
before the consumer thread retrieves it. On the other hand, if the consumer thread retrieves data at a 
much faster rate than the producer deposits data, then the consumer thread may retrieve identical data or 
attempt  to  retrieve  data  not  yet  deposited.  Figure  4-9 shows  the  producer-consumer  model.  The 
producer-consumer  model  is  also  called  the  client-server  model  for  larger-scaled  programs  and 
applications.

Figure 4-9. The producer–consumer model.

4.5.5 SPMD and MPMD for Threads

In each of the previous thread models, the threads are performing the same task over and over again on 
different data sets or are assigned different tasks performed on different data sets. These thread models 
utilize SIMD (Single Instruction Multiple Data) or MPMD (Multiple Programs Multiple Data). These 
are two models of parallelism that classify programs by instruction and data streams. They can be used 
to describe the type of work the thread models are implementing in parallel. For our purposes, MPMD 
is better  stated as  MTMD (Multiple  Threads Multiple  Data).  These models  describe a  system that 
executes  different  threads  processing  different  sets  of  data  or  data  streams.  SPMD  means  Single 
Program  Multiple  Data  or,  for  our  purposes,  STMD  (Single  Thread  Multiple  Data).  This  model 
describes a system that executes a single thread that processes different sets of data or data streams. 
This means several  identical  threads executing the same routine are  given different  sets  of data to 
process.

The delegation and peer-to-peer models can both use STMD or MTMD models of parallelism. As 
described,  the pool of threads can execute different routines processing different sets  of data.  This 
utilizes the MTMD model. The pool of threads can also be given the same routine to execute. The 
requests or jobs submitted to the system could be different sets of data instead of different tasks. In this 
case, a set  of threads implementing the same instructions but on different sets of data thus utilizes 
STMD. The peer-to-peer model can be threads executing the same or different tasks. Each thread can 
have its own data stream or several files of data that each thread is to process. The pipeline model uses 
the MTMD model of parallelism. At each stage different processing is performed so multiple input 
units are at different stages of completion. The pipeline metaphor would be useless if at each stage the 
same processing was performed. Figure 4-10 contrasts the STMD and MTMD models of parallelism.
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Figure 4-10. The STMD and MTMD models of parallelism.

4.6 Introduction to the Pthread Library

The Pthread library supplies the API to create and manage the threads in your application. The Pthread 
library is based on a standardized programming interface for the creation and maintenance of threads. 
The  thread  interface  has  been  specified  by  the  IEEE standards  committee  in  the  POSIX 1003.1c 
standard.  Third-party vendors supply an implementation that adheres to the POSIX standard.  Their 
implementation is referred to as Pthreads or POSIX thread library.

The Pthread library contains over 60 functions that can be classified into the following categories:

I. Thread Management Functions

I. Thread configuration

II. Thread cancellation

III.Thread scheduling

IV.Thread specific data

V. Signals

VI.Thread attribute functions

a. Thread attribute configuration

b. Thread attribute stack configuration

c. Thread attribute scheduling configuration

II. Mutex Functions

I. Mutex configuration

II. Priority management

III.Mutex attribute functions

a. Mutex attribute configuration

b. Mutex attribute protocol

c. Mutex attribute priority management

III.Condition Variable Functions

I. Condition variable configuration

II. Condition variable attribute functions

a. Condition variable attribute configuration



b. Condition variable sharing functions

The Pthread library can be implemented in any language but in order to be compliant with the POSIX 
standard,  they must comply to the standardized interface and behave in the manner  specified.  The 
Pthread library is  not  the only thread API implementation.  Hardware and third-party vendors have 
implemented  their  own  proprietary  thread  APIs.  For  example,  the  Sun  environment  supports  the 
Pthread library and their own Solaris thread library. In this chapter, we discuss some Pthread functions 
that implement thread management.

4.7 The Anatomy of a Simple Threaded Program

Any simple multithreaded program will consist of a main or creator thread and the functions that the 
threads will execute. The thread models determine the manner in which the threads are created and 
managed. They can be created all at once or under certain conditions. In  Example 4.1 the delegation 
model is used to show a simple multithreaded program.

Example 4.1 Using the delegation model in a simple threaded program.

#include <iostream>
#include <pthread.h>

void *task1(void *X) //define task to be executed by ThreadA
{
   //...
   cout << "Thread A complete" << endl;

}

void *task2(void *X) //define task to be executed by ThreadB

{
   //...
   cout << "Thread B complete" << endl;

}

int main(int argc, char *argv[])
{
   pthread_t ThreadA,ThreadB; // declare threads

   pthread_create(&ThreadA,NULL,task1,NULL); // create threads
   pthread_create(&ThreadB,NULL,task2,NULL);
   // additional processing
   pthread_join(ThreadA,NULL); // wait for threads
   pthread_join(ThreadB,NULL);
   return(0);
}

In Example 4.1, the main line of the example defines the set of instructions for the primary thread. The 
primary thread, in this case, is also the boss thread. The boss thread declares two threads, ThreadA and 
ThreadB. By using the pthread_create() function, these two threads are associated with the tasks they 
are to execute. The two tasks, task1 and task2, are defined. They simply send a message to the standard 
out  but  could be programmed to do anything.  The pthread_create()  function causes  the threads  to 
immediately execute their assigned tasks. The pthread_join() function works the same way as wait() for 
processes. The primary thread waits until both threads return. Figure 4-11 shows the layout of Example 
4.1.  It  also shows what  happens to the flow of controls  as the pthread_create()  and pthread_join() 
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functions are called.

Figure 4-11. The layout, output, and flow of control for Example 4.1.

In  Figure 4-11, the pthread_create() function causes a fork in the flow of control in the main line or 
primary thread. Two additional flows of control, one for each thread, are executing concurrently. The 
pthread_create()  function  returns  immediately  after  the  threads  are  created.  It  is  an  asynchronous 
function. As each thread executes its set of instructions, the primary thread executes its instructions. 
The pthread_join() causes the primary thread to wait until each thread terminates and rejoins the main 
flow of control.

4.7.1 Compiling and Linking Multithreaded Programs

All multithreaded programs using the POSIX thread library must include the header:

<pthread.h>

In order to compile and link multithreaded applications in the UNIX or Linux environments using the 
g++ or gcc command-line compilers, be sure to link the Pthreads library to your application. Use the -l 
option that specifies a library.

-lpthread

will cause your application to link to the library that is compliant with the multithreading interface 
defined  by  POSIX  1003.1c  standard.  The  Pthread  library,  libpthread.so,  should  be  located  in  the 
directory where the system stores its standard library, usually /usr/lib. If it is not located in a standard 
location, use the -L option to make the compiler look in a particular directory first before searching the 
standard locations.

g++ -o blackboard -L /src/local/lib blackboard.cpp -lpthread

tells the compiler to look in the /src/local/lib directory for the Pthread library before searching in the 
standard locations.

The complete  programs in  this  book are  accompanied  by  a  program profile.  The  program profile 
contains  implementation  specifics  such  as  headers  and  libraries  required  and  compile  and  link 
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instructions. The profile also includes a note section that will contain any special considerations that 
need to be taken when executing the program.

4.8 Creating Threads

The Pthreads library can be used to create, maintain, and manage the threads of multithreaded programs 
and applications. When creating a multithreaded program, threads can be created any time during the 
execution of a process because they are dynamic. The pthread_create() function creates a new thread in 
the address space of a process. The thread parameter points to a thread handle or thread id of the thread 
that will be created. The new thread will have the attributes specified by the attribute object attr. The 
thread parameter will immediately execute the instructions in start_routine with the arguments specified 
by arg. If the function successfully creates the thread, it will return the thread id and store the value in 
the thread parameter.

If attr is NULL, the default thread attributes will be used by the new thread. The new thread takes on 
the attributes of attr when it is created. If attr is changed after the thread has been created, it will not 
affect any of the thread's attributes. If start_routine returns, the thread returns as if pthread_exit() had 
been called using the return value of start_routine as its exit status.

Synopsis
#include <pthread.h>

int pthread_create(pthread_t *restrict thread,
                   const pthread_attr_t *restrict attr,
                   void *(*start_routine)(void*),
                   void *restrict arg);

If successful, the function will return 0. If the function is not successful, no new thread is created and 
the function will return an error number. If the system does not have the resources to create the thread 
or the thread limit for the process has been reached, the function will fail. The function will also fail if 
the thread attribute is invalid or the caller thread does not have permission to set the necessary thread 
attributes.

These are examples of creating two threads with default attributes:

pthread_create(&threadA,NULL,task1,NULL);
pthread_create(&threadB,NULL,task2,NULL);

These are the two pthread_create()  function calls from  Example 4.1. Both threads are created with 
default attributes.

Program 4.1 shows a primary thread passing an argument from the command line to the functions 
executed by the threads.

Program 4.1 

#include <iostream>
#include <pthread.h>
#include <stdlib.h>
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int main(int argc, char *argv[])
{
   pthread_t ThreadA,ThreadB;
   int N;

   if(argc != 2){
      cout << "error" << endl;
      exit (1);
   }

   N = atoi(argv[1]);
   pthread_create(&ThreadA,NULL,task1,&N);
   pthread_create(&ThreadB,NULL,task2,&N);
   cout << "waiting for threads to join" << endl;
   pthread_join(ThreadA,NULL);
   pthread_join(ThreadB,NULL);
   return(0);
}

Program 4.1 shows how the primary thread can pass arguments from the command line to each of the 
thread functions. A number is typed in at the command line. The primary thread converts the argument 
to  an integer  and passes  it  to  each function as a  pointer  to  an integer  as the last  argument  to  the 
pthread_create() functions. Program 4.2 shows each of the thread functions.

Program 4.2 

void *task1(void *X)
{
   int *Temp;
   Temp = static_cast<int *>(X);

   for(int Count = 1;Count < *Temp;Count++){
       cout << "work from thread A: " << Count << " * 2 = "
            << Count * 2 << endl;
   }
   cout << "Thread A complete" << endl;
}

void *task2(void *X)
{
   int *Temp;
   Temp = static_cast<int *>(X);

   for(int Count = 1;Count < *Temp;Count++){
       cout << "work from thread B: " << Count << " + 2 = "
            << Count + 2 << endl;
   }
   cout << "Thread B complete" << endl;

}

In Program 4.2, task1 and task2 executes a loop that is iterated the number of times as the value passed 
to the function. The function either adds or multiplies the loop invariant by 2 and sends the results to 
standard  out.  Once  complete,  each  function  outputs  a  message  that  the  thread  is  complete.  The 
instructions for compiling and executing Programs 4.1 and 4.2 are contained in Program Profile 4.1.
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Program Profile 4.1
Program Name

program4-12.cc

Description

Accepts an integer from the command line and passes the value to the thread functions. Each 
function executes a loop that either adds or multiples the loop invariant by 2 and sends the 
result  to standard out.  The main line or primary thread is listed in  Program 4.1 and the 
functions are listed in Program 4.2.

Libraries Required

libpthread

Headers Required

<pthread.h> <iostream> <stdlib.h>

Compile and Link Instructions

c++ -o program4-12 program4-12.cc -lpthread

Test Environment

SuSE Linux 7.1, gcc 2.95.2,

Execution Instructions

./program4-12 34

Notes

This program requires a command-line argument.

This is an example of passing a single argument to the thread function. If it is necessary to pass multiple 
arguments to the thread function, create a struct or container containing all the required arguments and 
pass a pointer to that structure to the thread function.

4.8.1 Getting the Thread Id

As mentioned earlier, the process shares all its resources with the threads in its address space. Threads 
have very few resources of their own. The thread id is one of the resources unique to each thread. The 
pthread_self() function returns the thread id of the calling thread.
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Synopsis
#include <pthread.h>

pthread_t pthread_self(void);

This function is similar to getpid() for processes. When a thread is created, the thread id is returned to 
the creator or calling thread. The thread id will not know the created thread. Once the thread has its own 
id, it can be passed to other threads in the process. This function returns the thread id with no errors 
defined.

Here is an example of calling this function:

//...
pthread_t ThreadId;
ThreadId = pthread_self();

A thread calls this function and the function returns the thread id stored in the variable ThreadId of type 
pthread_t.

4.8.2 Joining Threads

The pthread_join() function is used to join or rejoin flows of control in a process. The pthread_join() 
causes the calling thread to suspend its execution until the target thread has terminated. It is similar to 
the wait() function used by processes. This function can be called by the creator of a thread. The creator 
thread  waits  for  the  new  thread  to  terminate  and  return,  thus  rejoining  flows  of  control.  The 
pthread_join() can also be called by peer threads if the thread handle is global. This will allow any 
thread to join flows of control with any other thread in the process. If the calling thread is canceled 
before the target thread returns, the target thread will not become a detached thread (discussed in the 
next  section).  If  different  peer  threads simultaneously call  the pthread_join()  function on the same 
thread, this behavior is undefined.

Synopsis
#include <pthread.h>

int pthread_join(pthread_t thread, void **value_ptr);

The thread parameter is the thread (target thread) the calling thread is waiting on. If the function returns 
successfully,  the  exit  status  is  stored  in  value_ptr.  The  exit  status  is  the  argument  passed  to  the 
pthread_exit() function called by the terminated thread. The function will return an error number if it 
fails. The function will fail if the target thread is not a joinable thread or, in other words, created as a 
detached thread. The function will also fail if the specified thread thread does not exist.

There should be a pthread_join() function called for all joinable threads. Once the thread is joined, this 
will allow the operating system to reclaim storage used by the thread. If a joinable thread is not joined 
to any thread or the thread that calls the join function is canceled, then the target thread will continue to 
utilize storage. This is a state similar to a zombied process when the parent process has not accepted the 
exit status of a child process, the child process continues to occupy an entry in the process table.



4.8.3 Creating Detached Threads

A detached thread is a terminated thread that is not joined or waited upon by any other threads. When 
the thread terminates, the limited resources used by the thread, including the thread id, are reclaimed 
and returned to  the system pool.  There is  no exit  status  for  any thread to  obtain.  Any thread that 
attempts to call pthread_join() for a detached thread will fail. The pthread_detach() function detaches 
the thread specified by thread. By default, all threads are created as joinable unless otherwise specified 
by the thread attribute object. This function detaches already existing joinable threads. If the thread has 
not terminated, a call to this function does not cause it to terminate.

Synopsis
#include <pthread.h>

int pthread_detach(pthread_t thread thread);

If  successful,  the  function  will  return  0.  If  not  successful,  it  will  return  an  error  number.  The 
pthread_detach() function will fail if thread is already detached or the thread specified by thread could 
not be found.

This is an example of detaching an already existing joinable thread:

//...
pthread_create(&threadA,NULL,task1,NULL);
pthread_detach(threadA);
//...

This causes threadA to be a detached thread. To create a detached thread, as opposed to dynamically 
detaching a thread, requires setting the detachstate of a thread attribute object and using that attribute 
object when the thread is created.

4.8.4 Using the Pthread Attribute Object

The thread attribute object encapsulates the attributes of a thread or group of threads. It is used to set 
the attributes of threads during their creation. The thread attribute object is of type pthread_attr_t. This 
structure can be used to set these thread attributes:

• size of the thread's stack

• location of the thread's stack

• scheduling inheritance, policy, and parameters

• whether the thread is detached or joinable

• the scope of the thread

The pthread_attr_t has several methods that can be invoked to set and retrieve each of these attributes. 
Table 4-3 lists the methods used to set the attributes of the attribute object.

The pthread_attr_init() and pthread_attr_destroy() functions are used to initialize and destroy a thread 
attribute object.
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Synopsis
#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);

The pthread_attr_init() function initializes a thread attribute object with the default values for all the 
attributes. The attr parameter is a pointer to a pthread_attr_t object. Once attr has been initialized, its 
attribute values can be changed by using the pthread_attr_set functions listed in  Table 4-3. Once the 
attributes  have  been  appropriately  modified,  attr  can  be  used  as  a  parameter  in  any  call  to  the 
pthread_create() function. If successful, the function will return 0. If not successful, the function will 
return an error number. The pthread_attr_init() function will fail if there is not enough memory to create 
the object.

The pthread_attr_destroy() function can be used to destroy a pthread_attr_t object specified by attr. A 
call to this function deletes any hidden storage associated with the thread attribute object. If successful, 
the function will return 0. If not successful, the function will return an error number.

4.8.4.1 Creating Detached Threads Using the Pthread Attribute Object

Once  the  thread  object  has  been  initialized,  its  attributes  can  be  modified.  The 
pthread_attr_setdetachstate() function can be used to set the detachstate attribute of the attribute object. 
The detachstate parameter describes the thread as detached or joinable.

Synopsis
#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr,
                                int *detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t *attr,
                                int *detachstate);

The detachstate can have one of these values:

PTHREAD_CREATE_DETACHED
PTHREAD_CREATE_JOINABLE

The PTHREAD_CREATE_DETACHED value will cause all the threads that use this attribute object to 
be  detached.  The  PTHREAD_CREATE_JOINABLE value  will  cause  all  the  threads  that  use  this 
attribute object to be joinable. This is the default value of detachstate. If successful, the function will 
return 0. If not successful, the function will return an error number. The pthread_attr_setdetachstate() 
function will fail if the value of detachstate is not valid.

The  pthread_attr_getdetachstate()  function  will  return  the  detachstate  of  the  attribute  object.  If 
successful, the function will return the value of detachstate to the detachstate parameter and 0 as the 
return value. If not successful, the function will return an error number. In  Example 4.2, the threads 
created in  Program 4.1 are detached. This example uses an attribute object when creating one of the 
threads.
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Example 4.2 Using an attribute object to create a detached thread.

//...

int main(int argc, char *argv[])
{

   pthread_t ThreadA,ThreadB;
   pthread_attr_t DetachedAttr;
   int N;

   if(argc != 2){
      cout << "error" << endl;
      exit (1);

   }

   N = atoi(argv[1]);
   pthread_attr_init(&DetachedAttr);
   pthread_attr_setdetachstate(&DetachedAttr,PTHREAD_CREATE_DETACHED);
   pthread_create(&ThreadA,NULL,task1,&N);
   pthread_create(&ThreadB,&DetachedAttr,task2,&N);
   cout << "waiting for thread A to join" << endl;
   pthread_join(ThreadA,NULL);
   return(0);

}

Example  4.2 declares  an  attribute  object  DetachedAttr.  The  pthread_attr_init()  function  is  used  to 
allocate the attribute object. Once initialized, the pthread_attr_detachstate() function is used to change 
the detachstate from joinable to detached using the PTHREAD_CREATE_DETACHED value. When 
creating ThreadB, the Detached-Attr is the second argument in the call to the pthread_create() function. 
The pthread_join() call is removed for ThreadB because detached threads cannot be joined.

4.9 Managing Threads

When  creating  applications  with  multiple  threads,  there  are  several  ways  to  control  how  threads 
perform and  how threads  use  and  compete  for  resources.  Part  of  managing  threads  is  setting  the 
scheduling policy and priority of the threads. This contributes to the performance of the thread. Thread 
performance is also determined by how the threads compete for resources, either on a process or system 
scope. The scheduling, priority, and scope of the thread can be set by using a thread attribute object. 
Because threads share resources, access to resources will have to be synchronized. This will briefly be 
discussed in this chapter and fully discussed in Chapter 5. Thread synchronization also includes when 
and how threads are terminated and canceled.

4.9.1 Terminating Threads

A thread's execution can be discontinued by several means:

• By returning from the execution of its assigned task with or without an exit status or return value

• By explicitly terminating itself and supplying an exit status

• By being canceled by another thread in the same address space

When a joinable thread function has completed executing, it returns to the thread calling pthread_join(), 
for which it is the target thread. The pthread_join() returns the exit status passed to the pthread_exit() 
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function called by the terminating thread. If the terminating thread did not make a call to pthread_exit(), 
then the exit status will be the return value of the function, if it has one; otherwise, the exit status is 
NULL.

It may be necessary for one thread to terminate another thread in the same process. For example, an 
application may have a thread that monitors the work of other threads. If a thread performs poorly or is 
no  longer  needed,  to  save  system  resources  it  may  be  necessary  to  terminate  that  thread.  The 
terminating thread may terminate immediately or defer termination until a logical point in its execution. 
The terminating thread may also have to perform some cleanup tasks before it terminates. The thread 
also has the option to refuse termination.

The pthread_exit() function is used to terminate the calling thread. The value_ptr is passed to the thread 
that calls pthread_join() for this thread. Cancellation cleanup handler tasks that have not executed will 
execute along with the destructors for any thread-specific data. No resources used by the thread are 
released.

Synopsis
#include <pthread.h>

int pthread_exit(void *value_ptr);

When the last thread of a process exits, then the process has terminated with an exit status of 0. This 
function cannot return to the calling thread and there are no errors defined.

The pthread_cancel() function is used to cancel the execution of another thread in the same address 
space. The thread parameter is the thread to be canceled.

Synopsis
#include <pthread.h>

int pthread_cancel(pthread_t thread thread);

A call to the pthread_cancel()  function is a request to cancel a thread. The request can be granted 
immediately, at a later time, or ignored. The cancel type and cancel state of the target thread determines 
when or if thread cancellation actually takes place. When the request is granted, there is a cancellation 
process that  occurs asynchronously to  the returning of  the pthread_cancel()  function to  the calling 
thread. If the thread has cancellation cleanup handler tasks, they are performed. When the last handler 
returns, the destructors for thread-specific data, if any, are called and the thread is terminated. This is 
the  cancellation  process.  The  function  returns  0  if  successful  and  an  error  if  not  successful.  The 
pthread_cancel() function will fail if the thread parameter does not correspond to an existing thread.

Some threads may require safeguards against untimely cancellation. Installing safeguards in a thread's 
function may prevent undesirable situations. Threads share data and depending on the thread model 
used, one thread may be processing data that is to be passed to another thread for processing. While the 
thread is processing data, it has sole possession by locking a mutex associated with the data. If a thread 
has locked a mutex and is canceled before the mutex is released, this could cause deadlock. The data 
may be required to be in some state before it can be used again. If a thread is canceled before this is 
done, an undesirable condition may occur. To put it simply, depending on the type of processing a 
thread is  performing,  thread cancellation should be performed when it  is  safe.  A vital  thread may 
prevent cancellation entirely. Therefore, thread cancellation should be restricted to threads that are not 



vital or points of execution that do not have locks on resources. Cancellations can also be postponed 
until all vital cleanups have taken place.

The cancelability state describes the cancel condition of a thread as being cancelable or uncancelable. A 
thread's cancelabilty type determines the thread's ability to continue after a cancel request. A thread can 
act upon a cancel request immediately or defer the cancellation to a later point in its execution. The 
cancelability state and type are dynamically set by the thread itself.

The pthread_setcancelstate()  and pthread_setcanceltype()  functions  are  used to  set  the cancelability 
state and type of the calling thread. The pthread_setcancelstate() function sets the calling thread to the 
cancelability state specified by state and returns the previous state in oldstate.

Synopsis
#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);

The values for state and oldstate are:

PTHREAD_CANCEL_DISABLE
PTHREAD_CANCEL_ENABLE

PTHREAD_CANCEL_DISABLE  is  a  state  in  which  a  thread  will  ignore  a  cancel  request. 
PTHREAD_CANCEL_ENABLE is a state in which a thread will concede to a cancel request. This is 
the default state of any newly created thread. If successful, the function will return 0. If not successful, 
the function will return an error number. The pthread_setcancelstate() may fail if not passed a valid 
state value.

The pthread_setcanceltype() function sets the calling thread to the cancelability type specified by type 
and returns the previous state in oldtype. The values for type and oldtype are:

PTHREAD_CANCEL_DEFFERED
PTHREAD_CANCEL_ASYNCHRONOUS

PTHREAD_CANCEL_DEFFERED is a cancelability type in which a thread puts off termination until 
it reaches its cancellation point. This is the default cancelability type for any newly created threads. 
PTHREAD_CANCEL_ASYNCHRONOUS  is  a  cancelability  type  in  which  a  thread  terminates 
immediately. If successful, the function will return 0. If not successful, the function will return an error 
number. The pthread_setcanceltype() may fail if not passed a valid type value.

The pthread_setcancelstate() and pthread_setcanceltype() functions are used together to establish the 
cancelabililty of a thread. Table 4-5 list combinations of state and type and a description of what will 
occur for each combination.

Table 4-5. Combinations of Cancelabililty State and Type

Cancelability 
State

Cancelability Type Description

PTHREAD_CAN
CEL_ENABLE

PTHREAD_CANCEL_
DEFERRED

Deferred  cancellation.  The  default  cancellation  state 
and type of a thread. Thread cancellation takes places 
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Cancelability 
State

Cancelability Type Description

when  it  enters  a  cancellation  point  or  when  the 
programmer defines a cancellation point with a call to 
pthread_testcancel().

PTHREAD_CAN
CEL_ENABLE

PTHREAD_CANCEL_
ASYNCHRONOUS

Asynchronous cancellation.  Thread cancellation takes 
place immediately.

PTHREAD_CAN
CEL_DISABLE

Ignored Disabled  cancellation.  Thread  cancellation  does  not 
take place.

4.9.1.1 Cancellation Points

When a cancel request is deferred, the termination of the thread takes place later in the execution of the 
thread's function. Whenever it occurs, it should be "safe" to cancel the thread because it is not in the 
middle of executing critical code, locking a mutex, or leaving the data in some usable state. These safe 
locations in the code's execution are good locations for cancellation points. A cancellation point is a 
check point where a thread checks if there are any cancellation requests pending and, if so, concede to 
termination.

Cancellation points  can  be  marked by a  call  to  pthread_testcancel().  This  function checks  for  any 
pending cancellation request. If a request is pending, then it causes the cancellation process to occur at 
the location this function is called. If there are no cancellations pending, then the function continues to 
execute with no repercussions. This function call can be placed at any location in the code where it is 
considered safe to terminate the thread.

Synopsis
#include <pthread.h>

void pthread_testcancel(void);

Program  4.3 contains  functions  that  use  the  pthread_setcancelstate(),  pthread_setcanceltype(),  and 
pthread_testcancel() functions. Program 4.3 shows three functions setting their cancelability types and 
states.

Program 4.3 

#include <iostream>
#include <pthread.h>

void *task1(void *X)
{
   int OldState;

   // disable cancelability
   pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,&OldState);
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   for(int Count = 1;Count < 100;Count++)
   {
     cout << "thread A is working: " << Count << endl;

   }

}

void *task2(void *X)
{
   int OldState,OldType;

   // enable cancelability, asynchronous
   pthread_setcancelstate(PTHREAD_CANCEL_ENABLE,&OldState);
   pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS,&OldType);

   for(int Count = 1;Count < 100;Count++)
   {
     cout << "thread B is working: " << Count << endl;
   }

}

void *task3(void *X)
{
   int OldState,OldType;

   // enable cancelability, deferred
   pthread_setcancelstate(PTHREAD_CANCEL_ENABLE,&OldState);
   pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED,&OldType);

   for(int Count = 1;Count < 1000;Count++)
   {
     cout << "thread C is working: " << Count << endl;
     if((Count%100) == 0){
        pthread_testcancel();
     }

   }

}

In Program 4.3, each task has set its cancelability condition. In task1, the cancelability of the thread has 
been disabled. What follows is critical code that must be executed. In task2, the cancelability of the 
thread is enabled. A call to the pthread_setcancelstate() is unnecessary because all new threads have an 
enabled cancelability state. The cancelability type is set to PTHREAD_CANCEL_ASYNCHRONOUS. 
This  means  whenever  a  cancel  request  is  issued,  the  thread  will  start  its  cancellation  process 
immediately, regardless of where it is in its execution. Therefore, it should not be executing any vital 
code once this  type is  activated.  If  it  is  making any system calls,  they should be cancellation-safe 
functions (discussed later). In task2, the loop iterates until the cancel request is issued. In task3, the 
cancelability  of  the  thread  is  also  enabled  and  the  cancellation  type  is 
PTHREAD_CANCEL_DEFFERED.  This  is  the  default  state  and  type  of  a  newly  created  thread, 
therefore,  calls  to  the pthread_setcancelstate()  and pthread_setcanceltype()  are  unnecessary.  Critical 
code can be executed after the state and type are set because the termination will not take place until the 
pthread_testcancel() function is called. If there is no request pending, then the thread will continue 
executing until, if any, calls to pthread_testcancel() are made. In task3, the pthread_cancel() function is 
called whenever Count is evenly divisible by 100. Code between cancellation points should not be 
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critical because it may not execute.

Program 4.4 shows the boss thread that issues the cancellation request for each thread.

Program 4.4 

int main(int argc, char *argv[])
{
   pthread_t Threads[3];
   void *Status;

   pthread_create(&(Threads[0]),NULL,task1,NULL);
   pthread_create(&(Threads[1]),NULL,task2,NULL);
   pthread_create(&(Threads[2]),NULL,task3,NULL);

   pthread_cancel(Threads[0]);
   pthread_cancel(Threads[1]);
   pthread_cancel(Threads[2]);

   for(int Count = 0;Count < 3;Count++)
   {
      pthread_join(Threads[Count],&Status);

      if(Status == PTHREAD_CANCELED){
         cout << "thread" << Count << " has been canceled" << endl;
      }
      else{
              cout << "thread" << Count << " has survived" << endl;
      }
   }

   return(0);
}

The boss thread in  Program 4.4 creates three threads, then it issues a cancellation request for each 
thread. The boss thread calls the pthread_join() function for each thread. The pthread_join() function 
does not fail if it attempts to join with a thread that has already been terminated. The join function just 
retrieves  the  exit  status  of  the  terminated  thread.  This  is  good  because  the  thread  that  issues  the 
cancellation request may be a different thread than the thread that calls pthread_join(). Monitoring the 
work of all the worker threads may be the sole task of a single thread that also cancels threads. Another 
thread  may examine  the exit  status  of  threads  by calling the  pthread_join()  function.  This  type of 
information may be used to  statistically  evaluate  which threads  have the best  performance.  In this 
program, the boss thread joins and examines each exit thread's exit status in a loop. Thread[0] was not 
canceled because  its  cancelability  was  disabled.  The other  two threads  were  canceled.  A canceled 
thread may return an exit status, for example, PTHREAD_CANCELED. Program Profile 4.2 contains 
the profile for Programs 4.3 and 4.4.

Program Profile 4.2
Program Name

program4-34.cc

Description
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Demonstrates the use of thread cancellation. Three threads have different cancellation types 
and states.  Each thread  executes  a  loop.  The  cancellation  state  and type  determines  the 
number  of  loop  iterations  or  whether  the  loop  is  executed  at  all.  The  primary  thread 
examines the exit status of each thread.

Libraries Required

libpthread

Headers Required

<pthread.h> <iostream>

Compile and Link Instructions

c++ -o program4-34 program4-34.cc -lpthread

Test Environment

SuSE Linux 7.1, gcc 2.95.2,

Execution Instructions

./program4-34

Cancellation  points  marked by a  call  to  the  pthread_testcancel()  function  are  used  in  user-defined 
functions. The Pthread library defines the execution of other functions as cancellation points. These 
functions block the calling thread and while blocked the thread is safe to be canceled. These are the 
Pthread library functions that act as cancellation points:

pthread_testcancel()
pthread_cond_wait()
pthread_timedwait
pthread_join()

If a thread with a deferred cancelability state has a cancellation request pending when making a call to 
one of these Pthread library functions, the cancellation process will be initiated. As far as system calls, 
Table 4-6 lists some of the system calls required to be cancellation points.

While  these  functions  are  safe  for  deferred  cancellation,  they  may  not  be  safe  for  asynchronous 
cancellation.  An asynchronous cancellation during a library call  that  is  not an asynchronously safe 
function may cause library data to be left in an incompatible state. The library may have allocated 
memory on behalf of the thread and when the thread is canceled, may still have a hold on that memory. 
For other library and systems functions that are not cancellation safe (asynchronously or deferred), it 
may be  necessary to  write  code preventing  a  thread  from terminating by disabling cancellation  or 
deferring cancellation until after the function call has returned.

4.9.1.2 Cleaning Up Before Termination

Once the thread concedes to cancellation, it may need to perform some final processing before it is 
terminated. The thread may have to close files, reset shared resources to some consistent state, release 
locks, or deallocate resources. The Pthread library defines a mechanism for each thread to perform last-
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minute tasks before terminating. A cleanup stack is associated with every thread. The stack contains 
pointers to routines that are to be executed during the cancellation process. The pthread_cleanup_push() 
function pushes a pointer to the routine onto the cleanup stack.

Table 4-6. POSIX System Calls Required to be Cancellation Points

POSIX System Calls (Cancellation Points)   

accept() nanosleep() sem_wait()

aio_suspend() open() send()

clock_nanosleep() pause() sendmsg()

close() poll() sendto()

connect() pread() sigpause()

creat() pthread_cond_timedwait() sigsuspend()

fcntl() pthread_cond_wait() sigtimedwait()

fsync() pthread_join() sigwait()

getmsg() putmsg() sigwaitinfo()

lockf() putpmsg() sleep()

mq_receive() pwrite() system()

mq_send() read() usleep()

mq_timedreceive() readv() wait()

mq_timedsend() recvfrom() waitpid()

msgrcv() recvmsg() write()

msgsnd() select() writev()



POSIX System Calls (Cancellation Points)   

msync() sem_timedwait()  

Synopsis
#include <pthread.h>

void pthread_cleanup_push(void (*routine)(void *), void *arg);
void pthread_cleanup_pop(int execute);

The routine parameter is a pointer to the function to be pushed onto the stack. The arg parameter is 
passed to the function. The function routine is called with the arg parameter when the thread exits by 
calling pthread_exit(), when the thread concedes to a termination request, or when the thread explicitly 
calls  the  pthread_cleanup_pop()  function  with  a  nonzero  value  for  execute.  The  function  does  not 
return.

The pthread_cleanup_pop()  function  removes  routine's  pointer  from the  top  of  the  calling  thread's 
cleanup stack. The execute parameter can have a value of 1 or 0. If the value is 1, the thread executes 
routine even if it is not being terminated. The thread continues execution from the point after the call to 
this function. If the value is 0, the pointer is removed from the top of the stack without executing.

It is required for each push there be a pop within the same lexical scope. For example, funcA() requires 
a cleanup handler to be executed when the function exits or cancels:

void *funcA(void *X)
{
   int *Tid;
   Tid = new int;
   // do some work
   //...
   pthread_cleanup_push(cleanup_funcA,Tid);
   // do some more work
   //...
   pthread_cleanup_pop(0);
}

Here,  funcA()  pushes  cleanup  handler  cleanup_funcA()  onto  the  cleanup  stack  by  calling  the 
pthread_cleanup_push() function. The pthread_cleanup_pop() function is required for each call to the 
pthread_cleanup_push() function. The pop function is passed 0, which means the handler is removed 
from the cleanup stack but is not executed at this point. The handler will be executed if the thread that 
executes funcA() is canceled.

The funcB() also requires a cleanup handler:

void *funcB(void *X)
{
   int *Tid;
   Tid = new int;
   // do some work
   //...
   pthread_cleanup_push(cleanup_funcB,Tid);

   // do some more work
   //...



   pthread_cleanup_pop(1);
}

Here, funcB() pushes cleanup handler cleanup_funcB() onto the cleanup stack. The difference in this 
case is the pthread_cleanup_pop() function is passed 1, which means the handler is removed from the 
cleanup stack but will execute at this point. The handler will be executed regardless of whether the 
thread  that  executes  funcA()  is  canceled  or  not.  The  cleanup  handlers,  cleanup_funcA()  and 
cleanup_funcB(),  are  regular  functions  that  can  be  used  to  close  files,  release  resources,  unlock 
mutexes, and so on.

4.9.2 Managing the Thread's Stack

The address space of a process is divided into the text and static data segments, free store, and the stack 
segment. The location and size of the thread's stacks are cut out of the stack segment of the process. A 
thread's stack will store a stack frame for each routine it has called but has not exited. The stack frame 
contains temporary variables, local variables, return addresses, and any other additional information the 
thread needs to find its way back to previously executing routines. Once the routine is exited, the stack 
frame for that routine is removed from the stack. Figure 4-12 shows how stack frames are placed onto a 
stack.

Figure 4-12. Stack frames generated from a thread.

In Figure 4-12, Thread A executes Task 1. Task 1 creates some local variables, does some processing, 
then calls Task X. A stack frame is created for Task 1 and placed on the stack. Task X does some 
processing, creates local variables, then calls Task C. A stack frame for Task X is placed on the stack. 
Task C calls Task Y, and so on. Each stack must be large enough to accommodate the execution of each 
thread's function along with the chain of routines that will be called. The size and location of a thread's 
stack are managed by the operating system but they can be set or examined by several methods defined 
by the attribute object.

The pthread_attr_getstacksize() function returns the default stack size minimum. The attr parameter is 
the thread attribute object from which the default stack size is extracted. When the function returns, the 
default stack size, expressed in bytes, is stored in the stacksize parameter and the return value is 0. If 
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not successful, the function returns an error number.

The pthread_attr_setstacksize() function sets the stack size minimum. The attr parameter is the thread 
attribute object for which the stack size is set. The stacksize parameter is the minimum size of the stack 
expressed in bytes. If the function is successful, the return value is 0. If not successful, the function 
returns an error number. The function will fail if stacksize is less than PTHREAD_MIN_STACK or 
exceeds the system minimum. The PTHREAD_STACK_MIN will probably be a lower minimum than 
the default stack minimum returned by pthread_attr_getstacksize(). Consider the value returned by the 
pthread_attr_getstacksize() before raising the minimum size of a thread's stack. A stack's size is fixed so 
the stack's growth during runtime will only be within the fixed space of the stack set at compile time.

Synopsis
[View full width]

#include <pthread.h>

void pthread_attr_getstacksize(const pthread_attr_t *restrict attr,
                               void **restrict stacksize);
void pthread_attr_setstacksize(pthread_attr_t *attr, void
 *stacksize);

The  location  of  the  thread's  stack  can  be  set  and  retrieved  by  the  pthread_attr_setstackaddr()  and 
pthread_attr_getstackaddr() functions. The pthread_attr_setstackaddr() function sets the base location of 
the stack to the address specified by the parameter  stackattr  for the thread created with the thread 
attribute object attr. This address addr should be within the virtual address space of the process. The 
size  of  the  stack  will  be  at  least  equal  to  the  minimum  stack  size  specified  by 
PTHREAD_STACK_MIN. If successful, the function will return 0. If not successful, the function will 
return an error number.

The pthread_attr_getstackaddr() function retrieves the base location of the stack address for the thread 
created with the thread attribute object specified by the parameter attr.  The address is returned and 
stored in the parameter stackaddr. If successful, the function will return 0. If not successful, the function 
will return an error number.

Synopsis
[View full width]

#include <pthread.h>

void pthread_attr_setstackaddr(pthread_attr_t *attr, void
 *stackaddr);

void pthread_attr_getstackaddr(const pthread_attr_t *restrict attr,
                               void **restrict stackaddr);

The stack attributes (size and location) can be set  by a single function. The pthread_attr_setstack() 
function sets both the stack size and stack location of a thread created using the specified attribute 
object attr. The base location of the stack will be set to the stackaddr parameter and the size of the stack 
will be set to the stacksize parameter. The pthread_attr_getstack() function retrieves the stack size and 
stack  location  of  a  thread  created  using  the  specified  attribute  object  attr.  If  successful,  the  stack 
location will be stored in the stackaddr parameter and the stack size will be stored in the stacksize 
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parameter. If successful, these functions will return 0. If not successful, an error number is returned. 
The  pthread_setstack()  function  will  fail  if  the  stacksize  is  less  than  PTHREAD_STACK_MIN or 
exceeds some implementation-defined limit.

Synopsis
[View full width]

#include <pthread.h>

void pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
                           size_t stacksize);
void pthread_attr_getstack(const pthread_attr_t *restrict attr,
                           void **restrict stackaddr, size_t
 stacksize);

Example 4.3 sets the stack size of a thread using a thread attribute object.

Example 4.3 Changing the stack size of a thread using an offset.

//...

pthread_attr_getstacksize(&SchedAttr,&DefaultSize);
if(DefaultSize < Min_Stack_Req){

   SizeOffset = Min_Stack_Req - DefaultSize;
   NewSize = DefaultSize + SizeOffset;
   pthread_attr_setstacksize(&Attr1,(size_t)NewSize);
}

In  Example 4.3,  the thread attribute  object  retrieves the default  size  from the attribute  object  then 
determines whether the default size is less than the minimum stack size desired. If so, the offset is 
calculated then added to the default  stack size.  This becomes the new minimun stack size for this 
thread.

NOTE:

Setting the stack size and stack location may cause your program to be nonportable. The stack size and 
location you set for your program on one platform may not match the stack size and location of another 
platform.

4.9.3 Setting Thread Scheduling and Priorities

Like  processes,  threads  execute  independently.  Each thread  is  assigned  to  a  processor  in  order  to 
execute the task it has been given. Each thread is assigned a scheduling policy and priority that dictates 
how and when it is assigned to a processor. The scheduling policy and priority of a thread or group of 
threads can be set by an attribute object using these functions:

pthread_attr_setinheritsched()
pthread_attr_setschedpolicy()
pthread_attr_setschedparam()

These functions can be used to return scheduling information about the thread:
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pthread_attr_getinheritsched()
pthread_attr_getschedpolicy()
pthread_attr_getschedparam()

Synopsis
#include <pthread.h>
#include <sched.h>

void pthread_attr_setinheritsched(pthread_attr_t *attr,
                                 int inheritsched);
void pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
void pthread_attr_setschedparam(pthread_attr_t *restrict
                               attr, const struct sched_param
                               *restrict param);

The  pthread_attr_setinheritsched(),  pthread_attr_setschedpolicy(),  and  pthread_attr_setschedparam() 
are  used  together  to  set  the  scheduling  policy  and  priority  of  a  thread.  The 
pthread_attr_setinheritsched() function is used to determine how the thread's scheduling attributes will 
be set, either by inheriting the scheduling attributes from the creator thread or from an attribute object. 
The inheritsched parameter can have one of these values:

PTHREAD_INHERIT
_SCHED

Thread scheduling attributes shall be inherited from the creator thread and 
any scheduling attributes of the attr parameter will be ignored.

PTHREAD_EXPLICIT
_SCHED

Thread scheduling attributes shall be set to the scheduling attributes of the 
attribute object attr.

If  the  inheritsched  parameter  value  is  PTHREAD_EXPLICIT_SCHED,  then  the 
pthread_attr_setschedpolicy()  function  is  used  to  set  the  scheduling  policy  and  the 
pthread_attr_setschedparam() function is used to set the priority.

The pthread_attr_setschedpolicy() function sets the scheduling policy of the thread attribute object attr. 
The policy parameter values can be one of the following defined in the <sched.h> header:

SCHED_FIFO First-In-First-Out scheduling policy where the executing thread runs to completion.

SCHED_RR Round-robin scheduling policy where each thread is assigned to a processor only for 
a time slice.

SCHED_OTH
ER

Other scheduling policy (implementation-defined). By default, this is the scheduling 
policy of any newly created thread.

The pthread_attr_setschedparam() function is  used to  set  the scheduling parameters  of the attribute 
object  attr  used  by  the  scheduling  policy.  The  param  parameter  is  a  structure  that  contains  the 
parameters. The sched_param structure has at least this data member defined:

struct sched_param {
   int sched_priority;
   //...
};



It may also have additional data members along with several functions that return and set the priority 
minimum, maximum, scheduler, paramaters, and so on. If the scheduling policy is either SCHED_FIFO 
or SCHED_RR, then the only member required to have a value is sched_priority.

To  obtain  the  maximum  and  minimum  priority  values,  use  the  sched_get_priority_min()  and 
sched_get_priority_max() functions.

Synopsis
#include <sched.h>

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

Both functions are passed the scheduling policy policy for which the priority values are requested and 
both will return either the maximum or minimum priority values for the scheduling policy.

Example 4.4 shows how to set  the scheduling policy and priority  of a  thread by using the thread 
attribute object.

Example 4.4 Using the thread attribute object to set the scheduling policy and priority of a thread.

//...
#define Min_Stack_Req 3000000

pthread_t ThreadA;
pthread_attr_t SchedAttr;
size_t DefaultSize,SizeOffset,NewSize;
int MinPriority,MaxPriority,MidPriority;
sched_param SchedParam;

int main(int argc, char *argv[])
{

   //...
   // initialize attribute object
   pthread_attr_init(&SchedAttr);

   // retrieve min and max priority values for scheduling policy
   MinPriority = sched_get_priority_max(SCHED_RR);
   MaxPriority = sched_get_priority_min(SCHED_RR);

   // calculate priority value
   MidPriority = (MaxPriority + MinPriority)/2;

   // assign priority value to sched_param structure
   SchedParam.sched_priority = MidPriority;

   // set attribute object with scheduling parameter
   pthread_attr_setschedparam(&Attr1,&SchedParam);

   // set scheduling attributes to be determined by attribute object
   pthread_attr_setinheritsched(&Attr1,PTHREAD_EXPLICIT_SCHED);

   // set scheduling policy
   pthread_attr_setschedpolicy(&Attr1,SCHED_RR);
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   // create thread with scheduling attribute object
   pthread_create(&ThreadA,&Attr1,task2,Value);
}

In Example 4.4, the scheduling policy and priority of ThreadA is set using the thread attribute object 
SchedAttr. This is done in eight steps:

1. Initialize attribute object.

2. Retrieve min and max priority values for scheduling policy.

3. Calculate priority value.

4. Assign priority value to sched_param structure.

5. Set attribute object with sceduling parameter.

6. Set scheduling attributes to be determined by attribute object.

7. Set scheduling policy.

8. Create thread with scheduling attribute object.

With this method, the scheduling policy and priority is set before the thread is running. In order to 
dynamically  change  the  scheduling  policy  and  priority,  use  the  pthread_setschedparam()  and 
pthread_setschedprio() functions.

Synopsis
#include <pthread.h>

int pthread_setschedparam(pthread_t thread, int policy,
                          const struct sched_param *param);
int pthread_getschedparam(pthread_t thread, int *restrict policy,
                          struct sched_param *restrict param);
int pthread_setschedprio(pthread_t thread, int prio);

The pthread_setschedparam() function sets both the scheduling policy and priority of a thread directly 
without the use of an attribute object. The thread parameter is the id of the thread, policy is the new 
scheduling policy, and param contains the scheduling priority. The pthread_getschedparam() function 
shall return the scheduling policy and scheduling parameters and store their values in policy and param 
parameters, respectively, if successful. If successful, both functions will return 0. If not successful, both 
functions will return an error number. Table 4-7 lists the conditions in which these functions may fail.

The pthread_setschedprio() function is used to set the scheduling priority of an executing thread whose 
thread id is specified by the thread parameter. The scheduling priority of the thread will be changed to 
the value specified by prio.  If  the function fails,  the priority of the thread will  not  be changed.  If 
successful, the function will return 0. If not successful, an error number is returned. The conditions in 
which this function fails are also listed in Table 4-7.

Table 4-7. Conditions in Which the Scheduling Policy and Priority Functions May Fail

Pthread  Scheduling  and  Priority 
Functions

Failure Conditions

int pthread_getschedparam • The  thread  parameter  does  not  refer  to  an  existing 
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Pthread  Scheduling  and  Priority 
Functions

Failure Conditions

(pthread_t thread,
 int *restrict policy,
 strct sched_param
 *restrict param) ;

thread.

int pthread_setschedparam
(pthread_t thread,
 int *policy,
 const struct sched_param
 *parm);

• The  policy  parameter  or  one  of  the  scheduling 
parameters  associated  with  the  policy  parameter  is 
invalid.

• The  policy  parameter  or  one  of  the  scheduling 
paramaters has a value that is not supported.

• The  calling  thread  does  not  have  the  appropriate 
permission to set the scheduling parameters or policy of 
the specified thread.

• The  thread  parameter  does  not  refer  to  an  existing 
thread.

• The implementation does not  allow the application to 
change one of the parameters to the specified value.

int pthread_setschedprio
(pthread_t thread,
 int prio) ;

• The prio parameter is invalid for the scheduling policy 
of the specified thread.

• The priority parameter has a value that is not supported.

• The  calling  thread  does  not  have  the  appropriate 
permission to set the scheduling priority of the specified 
thread.

• The  thread  parameter  does  not  refer  to  an  existing 
thread.

• The implementation does not  allow the application to 
change the priority to the specified value.

NOTE:

Remember to carefully consider why it is necessary to change the scheduling policy or priority of a 
running thread. This may diversely affect the overall performance of your application. Threads with 
higher priority preempt running threads with lower priority. This may lead to starvation, or a thread 
constantly being preempted and therefore not able to complete execution.



4.9.3.1 Setting Contention Scope of a Thread

The contention scope of the thread determines which set of threads with the same scheduling policy and 
priority, the thread will compete for processor usage. The contention scope of a thread is set by the 
thread attribute object.

Synopsis
#include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);
int pthread_attr_getscope(const pthread_attr_t *restrict attr,
                          int *restrict contentionscope);

The pthread_attr_setscope() function sets the contention scope attribute of the thread attribute object 
specified by the parameter attr. The contention scope of the thread attribute object will be set to the 
value stored in the contentionscope parameter. The contentionscope parameter can have the values:

PTHREAD_SCOPE_SYSTEM System scheduling contention scope

PTHREAD_SCOPE_PROCESS Process scheduling contention scope

The pthread_attr_getscope() function returns the contention scope attribute from the thread attribute 
object specified by the parameter attr. If successful, the contention scope of the thread attribute object 
will be returned and stored in the contentionscope parameter. Both functions return 0 if successful and 
an error number otherwise.

4.9.4 Using sysconf()

It  is  important  to  know the thread resource limits  of  your system in order  for your  application to 
appropriately manage its resources. For example, the maximum number of threads per process places 
an upper bound on the number of worker threads that can be created for a process.  The sysconf() 
function is used to return the current value of configurable system limits or options.

Synopsis
#include <unistd.h>
#include <limits.h>

int sysconf(int name);

The name parameter is the system variable to be queried. What is returned is the POSIX IEEE Std. 
1003.1-2001 values for the system variable queried. These values can be compared to the constants 
defined  by your  implementation  of  the standard  to  see how compliant  they are.  There  are  several 
variables and constant counterparts concerned with threads, processes, and semaphores, some of which 
are listed in Table 4-8.

The sysconf() function will return -1 and set errno to indicate an error has occurred if the parameter 
name is not valid. The variable may have no limit defined and may return -1 as a valid return value. In 
that case, errno will not be set. No defined limit does not mean there is an infinite limit. It  simply 
indicates that no maximum limit is defined and higher limits are supported depending upon the system 
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resources available.

Here is an example of a call to the sysconf() function:

if(PTHREAD_STACK_MIN == (sysconf(_SC_THREAD_STACK_MIN))){
   //...
}

The constant value of PTHREAD_STACK_MIN is compared to the _SC_THREAD_STACK_MIN 
value returned by the sysconf() function.

Table 4-8. Systems Variables and Their Corresponding Symbolic Constants

Variable Name Value Description

_SC_THREADS _POSIX_THREADS Supports threads.

_SC_THREAD_ATTR_ST
ACKADDR

_POSIX_THREAD_ATTR_S
TACKADDR

Supports thread stack address attribute.

_SC_THREAD_ATTR_ST
ACKSIZE

_POSIX_THREAD_ATTR_S
TACKSIZE

Supports thread stack size attribute.

_SC_THREAD_STACK_
MIN

PTHREAD_STACK_MIN Minimum size of thread stack storage 
in bytes.

_SC_THREAD_THREAD
S_MAX

PTHREAD_THREADS_MA
X

Maximum  number  of  threads  per 
process.

_SC_THREAD_KEYS_M
AX

PTHREAD_KEYS_MAX Maximum number of keys per process.

_SC_THREAD_PRIO_INH
ERIT

_POSIX_THREAD_PRIO_IN
HERIT

Supports priority inheritance option.

_SC_THREAD_PRIO _POSIX_THREAD_PRIO_ Supports thread priority option.

_SC_THREAD_PRIORIT
Y_SCHEDULING

_POSIX_THREAD_PRIORIT
Y_SCHEDULING

Supports  thread  priority  scheduling 
option.

_SC_THREAD_PROCESS
_SHARED

_POSIX_THREAD_PROCES
S_SHARED

Supports  process-shared 
synchronization.



Variable Name Value Description

_SC_THREAD_SAFE_FU
NCTIONS

_POSIX_THREAD_SAFE_F
UNCTIONS

Supports thread-safe functions.

_SC_THREAD_DESTRUC
TOR_ITERATIONS

_PTHREAD_THREAD_DES
TRUCTOR_ITERATIONS

Determines  the  number  of  attempts 
made to destroy thread-specific data on 
thread exit.

_SC_CHILD_MAX CHILD_MAX Maximum  number  of  processes 
allowed to a UID.

_SC_PRIORITY_SCHEDU
LING

_POSIX_PRIORITY_SCHED
ULING

Supports process scheduling.

_SC_REALTIME_SIGNA
LS

_POSIX_REALTIME_SIGN
ALS

Supports real-time signals.

_SC_XOPEN_REALTIME
_THREADS

_XOPEN_REALTIME_THR
EADS

Supports  X/Open  POSIX  real-time 
threads feature group.

_SC_STREAM_MAX STREAM_MAX Determines the number of streams one 
process can have open at a time.

_SC_SEMAPHORES _POSIX_SEMAPHORES Supports semaphores.

_SC_SEM_NSEMS_MAX SEM_NSEMS_MAX Determines  the  maximum  number  of 
semaphores a process may have.

_SC_SEM_VALUE_MAX SEM_VALUE_MAX Determines  the  maximum  value  a 
semaphore may have.

_SC_SHARED_MEMORY
_OBJECTS

_POSIX_SHARED_MEMOR
Y_OBJECTS

Supports shared memory objects.

4.9.5 Managing a Critical Section

Concurrently  executing  processes,  or  threads  within  the  same  process,  can  share  data  structures, 
variables, or data. Sharing global memory allows the processes or threads to communicate or share 
access to data. With multiple processes, the shared global memory is external to the processes that the 
processes in question have access. This data structure can be used to transfer data or commands among 
the processes. When threads need to communicate, they can access data structures or variables that are 
part of the same process to which they belong.



Whether there are processes or threads accessing shared modifiable data, the data structures, variables, 
or data is in a critical region or section of the processes' or threads' code. A critical section in the code is 
where  the  thread  or  process  is  accessing  and  processing  the  shared  block  of  modifiable  memory. 
Classifying a section of code as a critical section can be used to control race conditions. For example, in 
a program two threads, thread A and thread B, are used to perform a multiple keyword search through 
all the files located on a system. Thread A searches each directory for text files and writes the paths to a 
list data structure TextFiles then increments a FileCount variable. Thread B extracts the filenames from 
the list TextFiles, decrements the FileCount, then searches the file for the multiple keywords. The file 
that  contains  the  keywords  is  written  to  a  file  and  another  variable,  FoundCount,  is  incremented. 
FoundCount is not shared with thread A. Threads A and B can be executed simultaneously on separate 
processors. Thread A executes until all directories have been searched while thread B searches each file 
extracted from TextFiles. The list is maintained in sorted order and can be requested to display its 
contents any time.

A number of problems can crop up. For example, thread B may attempt to extract a filename from 
TextFiles before thread A has added a  filename to  TextFiles.  Thread B may attempt to  decrement 
SearchCount before thread A has incremented SearchCount or both may attempt to modify the variable 
simultaneously. Also TextFiles may be sorting its elements while thread A is simultaneously attempting 
to write a filename to it or thread B is simultaneously attempting to extract a filename from it. These 
problems are examples of race conditions in which two or more threads or processes are attempting to 
modify the same block of shared memory simultaneously.

When  threads  or  processes  are  simply  simultaneously  reading  the  same  block  of  memory,  race 
conditions do not occur. Race conditions occur when multiple processes or threads are simultaneously 
accessing the same block of memory with at least one of the threads or processes attempting to modify 
the block of memory. The section of code becomes critical when there are simultaneous attempts to 
change the same block of memory. One way to protect the critical section is to only allow exclusive 
access to the block of memory. Exclusive access means one process or thread will have access to the 
shared block of memory for a short period while all other processes or threads are prevented (blocked) 
from entering their critical section where they are accessing the same block of memory.

A locking mechanism, like a mutex semaphore, can be used to control race condition. A mutex, short 
for "mutual exclusion," is used to block off a critical section. The mutex is locked before entering the 
critical section then unlocked when exiting the critical section:

lock mutex
   // enter critical section
   // access shared modifiable memory
   // exit critical section
unlock mutex

The pthread_mutex_t models a mutex object. Before the pthread_mutex_t object can be used, it must 
first be initialized. The pthread_mutex_init() initializes the mutex. Once initialized the mutex can be 
locked,  unlocked,  and  destroyed  with  the  pthread_mutex_lock(),  pthread_mutex_unlock(),  and 
pthread_mutex_destroy() functions.  Program 4.5 contains the function that searches a system for text 
files.  Program 4.6 contains  the  function  that  searches  each  text  file  for  specified  keywords.  Each 
function is executed by a thread. Program 4.7 contains the primary thread. These programs implement 
the producer-consumer model  for thread delegation.  Program 4.5 contains  the producer  thread and 
Program 4.6 contains the consumer thread. The critical sections are bolded.

Program 4.5 

 1 int isDirectory(string FileName)
 2 {
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 3   struct stat StatBuffer;
 4
 5   lstat(FileName.c_str(),&StatBuffer);
 6   if((StatBuffer.st_mode & S_IFDIR) == -1)
 7   {
 8      cout << "could not get stats on file" << endl;
 9      return(0);
10   }
11   else{
12          if(StatBuffer.st_mode & S_IFDIR){
13             return(1);
14         }
15   }
16   return(0);
17 }
18
19
20 int isRegular(string FileName)
21 {
22   struct stat StatBuffer;
23
24   lstat(FileName.c_str(),&StatBuffer);
25   if((StatBuffer.st_mode & S_IFDIR) == -1)
26   {
27      cout << "could not get stats on file" << endl;
28      return(0);
29   }
30   else{
31          if(StatBuffer.st_mode & S_IFREG){
32             return(1);
33          }
34   }
35   return(0);
36 }
37
38
39 void depthFirstTraversal(const char *CurrentDir)
40 {
41   DIR *DirP;
42   string Temp;
43   string FileName;
44   struct dirent *EntryP;
45   chdir(CurrentDir);
46   cout << "Searching Directory: " << CurrentDir << endl;
47   DirP = opendir(CurrentDir);
48
49   if(DirP == NULL){
50      cout << "could not open file" << endl;
51      return;
52   }
53   EntryP = readdir(DirP);
54   while(EntryP != NULL)
55   {
56      Temp.erase();
57      FileName.erase();
58      Temp = EntryP->d_name;
59      if((Temp != ".") && (Temp != "..")){
60         FileName.assign(CurrentDir);
61         FileName.append(1,'/');
62         FileName.append(EntryP->d_name);



63         if(isDirectory(FileName)){
64            string NewDirectory;
65            NewDirectory = FileName;
66            depthFirstTraversal(NewDirectory.c_str());
67         }
68         else{
69                 if(isRegular(FileName)){
70                    int Flag;
71                    Flag = FileName.find(".cpp");
72                    if(Flag > 0){
73                       pthread_mutex_lock(&CountMutex);
74                         FileCount++;
75                      pthread_mutex_unlock(&CountMutex);
76                       pthread_mutex_lock(&QueueMutex);
77                         TextFiles.push(FileName);
78                      pthread_mutex_unlock(&QueueMutex);
79                   }
80                }
81        }
82
83     }
84     EntryP = readdir(DirP);
85 }
86   closedir(DirP);
87 }
88
89
90
91 void *task(void *X)
92 {
93   char *Directory;
94   Directory = static_cast<char *>(X);
95   depthFirstTraversal(Directory);
96   return(NULL);
97
98 }

Program 4.6 contains the consumer thread that performs the search.

Program 4.6 

1 void *keySearch(void *X)
2 {
3   string Temp, Filename;
4   less<string> Comp;
5
6   while(!Keyfile.eof() && Keyfile.good())
7   {
8      Keyfile >> Temp;
9      if(!Keyfile.eof()){
10        KeyWords.insert(Temp);
11     }
12  }
13  Keyfile.close();
14
15  while(TextFiles.empty())
16  { }
17
18  while(!TextFiles.empty())
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19  {
20     pthread_mutex_lock(&QueueMutex);
21     Filename = TextFiles.front();
22     TextFiles.pop();
23     pthread_mutex_unlock(&QueueMutex);
24     Infile.open(Filename.c_str());
25     SearchWords.erase(SearchWords.begin(),SearchWords.end());
26
27     while(!Infile.eof() && Infile.good())
28     {
29        Infile >> Temp;
30        SearchWords.insert(Temp);
31     }
32
33     Infile.close();
34     if(includes(SearchWords.begin(),SearchWords.end(),
           KeyWords.begin(),KeyWords.end(),Comp)){
35         Outfile << Filename << endl;
36         pthread_mutex_lock(&CountMutex);
37          FileCount--;
38         pthread_mutex_unlock(&CountMutex);
39         FoundCount++;
40     }
41   }
42   return(NULL);
43
44 }

Program 4.7 contains the primary thread for producer–consumer threads in Programs 4.5 and 4.6.

Program 4.7 

 1 #include <sys/stat.h>
 2 #include <fstream>
 3 #include <queue>
 4 #include <algorithm>
 5 #include <pthread.h>
 6 #include <iostream>
 7 #include <set>
 8
 9 pthread_mutex_t QueueMutex = PTHREAD_MUTEX_INITIALIZER;
10 pthread_mutex_t CountMutex = PTHREAD_MUTEX_INITIALIZER;
11
12 int FileCount = 0;
13 int FoundCount = 0;
14
15 int keySearch(void);
16 queue<string> TextFiles;
17 set <string,less<string> >KeyWords;
18 set <string,less<string> >SearchWords;
19 ifstream Infile;
20 ofstream Outfile;
21 ifstream Keyfile;
22 string KeywordFile;
23 string OutFilename;
24 pthread_t Thread1;
25 pthread_t Thread2;
26
27 void depthFirstTraversal(const char *CurrentDir);
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28 int isDirectory(string FileName);
29 int isRegular(string FileName);
30
31 int main(int argc, char *argv[])
32 {
33   if(argc != 4){
34      cerr << "need more info" << endl;
35      exit (1);
36   }
37
38    Outfile.open(argv[3],ios::app||ios::ate);
39    Keyfile.open(argv[2]);
40    pthread_create(&Thread1,NULL,task,argv[1]);
41    pthread_create(&Thread2,NULL,keySearch,argv[1]);
42    pthread_join(Thread1,NULL);
43    pthread_join(Thread2,NULL);
44    pthread_mutex_destroy(&CountMutex);
45    pthread_mutex_destroy(&QueueMutex);
46
47    cout << argv[1] << " contains " << FoundCount
           << " files that contains all keywords." << endl;
48    return(0);
49 }

With mutexes, one thread at a time is permitted to read from or write to the shared memory. There are 
other mechanisms and techniques that can be used to ensure thread safety for user-defined functions 
implementing one of the PRAM models:

EREW (exclusive read and exclusive write)

CREW (concurrent read and exclusive write)

ERCW (exclusive read and concurrent write)

CRCW (concurrent read and concurrent write)

Mutexes are used to implement EREW algorithms, which will be discussed in Chapter 5.

4.10 Thread Safety and Libraries

According to Klieman, Shah, and Smaalders (1996): "A function or set of functions is said to be thread 
safe or reentrant when the functions may be called by more than one thread at a time without requiring 
any other action on the caller's part." When designing a multithread application, the programmer must 
be careful to ensure that concurrently executing functions are thread safe. We have already discussed 
making  user-defined  functions  thread  safe  but  an  application  often  calls  functions  defined  by  the 
system- or a third-party-supplied library. Some of these functions and/or libraries are thread safe where 
others are not. If the functions are not thread safe, then this means the functions contain one or more of 
the following: static variables, accesses global data, and/or is not reentrant.

If the function contains static variables, then those variables maintain their values between invocations 
of the function. The function requires the value of the static variable in order to operate correctly. When 
concurrent multiple threads invoke this function, then a race condition occurs. If the function modifies a 
global variable, then multiple threads invoking that function may each attempt to modify that global 
variable.  If  multiple  concurrent  accesses  to  the  global  variable  are  not  synchronized,  then  a  race 
condition can occur here as well. For example, multiple concurrent threads can execute functions that 
set errno. With some of the threads, the function fails and errno is set to an error message while other 
threads execute successfully. Depending on the compiler implementation, errno is thread safe. If not, 
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when a thread checks the state of errno, which message will it report?

A block of code is considered reentrant if the code cannot be changed while in use. Reentrant code 
avoids race conditions by removing references to global variables and modifiable static data. Therefore, 
the code can be shared by multiple concurrent threads or processes without a race condition occurring. 
The POSIX standard defines several functions as reentrant. They are easily identified by a _r attached 
to the function name of the nonreentrant counterpart. Some are listed below:

getgrgid_r()
getgrnam_r()
getpwuid_r()
sterror_r()
strtok_r()
readdir_r()
rand_r()
ttyname_r()

If the function accesses unprotected global variables; contains static, modifiable variables; or is not 
reentrant, then the function is considered thread unsafe.

System- or third-party-supplied libraries may have different versions of their standard libraries. One 
version  is  for  single-threaded  applications  and  the  other  version  for  multithreaded  applications. 
Whenever  a  multithreaded  environment  is  anticipated,  the  programmer  should  link  to  these 
multithreaded versions of the library. Other environments do not require multithreaded applications to 
be linked to the multithreaded version of the library but only require macros to be defined in order for 
reentrant versions of functions to be declared. The application will then be compiled as thread safe.

It  is  not  possible  in  all  cases  to  use  multithreaded  versions  of  functions.  In  some  instances, 
multithreaded versions of particular functions are not available for a given compiler or environment. 
Some function's interface cannot be simply made thread safe. In addition, the programmer may be faced 
with adding threads to an environment that uses functions that were only meant to be used in a single-
threaded environment. Under these conditions, in general use mutexes to wrap all such functions within 
the program. For example, a program has three concurrently executing threads. Two of the threads, 
thread1 and thread2, both concurrently execute funcA(), which is not thread safe. The third thread, 
thread3, executes funcB(). To solve the problem of funcA(), the solution may be to simply wrap access 
to funcA() by thread1 and thread2 with a mutex:

thread1          thread2          thread3
{                {                {
   lock()         lock()            funcB()
   funcA()        funcA()         }
   unlock()       unlock()
}                }

If this is done then only one thread accesses funcA() at a time. But there is still a problem. If funcA() 
and  funcB()  are  both  thread-unsafe  functions,  they  may  both  modify  a  global  or  static  variable. 
Although thread1  and thread2 are  using  mutexes  with  funcA(),  thread3 will  be  executing  funcB() 
concurrently with either of these threads. In this situation, a race condition occurs because funcA() and 
funcB() may both modify the same global or static variable.

To illustrate another type of race condition when dealing with the iostream library, let's say we have 
two threads, thread A and thread B, sending output to the standard output stream, cout. cout is an object 
of type ostream. Using inserters, (>>), and extractors, (<<), invokes the methods of the cout object. Are 
these methods thread safe? If thread A is sending the message "We are intelligent beings" to stdout and 
thread B is sending the message "Humans are illogical  beings," will  the output be interleaved and 
produce a message "We are Humans are illogical beings intelligent beings"? In some cases, thread-safe 



functions are implemented as atomic functions. Atomic functions are functions that once they begin to 
execute cannot be interrupted. In the case of cout, if the inserter operation is implemented as atomic, 
then this interweaving cannot take place. When there are multiple calls to the inserter operation, they 
will be executed as if they were in serial order. Thread A's message will be displayed, then thread B's, 
or vice versa, although they invoked the function simultaneously. This is an example of serializing a 
function or operation in order to make it thread safe. This may not be the only way to make a function 
thread safe. A function may interweave operations if it has no adverse effect. For example, if a method 
adds or removes elements to or from a structure that is not sorted and two different threads invoke that 
method, interweaving their operations will not have an adverse effect.

If it is not known which functions from a library are thread safe and which are not, the programmer has 
three choices:

• Restrict use of all thread-unsafe functions to a single thread.

• Do not use any of the thread-unsafe functions.

• Wrap all potential thread-unsafe functions within a single set of synchronization mechanisms.

An additional approach is to create interface classes for all thread-unsafe functions that will be used in a 
multithreaded  application.  The  unsafe  functions  are  encapsulated  within  an  interface  class.  The 
interface class can be combined with the appropriate synchronization objects through inheritance or 
composition. The interface class can be used by the host class through inheritance or composition. The 
approach eliminates the possibility of race conditions.

4.11 Dividing Your Program into Multiple Threads

Earlier in this chapter we discussed the delegation of work according to a specific strategy or approach 
called a thread model. Those thread models were:

• delegation (boss–worker)

• peer-to-peer

• pipeline

• producer–consumer

Each model has its own WBS (Work Breakdown Structure) that determines who is responsible for 
thread creation and under what conditions threads are created. In this section we will show an example 
of a program for each model using Pthread library functions.

4.11.1 Using the Delegation Model

We discussed two approaches that can be used to implement the delegation approach to dividing a 
program into threads.  To recall,  in the delegation model,  a single thread (boss) creates the threads 
(workers) and assigns each a task. The boss thread delegates the task each worker thread is to perform 
by specifying a function. With one approach, the boss thread creates threads as a result of requests 
made to the system. The boss thread processes each type of request in an event loop. As events occur, 
thread workers are created and assigned their duties.  Example 4.5 shows the event loop in the boss 
thread and the worker threads in pseudocode.
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Example 4.5 Approach 1: Skeleton program of boss and worker thread model.

//...
pthread_mutex_t Mutex = PTHREAD_MUTEX_INITIALIZER
int AvailableThreads
pthread_t Thread[Max_Threads]
void decrementThreadAvailability(void)
void incrementThreadAvailability(void)
int threadAvailability(void);

// boss thread
{
   //...
   if(sysconf(_SC_THREAD_THREADS_MAX) > 0){
      AvailableThreads = sysconf(_SC_THREAD_THREADS_MAX)
   }
   else{
          AvailableThreads = Default
   }

   int Count = 1;

   loop while(Request Queue is not empty)
      if(threadAvailability()){
         Count++
         decrementThreadAvailability()
         classify request
         switch(request type)
         {
            case X : pthread_create(&(Thread[Count])...taskX...)
            case Y : pthread_create(&(Thread[Count])...taskY...)
            case Z : pthread_create(&(Thread[Count])...taskZ...)
            //...
         }
      }
      else{
              //free up thread resources
      }
   end loop
}

void *taskX(void *X)
{
   // process X type request
   incrementThreadAvailability()
   return(NULL)
}

void *taskY(void *Y)
{
   // process Y type request
   incrementThreadAvailability()
   return(NULL)
}

void *taskZ(void *Z)
{
   // process Z type request



   decrementThreadAvailability()
   return(NULL)
}

//...

In Example 4.5, the boss thread dynamically creates a thread to process each new request that enters the 
system, but there are a maximum number of threads that will be created. There are n number of tasks to 
process n request types. To be sure the maximum number of threads per process will not be exceeded, 
these additional functions can be defined:

threadAvailability()
incrementThreadAvailability()
decrementThreadAvailability()

Example 4.6 shows pseudocode for these functions.

Example 4.6 Functions that manage thread availability count.

void incrementThreadAvailability(void)
{
   //...
   pthread_mutex_lock(&Mutex)
   AvailableThreads++
   pthread_mutex_unlock(&Mutex)
}

void decrementThreadAvailability(void)
{
   //...
   pthread_mutex_lock(&Mutex)
   AvailableThreads—
   pthread_mutex_unlock(&Mutex)
}

int threadAvailability(void)
{
   //...
   pthread_mutex_lock(&Mutex)
   if(AvailableThreads > 1)
      return 1
   else
      return 0
   pthread_mutex_unlock(&Mutex)
}

The threadAvailability() function will return 1 if the maximum number of threads allowed per process 
has  not  been  reached.  This  function  accesses  a  global  variable  ThreadAvailability  that  stores  the 
number  of  threads  still  available  for  the  process.  The  boss  thread  calls  the 
decrementThreadAvailability() function, which decrements the global variable before the boss thread 
creates a thread. The worker threads call incrementThreadAvailability(), which increments the global 
variable before a worker thread exits. Both functions contain a call to pthread_mutex_lock() before 
accessing the variable and a call to pthread_mutex_unlock() after accessing the global variable. If the 
maximum number of threads are exceeded, then the boss thread can cancel threads if possible or spawn 
another process, if necessary. taskX(), taskY(), and taskZ() execute code that processes their type of 
request.
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The other approach to the delegation model is to have the boss thread create a pool of threads that are 
reassigned new requests instead of creating a new thread per request. The boss thread creates a number 
of threads during initialization and then each thread is suspended until a request is added to the queue. 
The boss thread will  still  contain an event loop to extract  requests  from the queue.  But instead of 
creating a new thread per request, the boss thread signals the appropriate thread to process the request. 
Example 4.7 shows the boss thread and the worker threads in pseudocode for this approach to the 
delegation model.

Example 4.7 Approach 2: Skeleton program of boss and worker thread model.

//...

pthread_t Thread[N]

// boss thread
{

    pthread_create(&(Thread[1]...taskX...);
    pthread_create(&(Thread[2]...taskY...);
    pthread_create(&(Thread[3]...taskZ...);
    //...

    loop while(Request Queue is not empty
       get request
       classify request
       switch(request type)
       {
           case X :
                    enqueue request to XQueue
                    signal Thread[1]

           case Y :
                    enqueue request to YQueue
                    signal Thread[2]

           case Z :
                    enqueue request to ZQueue
                    signal Thread[3]
           //...
       }

   end loop
}

void *taskX(void *X)
{
   loop
       suspend until awaken by boss
       loop while XQueue is not empty
          dequeue request
          process request

       end loop
   until done
{
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void *taskY(void *Y)
{
   loop
       suspend until awaken by boss
       loop while YQueue is not empty
          dequeue request
          process request
       end loop
   until done
}

void *taskZ(void *Z)
{
   loop
       suspend until awaken by boss
       loop while (ZQueue is not empty)
          dequeue request
          process request
       end loop
   until done
}

//...

In Example 4.7, the boss thread creates N number of threads, one thread for each task to be executed. 
Each task is associated with processing a request type. In the event loop, the boss thread dequeues a 
request from the request queue, determines the request type, enqueues the request to the appropriate 
request  queue,  then signals  the thread that  processes  the request  in  that  queue.  The functions also 
contain an event loop. The thread is suspended until it receives a signal from the boss that there is a 
request in its queue. Once awakened, in the inner loop, the thread processes all the requests in the queue 
until it is empty.

4.11.2 Using the Peer-to-Peer Model

In the peer-to-peer model, a single thread initially creates all the threads needed to perform all the tasks 
called peers. The peer threads process requests from their own input stream.  Example 4.8. shows a 
skeleton program of the peer-to-peer approach of dividing a program into threads.

Example 4.8 Skeleton program using the peer-to-peer model

//...

pthread_t Thread[N]

// initial thread
{

    pthread_create(&(Thread[1]...taskX...);
    pthread_create(&(Thread[2]...taskY...);
    pthread_create(&(Thread[3]...taskZ...);
    //...

  }
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void *taskX(void *X)
{
    loop while (Type XRequests are available)
          extract Request
          process request
    end loop
    return(NULL)
}

//...

In the peer-to-peer model, each thread is responsible for its own stream of input. The input can be 
extracted from a database, file, and so on.

4.11.3 Using the Pipeline Model

In the pipeline model, there is a stream of input processed in stages. At each stage, work is performed 
on a unit of input by a thread. The input continues to move to each stage until the input has completed 
processing.  This  approach  allows  multiple  inputs  to  be  processed  simultaneously.  Each  thread  is 
responsible for producing its interim results or output, making them available to the next stage or next 
thread in the pipeline. Example 4.9 shows the skeleton program for the pipeline model.

Example 4.9 Skeleton program using the pipeline model.

//...

   pthread_t Thread[N]
   Queues[N]

   // initial thread
   {
       place all input into stage1's queue
       pthread_create(&(Thread[1]...stage1...);
       pthread_create(&(Thread[2]...stage2...);
       pthread_create(&(Thread[3]...stage3...);
       //...
    }

void *stageX(void *X)
{
   loop
     suspend until input unit is in queue
     loop while XQueue is not empty
         dequeue input unit
         process input unit
         enqueue input unit into next stage's queue
      end loop
   until done
   return(NULL)
}

//...

In Example 4.9, N queues are declared for N stages. The initial thread enqueues all the input into stage 
1's queue. The initial thread then creates all the threads needed to execute each stage. Each stage has an 
event loop. The thread sleeps until an input unit has been enqueued. The inner loop continues to iterate 
until its queue is empty. The input unit is dequeued, processed, then that unit is then enqueued into the 
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queue of the next stage.

4.11.4 Using the Producer–Consumer Model

In the producer-consumer model, the producer thread produces data consumed by the consumer thread 
or threads. The data is stored in a block memory shared between the producer and consumer threads. 
This model was used in Programs 4.5, 4.6, and 4.7. Example 4.10 shows the skeleton program for the 
producer-consumer model.

Example 4.10 Skeleton program using the producer–consumer model.

pthread_mutex_t Mutex = PTHREAD_MUTEX_INITIALIZER
pthread_t Thread[2]
Queue

// initial thread
{
    pthread_create(&(Thread[1]...producer...);
    pthread_create(&(Thread[2]...consumer...);
    //...
 }

void *producer(void *X)
{
   loop
      perform work
        pthread_mutex_lock(&Mutex)
         enqueue data
      pthread_mutex_unlock(&Mutex)
         signal consumer
      //...
   until done
}

void *consumer(void *X)
{
   loop
      suspend until signaled
      loop while(Data Queue not empty)
          pthread_mutex_lock(&Mutex)
           dequeue data
       pthread_mutex_unlock(&Mutex)
          perform work
      end loop
   until done
}

In  Example  4.9,  an initial  thread  creates  the producer  and consumer threads.  The producer  thread 
executes a loop in which it performs work then locks a mutex on the shared queue in order to enqueue 
the data it has produced. The producer unlocks the mutex then signals the consumer thread that there is 
data in the queue. The producer iterates through the loop until all work is done. The consumer thread 
also executes a loop in which it suspends itself until it is signaled. In the inner loop, the consumer 
thread processes all the data until the queue is empty. It locks the mutex on the shared queue before it 
dequeues any data and unlocks the mutex after the data has been dequeued. It then performs work on 
that data. In Program 4.6, the consumer thread enqueues its results to a file. The results could have been 
inserted into another data structure. This is often done by consumer threads in which it plays both the 
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role of consumer and producer. It plays the role of consumer of the unprocessed data produced by the 
producer thread, then it plays the role of producer when it processes data stored in another shared queue 
consumed by another thread.

4.11.5 Creating Multithreaded Objects

The  delegation,  peer-to-peer,  pipeline.  and  producer–consumer  models  demonstrate  approaches  to 
dividing a program into multiple threads along function lines. When using objects, member functions 
can create threads to perform multiple tasks. Threads can be used to execute code on behalf of the 
object: free-floating functions and other member functions.

In either case, the threads are declared within the object and created by one of the member functions 
(e.g.,  the constructor).  The threads  can then execute some free-floating functions  (function defined 
outside the object), which invokes member functions of the object that are global. This is one approach 
to making an object multithreaded. Example 4.10 contains an example of a multithreaded object.

Example 4.10 Declaration and definition of multithreading an object.

#include <pthread.h>
#include <iostream>
#include <unistd.h>

void *task1(void *);
void *task2(void *);

class multithreaded_object
{
   pthread_t Thread1,Thread2;
public:

   multithreaded_object(void);
   int c1(void);
   int c2(void);
   //...
};

multithreaded_object::multithreaded_object(void)
{

   //...
   pthread_create(&Thread1,NULL,task1,NULL);
   pthread_create(&Thread2,NULL,task2,NULL);
   pthread_join(Thread1,NULL);
   pthread_join(Thread2,NULL);
   //...

}

int multithreaded_object::c1(void)
{
   // do work
   return(1);
}
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int multithreaded_object::c2(void)
{
   // do work
return(1);
}

multithreaded_object MObj;

void *task1(void *)
{
   //...
   MObj.c1();
   return(NULL);
}

void *task2(void *)
{
   //...
   MObj.c2();
   return(NULL);
}

In Example 4.10, the class multithread_object declares two threads. From the constructor of the class, 
the threads are created and joined. Thread1 executes task1 and Thread2 executes task2. task1 and task2, 
then invokes member functions of the global object MObj.

Summary

In  a  sequential  program,  work can  be  divided  between routines  within  a  program where  one  task 
finishes then another task can perform work. With other programs, work is executed as mini-programs 
within the main program where the mini-programs execute concurrently with the main program. These 
mini-programs can  be executed as  processes  or  threads.  With processes,  each  process  has  its  own 
address space and requires interprocess communication if the processes are to communicate. Threads 
sharing the address space of the process do not require special  communication techniques between 
threads of the same process. Synchronization mechanisms such as mutexes are needed to protect share 
memory in order to control race conditions.

There are several models that can be used to delegate work among threads and manage when threads 
are created and canceled. In the delegation model, a single thread (boss) creates the threads (workers) 
and assigns each a task. The boss thread waits until each worker thread completes its task. With the 
peer-to-peer model, there is a single thread that initially creates all the threads needed to perform all the 
tasks; that thread is considered a worker thread and does no delegation. All threads have equal status. 
The pipeline model is characterized as an assembly line in which a stream of items are processed in 
stages. At each stage, a thread executes work performed on the unit of input. The input moves from one 
thread to the next, processing it until completion. The last stage or thread produces the result of the 
pipeline. In the producer–consumer model, there is a producer thread that produces data to be consumed 
by the consumer thread. The data is stored in a block of memory shared between the producer and 
consumer threads. Objects can be made to be multithreaded. The threads are declared within the object. 
A member function can create a thread that executes a free-floating function that in turn invokes one of 
the member functions of the object.

The Pthread library can be used to create and manage the threads of a multithreaded application. The 
Pthread library is based on a standardized programming interface for the creation and maintenance of 
threads.  The  thread  interface  has  been  specified  by  the  IEEE standards  committee  in  the  POSIX 
1003.1c standard. Third-party vendors supply an implementation that adheres to the POSIX standard.
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Chapter 5. Synchronizing Concurrency between Tasks
"The relation of these mechanisms to time demands careful study. ... We are scarcely ever 
interested in the performance of a communication-engineering machine for a single input. 
To function adequately, it must give a satisfactory performance for a whole class of inputs, 
and this means a statistically satisfactory performance for the class of input which it  is 
statistically expected to receive . . ."

—Norbert Wiener, Cybernetics

In this Chapter

• Coordinating Order of Execution  

• Synchronizing Access to Data  

• What are Semaphores?  

• Synchronization: An Object-Oriented Approach  

• Summary  

With any computer system, resources are limited. There is only so much memory, I/O devices and 
ports,  hardware  interrupts,  and  processors.  In  an  environment  of  limited  hardware  resources,  an 
application consisting of multiple processes and threads must compete for memory locations, peripheral 
devices, and processor time. It is the job of the operating system to determine when the process or 
thread utilizes system resources and for how long. With preemptive scheduling, the operating system 
can interrupt the process or thread in order to accommodate all the processes and threads competing for 
the system resources. Processes and threads must also compete for software and data resources. An 
example of software resources is shared libraries that provide a common set of services or functions to 
processes  and threads.  Other  shareable  software resources  are  applications,  programs,  and  utilities. 
When sharing software resources, only one copy of the program(s) code is brought into memory. Data 
resources are objects, system data (e.g., environment variables) files, globally defined variables, and 
data structures. With data resources, it is possible for processes and threads to have their own copy. In 
other cases, it is desirable and maybe necessary that data is shared. Some processes and threads work 
together to use the system's limited resources while other processes and threads work independently and 
asynchronously,  competing for the use of the shareable  resource.  There are several  techniques and 
mechanisms that can be used by the programmer to manage competing processes and threads to share 
data resources.

Synchronization is also needed to coordinate the order of execution of concurrent tasks. The producer-
consumer model discussed in Chapter 4 is a prime example. It is necessary for the producer to execute 
before  the  consumer,  not  necessarily  finish  before  the  consumer.  Synchronization  is  required  to 
coordinate  these  tasks  in  order  for  work  to  progress.  Data  (access  synchronization)  and  task 
synchronization (sequence synchronization) are two types of synchronization required when executing 
multiple concurrent tasks.
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5.1 Coordinating Order of Execution

Let's say we have three threads executing concurrently labeled thread A, thread B, and thread C. All 
three  threads  are  involved in  list  processing.  The  list  is  to  be sorted  and searched and the  results 
displayed. Each thread is assigned a task; thread A is to display the results of the search, thread B is to 
sort the list, and thread C is to search the list. First, the list has to be sorted then multiple concurrent 
searches can occur on the list. The results of the searches are then displayed. If these threads' tasks are 
not synchronized properly, thread A may attempt to display results not yet generated that violates the 
postcondition of the process. The precondition in the list must be sorted prior to searching. If searches 
start before the list is sorted, the search may generate the wrong results. The three threads require task 
synchronization. Task synchronization enforces preconditions and postconditions of logical processes. 
Figure 5-1 shows a UML activity diagram for this process.

Figure 5-1. Activity diagram for sorting, searching, and displaying the contents of a list.

The thread B's sort must occur first, then forking to the multiple searches spawned by thread C takes 
place. The threads are then joined and thread A displays the results.

5.1.1 Relationships between Synchronized Tasks

There  are  four  basic  synchronization relationships  between any two threads  in  a  single  process  or 
between any two processes within a single application: start-to-start (SS), finish-to-start (FS), start-to-
finish (SF), and finish-to-finish (FF). These four basic relationships characterize the coordination of 
work between threads  and processes.  Figure 5-2 shows activity  diagrams for  each  synchronization 
relationship.
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Figure 5-2. The synchronization relationships that can exist between tasks A and B.

5.1.2 Start-to-Start (SS) Relationship

In a start-to-start synchronization relationship, one task cannot start until another task starts. One task 
may start before the other but never after. For example, let's say we have a program that implements an 
avatar. The avatar is a computer-generated talking head. The avatar provides a kind of personality for 
the software. The program that implements the avatar has several threads. Here, we will focus on thread 
A, which controls the animation of the mouth and thread B, which controls the sound or voice. We want 
to give the illusion that the sound and mouth animation are synchronized. Ideally, they should execute 
at the same precise moment. If multiple processors are involved, both threads may start simultaneously. 
The threads have a start-to-start relationship. Because of timing conditions, it is allowed that thread A 
start slightly before thread B (not much before for illusion's sake) but thread B cannot start before 
thread A. The voice has to wait for the animation. It is not desirable to hear a voice before the mouth 
animates (unless it is simulating voice dubbing).

5.1.3 Finish-to-Start (FS) Relationship

In a finish-to-start synchronization relationship, task A cannot finish until task B starts. This type of 
relationship is common with parent–child processes. The parent process cannot complete execution of 
some operation until it spawns a child process or it receives a communication from the child process 
that it has started its operation. The child process continues to execute once it has signaled the parent or 
supplied the needed information. The parent process is then free to complete its operation.

5.1.4 Start-to-Finish Relationship

A start-to-finish synchronization relationship is the reverse of the finish-to-start relationship. In a start-
to-finish synchronization relationship, one task cannot start until another task finishes. Task A cannot 
start execution until task B finishes executing or completes a certain operation. If process A is reading 
from a pipe connected to process B, process B must first write to the pipe before process A reads from 
it. Process B must at least complete one operation, writing a single element to the pipe before process A 
starts. The producer-consumer threads in Chapter 4 are another example of a finish-to-start relationship. 
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The sort-search threads in Figure 5-1 also demonstrate this relationship. The sort thread had to complete 
its work before the search threads were to search the list. In all these cases, one thread or process has to 
complete an operation before another thread or process attempts to execute its operation. Unless this 
work is coordinated, the goal of the process, thread, or application would fail or give inaccurate results.

The finish-to-start relationship usually suggests there is an information dependency between the tasks. 
With information dependency, interthread or interprocess communication is required from one or more 
tasks in order for a thread or process to operate correctly. The search would produce incorrect results 
unless the sort was performed. The consumer thread would have no files to process unless the producer 
thread produced the files to be searched.

5.1.5 Finish-to-Finish Relationship

In a finish-to-finish synchronization relationship, one task cannot finish until another task finishes. Task 
A cannot finish until task B finishes. This again can describe the relationship between parent and child 
processes  discussed  in  Chapter  3.  The  parent  process  must  wait  until  all  its  child  processes  have 
terminated before it is allowed to terminate. If the parent process terminates before its child processes, 
those terminated child processes become zombied. Parent processes should not finish (exit the system 
in this case) until all its child processes have finished executing. The parent process achieves this by 
either calling a wait() function for each of its child processes, or waiting for a mutex or condition 
variable that can be broadcast by child threads. Another example of a finish-to-finish relationship is the 
boss–worker  model.  The  boss  thread's  job  is  to  delegate  work to  the worker  threads.  It  would be 
undesirable for the boss thread to terminate before the worker threads. New requests to the system 
would not be processed, existing threads would have no work to perform, and no new threads would be 
created. If the boss thread is the primary thread and it terminates, the process would terminate along 
with all the worker threads. In a peer-to-peer model, if thread A dynamically allocates an object passed 
to thread B and thread A terminates, the object is destroyed along with thread A. If this is done before 
thread B has had a chance to use it, a segmentation fault or data access violation will occur. In order to 
prevent  these  kinds  of  errors  with  threads,  termination  of  threads  is  synchronized  by  using  the 
pthread_join() function. A call to this function causes the calling thread to wait on the target thread until 
it finishes. This creates finish-to-finish synchronization.

5.2 Synchronizing Access to Data

There is a difference between data shared between processes and data shared between threads. Threads 
share the same address space. Processes have separate address spaces. If there are two processes, A and 
B, then data declared in process A is not available to process B and vice versa. Therefore, one method 
used by processes to share data is to create a block of memory that is then mapped to the address space 
of the processes that are to share the memory. Another approach is to create a block of memory that 
exists outside the address space of both processes. These are types of IPC (interprocess communication) 
that include: pipes, files, and message passing.

It is the block of memory shared between threads within the same address space and the block of 
memory  shared  between  processes  outside  both  address  spaces  that  requires  data  synchronization. 
Figure 5-3 contrasts memory shared between threads and processes.
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Figure 5-3. The memory shared between threads and processes.

Data synchronization is needed in order to control race conditions and allow concurrent threads or 
processes to safely access a block of memory. Data synchronization controls when a block of memory 
can be read or modified.  Concurrent access to  shared memory,  global  variables,  and files must be 
synchronized in a multithreaded environment. Data synchronization is needed at the location in a task's 
code  when  it  attempts  to  access  the  block  of  memory,  global  variable,  or  file  shared  with  other 
concurrently executing processes or threads. This block of code is called the critical section. The critical 
section can be any block of code that changes the file pointer's position, writes to the file, closes the 
file, and reads or writes global variables or data structures. Classifying the tasks as read or write tasks is 
one step in managing concurrent access to the shared memory.

5.2.1 PRAM Model

The PRAM (Parallel Random-Access Machine) is a simplified theoretical model where there are N 
processors, labeled as P1, P2, P3, ... Pn, share one global memory. All the processors have simultaneous 

read and write access to shared global memory. Each of these theoretical processors can access the 
global shared memory in one uninterruptible unit of time. The PRAM model has concurrent read and 
write algorithms and exclusive read and write algorithms. Concurrent read algorithms are allowed to 
read the same piece of memory simultaneously with no data corruption. Concurrent write algorithms 
allow multiple processors to write to the shared memory. Exclusive read algorithms are used to ensure 
that no two processors ever read the same memory location at the same time. Exclusive write ensures 
that no two processors write to the same memory at the same time. The PRAM model can be used to 
characterize concurrent access to shared memory by multiple tasks.

5.2.1.1 Concurrent and Exclusive Memory Access

The  concurrent  and  exclusive  read-write  algorithms  can  be  combined  into  the  following  types  of 
algorithm combinations that are possible for read-write access:

EREW (exclusive read and exclusive write)

CREW (concurrent read and exclusive write)

ERCW (exclusive read and concurrent write)

CRCW (concurrent read and concurrent write)



These algorithms can be viewed as the access policy implemented by the tasks sharing the data. Figure 
5-4 illustrates these access policies. EREW means access to the shared memory is serialized. Only one 
task  at  a  time is  given  access  to  the  shared  memory.  An example  of  EREW access  policy  is  the 
producer-consumer example discussed in Chapter 4. Access to the queue that contained the filenames 
was restricted to exclusive write by the producer and exclusive read by the consumer. Only one task 
was allowed access to the queue at any given time. CREW access policy allows multiple reads of the 
shared memory and exclusive writes. This means there are no restrictions on how many tasks can read 
the shared memory concurrently but only one task can write to the shared memory. Concurrent reads 
can occur while an exclusive write is taking place. With this type of access policy, each reading task 
may read a different value. As a task reads the shared memory, another task modifies it. The next task 
that reads the shared memory will see different data. The ERCW access policy is the direct reverse of 
CREW. With ERCW, concurrent writes are allowed but only one task at a time is allowed to read the 
shared memory. CRCW access policy allows concurrent reads and concurrent writes.

Figure 5-4. EREW, CREW, ERCW, and CRCW access policies.
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Each of these four algorithm types requires different levels and types of synchronization. They can be 
analyzed on a continuum with the access policy that requires the least amount of synchronization to 
implement on one end and the access policy that requires the most amount of synchronization at the 
other end. The goal is to implement these policies and maintain data integrity and satisfactory system 
performance. EREW is the policy that is the simplest to implement. This is because EREW essentially 
forces sequential processing. At first blush, you may consider CRCW is the simplest but it presents the 
most challenges. It may appear as if it has no policy. The memory can be accessed without restriction. 
But this is the furthest from the truth. This is the most difficult to implement and requires the most 
synchronization in order to meet our goal.

5.3 What are Semaphores?

A semaphore is a synchronization mechanism that can be used to manage synchronization relationships 
and implement the access policies. A semaphore is a special kind of variable that can only be accessed 
by very specific operations. The semaphore is used to help threads and processes synchronize access to 
shared modifiable memory or manage access to a device or other resource. The semaphore is used as a 
key to access the resource. This key can only be owned by one process or thread at a time. Whichever 
task owns the key or semaphore locks the resource for its exclusive use. Locking the resource causes 
any other task that wishes to use the resource to wait until the resource has been unlocked, making it 
available again. Once unlocked, the next task waiting for the semaphore is given the semaphore, thus 
accessing the resource. The next task is determined by the scheduling policy in effect for that thread or 
process.

5.3.1 Semaphore Operations

As mentioned earlier, a semaphore can only be accessed by specific operations like an object. There are 
two operations that can be performed on a semaphore. The P() operation is a decrement operation and 
the V() operation is an increment operation. If Mutex is the semaphore, then here are the logical 
implementations of the P(Mutex) and V(Mutex) operations:

P(Mutex)

if(Mutex > 0) {
  Mutex--;
}
else {
    Block on Mutex;
}

V(Mutex)
if(Blocked on Mutex N processes) {
  pass on Mutex;
}
else{
    Mutex++;
}

The actual implementation will be system dependent. These operations are indivisible, meaning once 
the operation is in progress, it cannot be preempted. If several tasks attempt to make a call to the P() 
operation, only one task will be allowed to proceed. If the Mutex has already been decremented, then 
the task will block and be placed in a queue. The V() operation is called by the task that has the Mutex. 
If other tasks are waiting on the Mutex, it is given to the next task in the queue. If no tasks are waiting, 
then the Mutex is incremented.



Semaphore operations can go by other names:

P() operation: V() operation:

lock() unlock()

The value of the semaphore will depend on the type of semaphore it is. There are several types of 
semaphores. A binary semaphore will have the value 0 or 1. A counting semaphore will have some non-
negative integer value.

The POSIX standard defines several types of semaphores. These semaphores are used by processes or 
threads. Table 5-1 lists the types of semaphores. The table also lists some of their basic operations.

Table 5-1. Semaphore Types Defined by the POSIX Standard and Their Use by Threads and/or Processes

Types of Semaphores Processes/Thre
ads

Description

Mutex semaphores Processes or 
threads

Mechanism used to implement mutual exclusion in a 
critical section of code.

Read–write locks Processes or 
threads

Mechanism used to implement read-write access policy 
between threads.

Condition variables Processes or 
threads

Mechanism used to broadcast a signal between threads that 
an event has taken place.

  When a thread locks an event mutex, it blocks until it 
receives the broadcast.

Multiple condition 
variables

Processes or 
threads

Same as an event mutex but includes multiple events or 
conditions.

Any operating system that is compliant with the Single UNIX Specification or POSIX Standard will 
supply an implementation of these semaphores. They are a part of the libpthread library and the 
functions are declared in the pthread.h header.

5.3.2 Mutex Semaphores

The POSIX standard defines a mutex semaphore used by threads and processes of type 
pthread_mutex_t. This mutex provides the basic operations necessary to make it a practical 
synchronization mechanism:

• initialization

• request ownership

• release ownership
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• try ownership

• destruction

Table 5-2 lists the pthread_mutex_t functions that are used to perform these basic operations. The 
initialization process allocates memory required to hold the mutex semaphore and give the memory 
some initial values. For a binary semaphore, its initial value will be 0 or 1. If it's a counting semaphore, 
its initial value is a non-negative number that represents the number of resources available. It can be 
used to represent the request limit a program is capable of processing in a single session. Unlike regular 
variables, there is no guarantee that the initialization operation of a mutex will occur. After calling the 
initialization operation, take precautions to ensure that the mutex was initialized (i.e., checking the 
return value or checking the errno value). The system shall fail to create the mutex if the space set aside 
for mutexes has been used, the number of allowable semaphores will be exceeded, the named 
semaphore already exists, or there is some other memory allocation problem.

Table 5-2. pthread_mutex_t Functions

Mutex Operations Function Prototypes/Macros #include <pthread.h>

Initialization int pthread_mutex_init(pthread_mutex_t *restrict
mutex, const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Request ownership <time.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_timedlock(pthread_mutex_t
*restrict mutex, const struct tiemspec *restrict
abs_timeout);

Release ownership int pthread_mutex_unlock(pthread_mutex_t *mutex);

Try ownership int pthread_mutex_trylock(pthread_mutex_t *mutex);

Destruction int pthread_mutex_destroy(pthread_mutex_t *mutex);

Similar to a thread, the Pthread mutex has an attribute object that encapsulates all the attributes of the 
mutex. This mutex attribute will be discussed later. It can be passed to the initialization function, 
creating a mutex with attributes of those set in the mutex object. If no attribute object is used, the mutex 
will be intialized with default values. The pthread_mutex_t is initialized as unlocked and private. A 
private mutex is shared between threads of the same process. A shared mutex is shared between threads 
of multiple processes. If default attributes are to be used, the mutex can be initialized statically for 
statically allocated mutex objects by using the macro:

pthread_mutext Mutex = PTHREAD_MUTEX_INITIALIZER;

This method uses less overhead but performs no error checking.

A mutex can be owned or unowned. The request ownership operation grants ownership of the mutex to 
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the calling process or thread. Once the mutex is owned, the thread or process has exclusive access to the 
resource. If there is any attempt to own the mutex (by calling this operation) by any other processes or 
threads, they are blocked until the mutex is made available. Releasing the mutex causes the next 
process or thread that has blocked on this mutex to unblock and obtain ownership of the mutex. With 
pthread_mutex_lock(), the thread granted ownership of a given mutex is the only thread that can release 
the mutex. A timed version of this function is also available. In that case, if the mutex is owned the 
process or thread will wait for some specified period of time. If the mutex is not released in that time 
interval, the process or thread will continue executing.

The try ownership operation tests the mutex to see if it is already owned. If owned, the function returns 
some value indicating that. The advantage of this operation is the thread or process is not blocked if the 
mutex is owned. It will be able to continue executing. If the mutex is not owned, then ownership is 
granted.

The destruction operation frees the memory associated with the mutex. The memory cannot be 
destroyed or closed if it is owned or a thread or process is waiting for the mutex.

5.3.2.1 Using the Mutex Attribute Object

The pthread_mutex_t has an attribute object used in a similar way as the thread attribute. The attribute 
object encapsulates all the attributes of a mutex object. Once initialized, it can be used by multiple 
mutex objects when passed to the pthread_mutex_init() function. The mutex attribute defines several 
functions used to set these attributes: priority ceiling, protocol, and type. These functions and other 
attribute functions are listed in Table 5-3 with a brief description.

Table 5-3. pthread_mutex_t Attribute Object Functions

pthread_mutex_t Attribute Object 
Function Prototypes #include 
<pthread.h>

Description

int pthread_mutexattr_init
(pthread_mutexattr_t * attr);

Initializes a mutex attribute object specified by the 
parameter attr with default values for all of the attributes 
defined by the implementation.

int pthread_mutexattr_destroy
(pthread_mutexattr_t * attr);

Destroys a mutex attribute object specified by the 
parameter attr, which causes the mutex attribute object to 
become uninitialized. Can be reinitialized by calling the 
pthread_mutexattr_init() function.

int pthread_mutexattr_
setprioceiling
(pthread_mutexattr_t * attr,
 int prioceiling);

int pthread_mutexattr_
getprioceiling
(const pthread_mutexattr_t *
 restrict attr, int *restrict
prioceiling);

Sets and returns the priority ceiling attribute of the mutex 
specified by the parameter attr. The parameter prioceiling 
contains the priority ceiling of the mutex. The prioceiling 
attribute defines the minimum priority level at which the 
critical section guarded by the mutex is executed. The 
values are within the maximum range of priorities defined 
by SCHED_FIFO.
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pthread_mutex_t Attribute Object 
Function Prototypes #include 
<pthread.h>

Description

int pthread_mutexattr_
setprotocol
(pthread_mutexattr_t * attr,
 int protocol);

Sets and returns the protocol of the mutex attribute 
specified by the parameter attr. The protocol parameter 
contains the value of the protocol attribute:

int pthread_mutexattr_
getprotocol
(const pthread_mutexattr_t *
 restrict attr,
 int *restrict protocol);

PTHREAD_PRIO_NONE

The priority and scheduling of the thread is not affected 
by the ownership of the mutex.

 PTHREAD_PRIO_INHERIT

Thread blocking other threads of higher priority due to 
ownership of such a mutex, shall execute at the highest 
priority of any of the threads waiting on any of the 
mutexes owned by this thread with such a protocol.

 PTHREAD_PRIO_PROTECT

Threads owning such a mutex shall execute at the highest 
priority ceilings of all mutexes owned by this thread with 
such a protocol, regardless of whether other threads are 
blocked on any of these mutexes.

int pthread_mutexattr_
setpshared
(pthread_mutexattr_t * attr,
 int pshared);

Sets or returns the process-shared attribute of the mutex 
attribute object specified by the parameter attr. The 
pshared parameter contains a value:

int pthread_mutexattr_
getpshared
(const pthread_mutexattr_t *
 restrict attr, int *restrict
pshared);

PTHREAD_PROCESS_SHARED

Permits a mutex to be shared by any threads that have 
access to the allocated memory of the mutex even if the 
threads are in different processes.

 PTHREAD_PROCESS_PRIVATE

Mutex is shared between threads of the same process as 
the initialized mutex.

int pthread_mutexattr_
settype
(pthread_mutexattr_t * attr,

Sets and returns the type mutex attribute of the mutex 
attribute specified by the parameter attr. The mutex type 



pthread_mutex_t Attribute Object 
Function Prototypes #include 
<pthread.h>

Description

 int type); attribute is used to describe the behavior of the mutex, 
which includes whether the mutex will determine 
deadlock, perform error checking, etc. The type parameter 
contains a value:

int pthread_mutexattr_
gettype
(const pthread_mutexattr_t *
 restrict attr,
 int *restrict type);

PTHREAD_MUTEX_DEFAULT

PTHREAD_MUTEX_RECURSIVE

PTHREAD_MUTEX_ERRORCHECK

PTHREAD_MUTEX_NORMAL

The most interesting of the attributes is setting whether the mutex will be private or shared. Private 
mutexes are only shared among threads of the same process. It can be declared as global or a handle can 
be passed between threads. Shared mutexes are used by any threads that have access to the memory in 
which the mutex is located. This includes threads of different processes. Figure 5-5 contrasts the idea of 
private and shared mutexes between different processes. If threads of different processes are to share a 
mutex, it must be allocated in memory shared between processes. POSIX defines several functions used 
to allocate shared memory between objects using memory-mapped files and shared memory objects. 
Mutexes between processes can be used to protect critical sections that access files, pipes, shared 
memory, and devices.
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Figure 5-5. Private and shared mutexes.

5.3.2.2 Using Mutex Semaphores to Manage Critical Sections

Mutexes can be used to manage critical  sections of processes and threads  in order to control race 
conditions. Mutexes avoid race conditions by serializing access to the critical section.  Example 5.1 
shows two threads. Mutexes are used to protect their critical sections.

Example 5.1 Using mutexes to protect critical sections of threads.

// ...
pthread_t ThreadA,ThreadB;
pthread_mutex_t Mutex;
pthread_mutexattr_t MutexAttr;

void *task1(void *X)
{
   pthread_mutex_lock(&Mutex);
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   // critical section of code
   pthread_mutex_unlock(&Mutex);
   return(0);
}

void *task2(void *X)
{
   pthread_mutex_lock(&Mutex);
   // critical section of code
   pthread_mutex_unlock(&Mutex);
   return(0);
}

int main(void)
{
   //...
   pthread_mutexattr_init(&MutexAttr);
   pthread_mutex_init(&Mutex,&MutexAttr);
   //set mutex attributes
   pthread_create(&ThreadA,NULL,task1,NULL);
   pthread_create(&ThreadB,NULL,task2,NULL);
   //...
   return(0);
}

In Example 5.1, ThreadA and ThreadB have critical sections protected by their use of Mutex.

Example 5.2 shows how mutexes can be used to protect the critical sections of currently executing 
processes.

Example 5.2 Mutexes used to protect critical sections.

//...
int Rt;
pthread_mutex_t Mutex1;
pthread_mutexattr_t MutexAttr;

int main(void)
{
   //...
   pthread_mutexattr_init(&MutexAttr);
   pthread_mutexattr_setpshared(&MutexAttr,
                                PTHREAD_PROCESS_SHARED);
   pthread_mutex_init(&Mutex1,&MutexAttr);

   if((Rt = fork()) == 0){ // child process
      pthread_mutex_lock(&Mutex1);
      //critical section
      pthread_mutex_unlock(&Mutex1);
   }
   else{ // parent process
      pthread_mutex_lock(&Mutex1);
      //critical section
      pthread_mutex_unlock(&Mutex1);
   }
   //...
   return(0);
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}

In Example 5.2, it is important to note that the mutex has been initialized as shared by calling:

pthread_mutexattr_setpshared(&MutexAttr,PTHREAD_PROCESS_SHARED);

This  allows Mutex to  be shared by threads  of different  processes.  Once fork()  is  called,  the child 
process and parent process can protect their critical section with Mutex. Their critical sections will 
contain some resource shared by both processes.

5.3.3 Read–Write Locks

Mutex semaphores are used to manage a critical section by serializing entry to that section. Only one 
thread or process is permitted to enter the critical section at a time. With read-write locks, multiple 
threads are allowed to enter the critical section if they are to read the shared memory only. Therefore, 
any number of threads can own a read-write lock for reading. But if multiple threads are to write or 
modify the shared memory, only one thread is given access. No other threads are allowed to enter the 
critical section if one thread is given exclusive access to write to the shared memory. This can be used 
when applications more often read data than write data. If the application has multiple threads, mutex 
exclusion can be extreme. The performance of the application can benefit by allowing multiple reads. 
The POSIX standard defines a read-write lock of type pthread_rwlock_t.

Similar to mutex semaphores, the read-write locks have the same operations. Table 5-4 lists the read-
write lock operations.

The difference between regular mutexes and read-write mutexes is their locking request operations. 
Instead of one locking operation there are two:

pthread_rwlock_rdlock()
pthread_rwlock_wrlock()

pthread_rwlock_rdlock() obtains a read-lock and pthread_rwlock_wrlock() obtains a write lock. If a 
thread requests a read lock, it is granted the lock as long as there are no threads that hold a write lock. If 
so, the calling thread is blocked. If a thread request a write lock, it is granted as long as there are no 
threads that hold a read lock or a write lock. If so, the calling thread is blocked.

The read-write lock is of type pthread_rwlock_t. This type also has an attribute object that encapsulates 
its attributes. The attribute functions are listed in Table 5-5.

Table 5-4. Read–Write Lock Operations

Read–write Lock Operations Function Prototypes #include <pthread.h>

Initialization int pthread_rwlock_init(pthread_rwlock_t *restrict
rwlock, const pthread_rwlockattr_t *restrict attr);

Request ownership #include <time.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_timedrdlock(pthread_rwlock_t
*restrict rwlock, const struct timespec *restrict
abs_timeout);
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Read–write Lock Operations Function Prototypes #include <pthread.h>

int pthread_rwlock_timedwrlock(pthread_rwlock_t |
*restrict rwlock, const struct timespec *restrict
abs_timeout);

Release ownership int pthread_rwlock_unlock(pthread_rwlock_t
*rwlock);

Try ownership int pthread_rwlock_tryrdlock(pthread_rwlock_t
*rwlock);

int pthread_rwlock_trywrlock(pthread_rwlock_t
*rwlock);

Destruction int pthread_rwlock_destroy(pthread_rwlock_t
*rwlock);

The pthread_rwlock_t can be private between threads or shared between threads or different processes.

5.3.3.1 Using Read-Write Locks to Implement Access Policy

Read-write locks can be used to implement an access policy,  namely CREW. Several tasks can be 
granted concurrent reads but only one task is granted write access. Using read-write locks will not 
permit concurrent reads to occur with the exclusive write. Example 5.3 contains tasks using read-write 
locks to protect critical sections.

Table 5-5. Attribute Object Functions for pthread_rwlock_t

pthread_rwlock_t Attribute Object Function 
Prototypes #include <pthread.h>

Description

int pthread_rwlockattr_init
(pthread_rwlockattr_t * attr);

Initializes  a  read-write  lock  attribute  object 
specified by the parameter attr with default values 
for  all  of  the  attributes  defined  by  the 
implementation.

int pthread_rwlockattr_destroy
(pthread_rwlockattr_t * attr);

Destroys a read-write lock attribute object specified 
by  the  parameter  attr.  Can  be  reinitialized  by 
calling the pthread_rwlockattr_init() function.

int pthread_rwlockattr_
setpshared
(pthread_rwlockattr_t * attr,
 int pshared);

Sets or returns the process-shared attribute of the 
read-write  lock  attribute  object  specified  by  the 
parameter  attr.  The  pshared  parameter  contains  a 
value:

int pthread_rwlockattr_
getpshared

PTHREAD_PROCESS_SHARED
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pthread_rwlock_t Attribute Object Function 
Prototypes #include <pthread.h>

Description

(const pthread_rwlockattr_t *
 restrict attr,
 int *restrict pshared); Permits  a  read-write  lock  to  be  shared  by  any 

threads that have access to the allocated memory of 
the  read-write  lock  even  if  the  threads  are  in 
different processes.

 PTHREAD_PROCESS_PRIVATE

The read-write  lock is  shared between threads  of 
the same process as the initialized rwlock.

Example 5.3 Threads using read-write locks.

//...
pthread_t ThreadA,ThreadB,ThreadC,ThreadD;
pthread_rwlock_t RWLock;

void *producer1(void *X)
{
   pthread_rwlock_wrlock(&RWLock);
   //critical section
   pthread_rwlock_unlock(&RWLock);
   return(0);
}

void *producer2(void *X)
{
   pthread_rwlock_wrlock(&RWLock);
   //critical section
   pthread_rwlock_unlock(&RWLock);
}

void *consumer1(void *X)
{
   pthread_rwlock_rdlock(&RWLock);
   //critical section
   pthread_rwlock_unlock(&RWLock);
   return(0);
}

void *consumer2(void *X)
{
   pthread_rwlock_rdlock(&RWLock);
   //critical section
   pthread_rwlock_unlock(&RWLock);
   return(0);
}



int main(void)
{

   pthread_rwlock_init(&RWLock,NULL);
   //set mutex attributes
   pthread_create(&ThreadA,NULL,producer1,NULL);
   pthread_create(&ThreadB,NULL,consumer1,NULL);
   pthread_create(&ThreadC,NULL,producer2,NULL);
   pthread_create(&ThreadD,NULL,consumer2,NULL);
   //...
   return(0);
}

In Example 5.3, four threads are created. Two threads are producers, ThreadA and ThreadC, and two 
threads are consumers, ThreadB and ThreadD. All the threads have a critical section and each section is 
protected with the read–write  lock RWLock.  As mentioned,  ThreadB and ThreadD can enter  their 
critical  sections  concurrently  or serially  but  neither  thread can enter  their  critical  sections  if  either 
ThreadA or ThreadC is in theirs. ThreadA and ThreadC cannot enter their critical sections concurrently. 
Table 5-6 shows part of the decision table for Example 5.3.

Table 5-6. Part of the Decision Table for Example 5.3

Thread A (writer) Thread B (reader) Thread C (writer) Thread D (reader)

N N N Y

N N Y N

N Y N N

N Y N Y

Y N N N

5.3.4 Condition Variables

A condition variable is a semaphore used to signal an event has occurred. One or more processes or 
threads can wait for the signal sent by other processes or threads once the event has taken place. Some 
make a distinction between condition variables and the mutex semaphores discussed. The purpose of 
the mutex semaphore and read–write locks is to synchronize data access whereas condition variables 
are typically used to synchronize the sequence of operations. W. Richard Stevens, in his book UNIX 
Network Programming, states it best: "Mutexes are for locking and cannot be used for waiting."

In Program 4.6, our consumer thread contained a busy loop:

15 while(TextFiles.empty())
16 {}

The consumer thread looped until there were items in the TextFiles queue. This can be replaced by a 
condition variable. The producer can signal the consumer that items have been inserted into the queue. 
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The consumer can wait until it receives the signal then continue to process the queue.

The condition variable is of type pthread_cond_t. These are the types of operations it can perform:

• initialize

• destroy

• wait

• timed wait

• signal

• broadcast

The initialize and destroy operations work in a similar manner as the other mutexes. Table 5-7 lists the 
functions for the pthread_cond_t that implement these operations.

Table 5-7. Functions for the pthread_cond_t that Implement Condition Variables Operations

Condition Variables Operations Function Prototypes/Macros #include <pthread.h>

Initialization int pthread_cond_init(pthread_cond_t *restrict
cond, const pthread_condattr_t *restrict attr);

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Waiting int pthread_cond_wait(pthread_cond_t * restrict cond,
pthread_mutex_t *restrict mutex);

int pthread_cond_timedwait(pthread_cond_t * restrict
cond, pthread_mutex_t *restrict mutex, const struct
timespec *restrict abstime);

Signaling int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

Destruction int pthread_cond_destroy(pthread_cond_t *cond);

Condition variables are used in conjunction with mutexes. If a thread or process attempts to lock a 
mutex, we know that it will block until the mutex is released. Once unblocked, it obtains the mutex then 
continues. If a condition variable is used, it must be associated with a mutex.

//...
pthread_mutex_lock(&Mutex);
pthread_cond_wait(&EventMutex,&Mutex);
//...
pthread_mutex_unlock(&Mutex);

A task  attempts  to  lock  a  mutex.  If  the  mutex  is  already  locked  then  the  task  will  block.  Once 
unblocked,  the  task  will  release  the  mutex,  Mutex,  while  it  waits  on  the  signal  for  the  condition 
variable, EventMutex. If the mutex is not locked, it will release the mutex and wait indefinitely. With a 
timed wait, the task will only wait for a specified period of time. If the time expires before the task is 
signaled, the function will return an error. It will then reacquire the mutex.
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The signal operation causes a task to signal to another thread or process that an event has occurred. If a 
task is waiting for that condition variable, it will be unblocked and given the mutex. If there are several 
tasks waiting for the condition variable, only one will be unblocked. The tasks will be waiting in a 
queue and unblocked according to the scheduling policy. The broadcast operation signals all the task 
waiting for the condition variable.  If  multiple  tasks are unblocked, the tasks shall  compete for the 
ownership of the mutex according to a scheduling policy. In contrast to the wait operation, the signaling 
task is not required to own the mutex, although it is recommended.

The condition variable also has an attribute object. Table 5-8 lists the functions of the attribute object 
with a brief description.

5.3.4.1 Using Condition Variables to Manage Synchronization Relationships

The condition variable can be used to implement the synchronization relationships mentioned earlier: 
start-to-start (SS), finish-to-start (FS), start-to-finish (SF), and finish-to-finish (FF). These relationships 
can exist between threads of the same processes or different processes. Examples 5.4 and 5.5 contain 
examples of how to implement an FS and FF synchronization relationship. There are two mutexes used 
in each example. One mutex is used to synchronize access to the shared data and the other mutex is 
used to synchronize execution of code.

Example 5.4 FS synchronization relationship between two threads.

//...
float Number;
pthread_t ThreadA,ThreadB;
pthread_mutex_t Mutex,EventMutex;
pthread_cond_t Event;

void *worker1(void *X)
{
  for(int Count = 1;Count < 100;Count++){
     pthread_mutex_lock(&Mutex);
     Number++;
     pthread_mutex_unlock(&Mutex);
     cout << "worker1: number is " << Number << endl;
     if(Number == 50){
        pthread_cond_signal(&Event);
     }
  }
  cout << "worker 1 done" << endl;
  return(0);
}

void *worker2(void *X)
{
   pthread_mutex_lock(&EventMutex);
   pthread_cond_wait(&Event,&EventMutex);
   pthread_mutex_unlock(&EventMutex);
   for(int Count = 1;Count < 50;Count++){
      pthread_mutex_lock(&Mutex);
      Number = Number + 20;
      pthread_mutex_unlock(&Mutex);
      cout << "worker2: number is " << Number << endl;
   }
   cout << "worker 2 done" << endl;
   return(0);
}
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int main(int argc, char *argv[])
{
   pthread_mutex_init(&Mutex,NULL);
   pthread_mutex_init(&EventMutex,NULL);
   pthread_cond_init(&Event,NULL);
   pthread_create(&ThreadA,NULL,worker1,NULL);
   pthread_create(&ThreadB,NULL,worker2,NULL);
   //...
   return(0);
}

Table 5-8. Functions of the Attribute Object for the Condition Variable of Type pthread_cond_t

pthread_cond_t  Attribute  Object 
Function  Prototypes  #include 
<pthread.h>

Description

int pthread_condattr_init
(pthread_condattr_t * attr);

Initializes a condition variable attribute object specified 
by the parameter attr  with default values for all of the 
attributes defined by the implementation.

int pthread_condattr_destroy
(pthread_condattr_t * attr);

Destroys  a  condition variable  attribute  object  specified 
by the parameter attr. Can be reinitialized by calling the 
pthread_condattr_init() function.

int pthread_condattr_
setpshared
(pthread_condattr_t * attr,
 int pshared);

Sets  or  returns  the  process-shared  attribute  of  the 
condition  variable  attribute  object  specified  by  the 
parameter attr. The pshared parameter contains a value:

int pthread_condattr_
getpshared
(const pthread_condattr_t
 * restrict attr,
 int *restrict pshared);

PTHREAD_PROCESS_SHARED

Permits  a  read–write lock to be shared by any threads 
that have access to the allocated memory of the condition 
variable even if the threads are in different processes.

 PTHREAD_PROCESS_PRIVATE

The condition variable is shared between threads of the 
same process as the initialized condition.

int pthread_condattr_
setclock
(pthread_condattr_t
 * attr, clockid_t clock_id);

int pthread_condattr_
getclock
(const pthread_condattr_t

Sets  and  returns  the  clock  attribute  for  the  condition 
variable attribute object specified by the parameter attr. 
The clock attribute is the clock id of the clock used to 
measure  the  timeout  service  of  the 
pthread_cond_timedwait() function. The default value of 



pthread_cond_t  Attribute  Object 
Function  Prototypes  #include 
<pthread.h>

Description

 * restrict attr,
 clockid_t *
 restrict clock_id);

the clock attribute is the system clock.

In  Example  5.4,  the  FS  synchronization  relationship  is  implemented.  ThreadA  cannot  finish  until 
ThreadB starts.  ThreadA signals  to ThreadB once Number has a value of 50. It  can now continue 
execution until  finished.  ThreadB cannot start  its  computation until  it  gets  a signal  from ThreadA. 
ThreadB uses the EventMutex with the condition variable Event. Mutex is used to synchronize write 
access to the shared data Number. A task can use several mutexes to synchronize different critical 
sections and synchronize different events.

Example 5.5 contains an implementation of a FF synchronization relationship.

Example 5.5 FF synchronization relationship between two threads.

//...
float Number;
pthread_t ThreadA,ThreadB;
pthread_mutex_t Mutex,EventMutex;
pthread_cond_t Event;

void *worker1(void *X)
{
   for(int Count = 1;Count < 10;Count++){
      pthread_mutex_lock(&Mutex);
      Number++;
      pthread_mutex_unlock(&Mutex);
      cout << "worker1: number is " << Number << endl;
   }
   pthread_mutex_lock(&EventMutex);
   cout << "worker1 done now waiting " << endl;
   pthread_cond_wait(&Event,&EventMutex);
   pthread_mutex_unlock(&EventMutex);
   return(0);
}

void *worker2(void *X)
{
   for(int Count = 1;Count < 100;Count++){
      pthread_mutex_lock(&Mutex);
      Number = Number * 2;
      pthread_mutex_unlock(&Mutex);
      cout << "worker2: number is " << Number << endl;
   }
   pthread_cond_signal(&Event);
   cout << "worker2 done now signalling " << endl;
   return(0);
}
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int main(int argc, char *argv[])
{
   pthread_mutex_init(&Mutex,NULL);
   pthread_mutex_init(&EventMutex,NULL);
   pthread_cond_init(&Event,NULL);
   pthread_create(&ThreadA,NULL,worker1,NULL);
   pthread_create(&ThreadB,NULL,worker2,NULL);
   //...
   return(0);
}

In Example 5.5, ThreadA cannot finish until ThreadB finishes. ThreadA must iterate through the loop 
10 times, where ThreadB must iterate through the loop only 100 times.  ThreadA will  complete its 
iterations before ThreadB but will wait until ThreadB signals that it is done.

SS and SF can be implemented in a similar manner. These techniques can easily be used to synchronize 
order of execution between processes.

5.4 Synchronization: An Object-Oriented Approach

One of the advantages of object-oriented programming is the protection encapsulation provides for the 
data component of an object. Encapsulation can provide "object-access policies and usage guidelines" 
(Hughes & Hughes, 1997) for the user of the object. In the examples presented in this chapter, access 
policies  were  the  responsibility  of  the  user  of  the  data.  With  objects  and  encapsulation,  the 
responsibility has switched from the user of the data to the data itself. This approach creates data, not 
unlike functions, which are thread safe.

In order to accomplish this, the data (wherever possible) of the multithreaded application should be 
encapsulated using the C++ class or struct constructs. Then encapsulate the synchronization mechanism 
such as semaphores, read-write locks, and event mutexes. If the data or synchronization mechanisms 
are  already  objects,  create  an  interface  class  for  them.  Lastly,  combine  the  data  object  with  the 
synchronization objects through inheritance or composition, to create data objects that are thread safe. 
This approach is discussed in detail in Chapter 11.

Summary

Synchronization can be used to coordinate the order of execution of processes and threads called task 
synchronization as well as access the shared data called data synchronization. There are four basic task 
synchronization relationships. A start-to-start relationship means task A cannot start until task B starts. 
A finish-to-start relationship means task A cannot finish until task B starts. A start-to-finish relationship 
means task A cannot start until task B finishes. A finish-to-finish (FF) relationship means task A cannot 
finish until task B finishes. The POSIX standard defines a condition variable of type pthread_cond_t 
that can be used to implement these task synchronization relationships.

The algorithm types of the PRAM model can be used to describe data synchronization. EREW 
(exclusive read exclusive write) access policy can be implemented with a mutex semaphore. The mutex 
semaphore protects the critical section by serializing entry into the critical section. Either read access or 
write access is allowed. The POSIX standard defines a mutex semaphore of type pthread_mutex_t that 
can be used to implement an EREW access policy. Read–write locks can be used to implement the 
CREW access policy. CREW access policy describes multiple concurrent reads of data but an exclusive 
write to that data. The POSIX standard defines a read–write lock of type pthread_rwlock_t. An object-
oriented approach to data synchronization embeds synchronization inside the data object.
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Chapter 6.  Adding Parallel  Programming Capabilities  to  C++ 
Through the PVM
"We have thus divided our problem into two parts. The child-programme and the education 
process. These two remain very closely connected. We cannot expect to find a good child-
machine at the first attempt. One must experiment with teaching one such machine, and see 
how well it learns . . ."

—Alan Turing, Can A Machine Think?

In this Chapter

• The Classic Parallelism Models Supported by PVM  

• The PVM Library for C++  

• The Basic Mechanics of the PVM  

• Accessing Standard Input (stdin) and Standard Output (stdout) within PVM Tasks  

• Summary  

The PVM (Parallel Virtual Machine) is a software system that provides the software developer with the 
facilities  to  write  and  run  programs  that  exploit  parallelism.  The  PVM  presents  a  collection  of 
networked  computers  to  the  developer  as  a  single  logical  machine  with  parallel  capabilities.  The 
collection of computers can all have the same architecture or the collection can consist of computers 
with different  architectures.  The PVM can even be connected to computers  that  fall  into  the MPP 
(Massively Parallel Processor) class. Although PVM programs can be developed for a single computer, 
the real advantages come when there are two or more computers connected.

The PVM supports the message passing model as a means of communication between concurrently 
executing tasks. An application interacts  with the PVM through a library that consists of APIs for 
process control, sending messages, receiving messages, signaling processes, and so on. A C++ program 
interfaces with the PVM library in the same way that it interacts with any other function library. While 
a program that accesses PVM library calls does require certain functions to be called to initialize the 
environment, there is nothing that forces any particular form or architecture on a C++ program. This 
means that the C++ programmer can combine PVM capabilities with other styles of C++ programming 
(e.g.,  object-oriented,  parameterized  programming,  agent-oriented  programming,  and  structured 
programming). The use of libraries to provide additional functionality to C++ is considered one of its 
advantages.  Through the  use  of  libraries  such  as  PVM, MPI,  or  Linda,  a  C++ developer  can  use 
different models of parallelism, whereas other languages are restricted to whatever parallel primitives 
are built into the language. The PVM library is perhaps the easiest way to add parallel programming 
capabilities to the C++ language.
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6.1 The Classic Parallelism Models Supported by PVM

The PVM system supports the MIMD (Multiple Instruction Multiple Data) and SPMD (Single Program 
Multiple Data) models of parallelism. Actually, SPMD is a variation on the SIMD (Single Instruction 
Multiple Data) model. The models classify programs by instruction streams and data streams. In the 
MIMD model, a program consists of two or more concurrently executing instruction streams, each with 
its own local data stream. Essentially, each processor has its own memory. In the PVM environment the 
MIMD is considered a distributed memory model, which is in contrast to a shared memory model. In 
shared memory models each processor can see the same memory locations. In the distributed model 
memory values must be communicated through message passing. On the other hand, the SPMD model 
consists  of a single program (the same set  of instructions) concurrently  executing on two or more 
machines with the program on each machine processing a different data stream. In other words, the 
same  program on  each  machine  is  working  with  different  pieces  of  data.  The  PVM environment 
supports both the MIMD and SIMD or a combination of these two models. Figure 6-1 shows the four 
classic models and where PVM programs are classified.

Figure 6-1. Four classic models of parallelism and the classification of PVM programs.

Notice in Figure 6-1 that the SISD and MISD models are not applicable to the PVM. The SISD model 
describes a uniprocessor machine and the MISD model has not yet been practically applied. The two 
models  in  Figure  6-1 that  can  be  used  with  PVMs determine  how a  C++ program interacts  with 
computers. The software developer sees one logical virtual computer as allowing either two or more 
different concurrently executing tasks, each with access to its own data, or the same task executing as a 
set of concurrent clones, with each clone accessing some different piece of data. For our purposes the 
Multiple Instructions and Single Program in Figure 6-1 refer to PVM tasks.
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6.2 The PVM Library for C++

The PVM functionality is accessed by C++ through a collection of library routines provided by the 
PVM environment. The routines are typically divided into seven categories:

• Process Management and Control

• Messaging Packing and Sending

• Message Unpacking and Receiving

• Task Signaling

• Message Buffer Management

• Information and Utility Functions

• Group Operations

The library routines are easy to integrate into the C++ environment. The pvm_ prefix to each function 
helps to keep the namespace clear. To use the PVM library routines, your programs must include the 
pvm3.h header file and link to libpvm. Programs 6.1 and 6.2 show how a simple PVM program works. 
The instructions for compiling and executing Program 6.1 are contained in Program Profile 6.1.

Program 6.1 

#include "pvm3.h"
#include <iostream>
#include <string.h>

int main(int argc,char *argv[])
{
   int RetCode,MessageId;
   int PTid, Tid;
   char Message[100];
   float Result[1];
   PTid = pvm_mytid();
   RetCode = pvm_spawn("program6-2",NULL,0," ",1,&Tid);
   if(RetCode == 1){
      MessageId = 1;
      strcpy(Message,"22");
      pvm_initsend(PvmDataDefault);
      pvm_pkstr(Message);
      pvm_send(Tid,MessageId);
      pvm_recv(Tid,MessageId);
      pvm_upkfloat(Result,1,1);
      cout << Result[0] << endl;
      pvm_exit();
      return(0);
   }
   else{
          cerr << "Could not spawn task " << endl;
          pvm_exit();
          return(1);
   }
}
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Program Profile 6.1
Program Name

program6-1.cc

Description

Uses pvm_send to send a number to another PVM task that is executing (Program 6.2) and pvm_recv 
to receive a number from that task.

Libraries Required

libpvm3

Headers Required

<pvm3.h> <iostream> <string.h>

Compile and Link Instructions

[View full width]

c++ -o program6-1 -I $PVM_ROOT/include -L $PVM_ROOT/lib/
 $PVM_ARCH -l pvm3

Test Environment

Solaris 8, PVM 3.4.3, SuSE Linux 7.1, gcc 2.95.2,

Execution Instructions

./program6-1

Notes

pvmd must be running.

Program 6.1 calls eight commonly used PVM routines: pvm_mytid(), pvm_spawn(), pvm_initsend(), 
pvm_pkstr(),  pvm_send(),  pvm_recv(),  pvm_upkfloat(),  and  pvm_exit().  The  pvm_mytid()  routine 
returns the task identifier of the calling process. The PVM system associates a task identifier with each 
process that it creates. The task identifier is used to send messages between tasks, to receive messages 
from other tasks, to signal tasks, to interrupt tasks, and so on. Any PVM task may communicate with 
any other PVM task as long as it has access to the task identifier of the task it wants to communicate 
with.  The  pvm_spawn()  routine  is  used  to  start  new  PVM  processes.  Program  6.1 uses  the 
pvm_spawn() process to start a new process to execute Program 6.2. The task identifier for the new task 
is  returned in  the &Tid  parameter  of  the pvm_spawn()  call.  The PVM environment  uses  message 
buffers to pass data between tasks. Each task can have one or more message buffers. However, only one 
buffer  is  considered  the  active  message  buffer.  Prior  to  sending  each  message  the  pvm_initsend() 
routine is called to prepare or initialize the active message buffer. The pvm_pkstr() routine is used to 
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pack the string contained in the message variable.  This packing encodes the string for transport  to 
another task in another process possibly on another machine with a different machine architecture. The 
PVM  environment  handles  the  details  of  the  architecture-to-architecture  conversions.  The  PVM 
environment requires the use of a packing routine prior to sending and an unpacking routine during 
receiving to make the message readable by the receiver. However, there is an exception to this, which 
we will discuss later. The pvm_send() and pvm_recv() are used to send and receive messages. The 
MessageId simply identifies which message the caller or sender is working with. Notice in Program 6.1 
that the pvm_send() and pvm_receive() routines contain the task identifier of the task receiving the data 
and the task identifier of the task sending the data. The pvm_upkfloat() routine takes the message it 
retrieves from the active message buffer and unpacks it into an array of type float. Program 6.1 spawns 
a PVM task to execute Program 6.2.

Notice that Programs 6.1 and 6.2 both contain a call to the routine pvm_exit(). It's important that this 
function is called when the PVM processing for a task is finished. Although this routine does not kill 
the process or stop the process, it does PVM cleanup for the task and disconnects the task from the 
PVM. Notice that Programs 6.1 and 6.2 are self-contained, standalone programs that contain the main() 
function. Program Profile 6.2 has the implementation details for Program 6.2.

Program 6.2 

#include "pvm3.h"
#include "stdlib.h"

int main(int argc, char *argv[])
{
   int MessageId, Ptid;
   char Message[100];
   float Num,Result;
   Ptid = pvm_parent();
   MessageId = 1;
   pvm_recv(Ptid,MessageId);
   pvm_upkstr(Message);
   Num = atof(Message);
   Result = Num / 7.0001;
   pvm_initsend(PvmDataDefault);
   pvm_pkfloat(&Result,1,1);
   pvm_send(Ptid,MessageId);
   pvm_exit();
   return(0);
}

Program Profile 6.2
Program Name

program6-2.cc

Description

This program receives a number from its parent process and divides that number by 7. It sends the 
result to its parent process.
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Libraries Required

libpvm3

Headers Required

<pvm3.h> <stdlib.h>

Compile and Link Instructions

[View full width]

c++ -o program6-2 -I $PVM_ROOT/include program6-2.cc -L $PVM_ROOT
/lib/PVM_ARCH -lpvm3

Test Environment

SuSE Linux 7.1 gnu C++ 2.95.2, Solaris 8 Workshop 6, PVM 3.4.3

Execution Instructions

This program is spawned by Program 6.1.

Notes

pvmd must be running.

6.2.1 Compiling and Linking a C++/PVM Program

Version 3.4.x of the PVM environment packages the routines in a single library, libpvm3.a. To compile 
a PVM program include the pvm3.h header file and link with libpvm3.a:

$ c++ -o mypvm_program -I $PVM_ROOT/include mypvm_program.cc
-I$PVM_ROOT/lib -lpvm3

The $PVM_ROOT environment variable points to the PVM installed directory. This command will 
produce a binary called mypvm_program.

To execute Programs 6.1 and 6.2, you must have the PVM environment properly installed. Three basic 
methods can be used to execute a PVM program: as a standalone binary, using the PVM console, or 
using XPVM.

6.2.2 Executing a PVM Program as a Standalone

The  pvmd program must  be  started  and each  host  involved  in  the  PVM must  have  the  correctly 
compiled  programs  in  the  appropriate  directory.  The  default  directory  for  the  compiled  programs 
(binaries) is:

$HOME/pvm3/bin/$PVM_ARCH

where the PVM_ARCH contains the name of the machine's architecture. See Table 6-2 and items 1 and 
2 from Section 6.1.5. The binaries should have the proper file permissions set to allow them to be 
accessed and executed. The pvmd program can be started as:
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pvmd &

or:

pvmd hostfile &

where hostfile is a configuration file that has special options to be passed to the pvmd program. See 
item 5 from section 6.1.5. After the pvmd program has been started on one of the computers involved in 
the PVM, a PVM program can then be started simply by:

$MyPvmProgram

If this program spawns any other tasks they will be started automatically.

6.2.2.1 Starting PVM Programs Using the PVM Console

To execute the programs using the PVM console, type the following at the PVM console. Start the 
PVM console by typing:

$pvm

and at the pvm> prompt, type the name of the program to be executed:

pvm> spawn -> MyPvmProgram

6.2.2.2 Start PVM Programs Using XPVM

Besides starting the programs using the terminal-based PVM console, XPVM graphical interface for X 
Windows can be used. Figure 6-2 shows what to type in the tasks dialog of a XPVM session.

Figure 6-2. The XPVM task dialog.

The PVM library does not force any particular structure on a C++ program. The first PVM routine 
called by a program enrolls that program into the PVM. It is good practice to always call pvm_exit() for 
every program that is part of the PVM. If this routine is not called for every PVM task, the system will 
hang. It is a good rule of thumb to call pvm_mytid() and pvm_parent() early in the processing of the 
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task. Table 6-1 contains the library routines broken down into the seven commonly used categories.

Table 6-1. Seven Categories of PVM Library Routines

Categories  of  PVM 
Library Routines

Description

Process  Management  and 
Control

Routines used to manage and control PVM processes.

Message  Packing  and 
Sending

Routines used to pack messages into a send buffer and send messages 
from one PVM process to another.

Message  Unpacking  and 
Receiving

Routines used to receive messages and unpack the data from the active 
buffer.

Task Signaling Routines used to signal and notify PVM processes about the occurrence 
of an event.

Message  Buffer 
Management

Routines used to initialize, empty, dispose, and otherwise manage buffers 
used to receive and send messages between PVM processes.

Information  and  Utility 
Functions

Routines used to return information about a PVM process and perform 
other important tasks.

Group Operations Routines used joining,  leaving,  and otherwise managing processes in a 
group.

6.2.3 A PVM Preliminary Requirements Checklist

In  addition  to  obtaining  and  properly  installing  a  PVM  distribution,  there  are  a  few  other  minor 
considerations. When the PVM environment is implemented as a network of computers, the following 
items must be handled before your C++ program can interact with the PVM environment.

Item 1

The environment  variable PVM_ROOT and PVM_ARCH should be set.  The environment variable 
PVM_ROOT should be set to the directory where PVM is installed.

Using the Bourne Shell (bash) Using the C Shell

$ PVM_ROOT=/usr/lib/pvm3 setenv PVM_ROOT /usr/lib/pvm3

$ export PVM_ROOT  

The  PVM_ARCH  environment  variable  identifies  the  architecture  of  the  machine.  Each  machine 
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involved  in  the  PVM  must  be  identified  by  architecture.  For  example,  our  Ultrasparcs  have  the 
designation SUN4SOL2 and our Linux machines have the designation LINUX.  Table 6-2 shows the 
most commonly used architectures for the PVM environment. Check with your distribution of PVM if 
an appropriate architecture for your machines is not contained in Table 6-2.

Table  6-2 shows  the  name  and  machine  type  associated  with  the  name.  Set  your  PVM_ARCH 
environment variable to one of the names in Table 6-2. For instance:

Table 6-2. Most Commonly Used Architectures for the PVM Environment

PVM_ARCH Computer

AFX8 Alliance

ALPHA DEC Alpha

BAL Sequent Balance

BFLY BBN Butterfly TC2000

BSD386 80386/486 PC Running UNIX

CM2 Thinking Machine CM2

CM5 Thinking Machine CM5

CNVX Convex C-series

CNVXN Convex C-series

CRAY C-90, YMP, T3D port available

CRAY2 Cray-2

CRAYSIMP Cray S-MP

DGAV Data General Aviion

E88K Encore 88000

HP300 HP-9000 Model 300
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PVM_ARCH Computer

HPPA HP-9000 PA-RISC

I860 Intel iPSC/860

IPSC2 Intel iPSC/2 386 Host

KSRI Kendall Square KSR-1

LINUX 80386/486 PC Running UNIX

MASPAR Maspar

MIPS MIPS 4680

NEXT NeXT

PGON Intel Paragon

PMAX DECstation 3100,5100

RS6K IBM/RS6000

RT IBM RT

SGI Silicon Graphics IRIS

SGI5 Silicon Graphics IRIS

SGIMP SGI Multiprocessor

SUN3 Sun 3

SUN4 Sun 4, SPARCstation

SUN2SOL2 Sun 4, SPARCstation

SUNMP SPARC Multiprocessor



PVM_ARCH Computer

SYMM Sequent Symmetry

TITN Stardent Titan

U370 IBM 370

UVAX DEC Licro VAX

Using the Bourne Shell (bash) Using the C Shell

$PVM_ARCH=LINUX setenv PVM_ARCH LINUX

$export PVM_ARCH  

Item 2

The binaries (executables) for any programs participating in the PVM have to be either located on all 
machines involved or accessible by all machines involved in the PVM. In addition to availability, each 
program  must  be  compiled  to  work  for  the  architecture  it  will  run  on.  This  means  if  we  have 
UltraSparcs, PowerPCs, and Intel processors involved in the PVM, then we must have a version of the 
program compiled for each architecture. That version must be located in a place that the PVM is aware 
of.  The  location  is  often  $HOME/pvm3/bin.  However,  the  location  can  be  specified  in  a  PVM 
configuration file usually referred to as the hostfile or .xpvm_hosts if the XPVM environment is used. 
The hostfile would contain an entry such as:

ep=/usr/local/pvm3/bin

This specifies any user binaries needed by the PVM can be found in the /usr/local/pvm3/bin directory.

Item 3

The user initiating the PVM program must have network access to each machine involved in the PVM. 
This access is  typically rsh or ssh access. See the main pages for more details  on the rsh and ssh 
programs. By default, the PVM accesses each machine using the login name of the user initiating the 
PVM program or the account name of the machine starting the PVM program. If  another  account 
besides the initiating login account is required, an entry must be added to the host file or .xpvm_hosts. 
For example:

lo=flashgordon

Item 4

Create a .rhosts file on each host listing all the hosts you wish to use. These are the computers that have 
the potential  to  be involved in  the PVM. Depending on the setting in  the .xpvm_hosts file  or the 
pvm_hosts file, these computers will automatically be added to the PVM when the pvmd is started. 



Computers listed in these files can also be dynamically added to the PVM at runtime.

Item 5

Create a $HOME/.xpvm_hosts and/or a $HOME/pvm_hosts file listing all the hosts you wish to use 
prepended by an &. The & means don't automatically ad the host. Not using & will cause the host to be 
automatically  added.  The  pvm_hostfile  is  a  user-created  file.  The  name  is  arbitrary.  However, 
.xpvm_hosts is the required name when using the XPVM environment. Figure 6-3 shows an example of 
a PVM hostfile. The same format would be used for the PVM console hostfile or for .xpvm_hosts.

Figure 6-3. An example of a PVM host file.

The primary thing to keep in mind is network access of the user running the PVM program. The owner 
of the PVM program should have account access to every computer involved in the pool of processors 
that will be executing parts of the program. This access will use either the rsh or rlogin commands or 
ssh. The program to be executed must be available on each host and the PVM environment must be 
aware of what the hosts are and where the binaries will be installed.

6.2.4 Combining the C++ Runtime Library and the PVM Library

Since access to the PVM is provided through a collection of library routines, a C++ program treats the 
PVM as any other library. Keep in mind that each PVM program is a standalone C++ program with its 
own main() function. This means that each PVM program has its own address space. When a PVM task 
is spawned, a new process is created. Each PVM program will have its own process and process id. The 
PVM processes are visible to the ps utility. Although two or more PVM tasks may be working together 
to solve some problem, they will have their own copies of the C++ runtime library. Each program has 
its own iostream, template library, algorithms, and so on. The scope of global C++ variables do not 
cross address space. This means global variables in one PVM task will be invisible to the other PVM 
tasks involved in the processing. Message passing is used to communicate between these separate tasks. 
Notice that this is in contrast to multithreaded programs where threads share the same address space 
and  may  communicate  through  parameter  passing  and  global  variables.  If  the  PVM programs  are 
executing on a single computer that has multiple processors, then the programs may share a file system 
and can use pipes, fifos, shared memory, and files as additional means to communicate. While message 
passing is  the premier method of communicating between PVM tasks,  nothing prevents the use of 
shared  file  systems,  clipboards,  or  even  command-line  arguments  as  supplemental  methods  of 
communication between tasks. The PVM library adds to rather than restricts the capabilities of the C++ 
runtime library.
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6.2.5 Approaches to Using PVM Tasks

The work a C++ program performs can be distributed between functions, objects, or combinations of 
functions and objects. The units of work in a program usually fall into logical categories: input/output, 
user interface, database processing, signal processing, error handling, numerical computation, and so 
on. Also, we try to keep user interface code separated from file processing code and printing routine 
code separated from the numerical computation code. Therefore, not only do we divide up the work our 
program does between functions or objects, we try to keep categories of functionality together. These 
logical groupings are organized into libraries, modules, object patterns, components, and frameworks. 
We maintain this type of organization when introducing PVM tasks into a C++ program. We can arrive 
at the WBS (Work Breakdown Structures) using either a bottom-up or top-down approach. In either 
case, the parallelism should naturally fit within the work that a function, module, or object has to do.

It is not a good idea to attempt to force parallelism in a program. Forced parallelism produces awkward 
program architectures that are hard to under-stand by making them hard to maintain and often hard to 
determine program correctness. So when a program uses PVM tasks, they should be a result of the 
natural division within the program. Each PVM task should be traceable to one of the categories of 
work within the program. For instance, if we have an application that has NLP (Natural  Language 
Processing) and TTS (Text to Speech) processing as part of its user interface and inferencing as part of 
its data retrieval, then the parallelism that is natural within the NLP component should be represented as 
tasks within the NLP module or object that is responsible for NLP. Likewise, the parallelism within the 
inferencing component should be represented as tasks within the data retrieval module or the object or 
framework that is responsible for data retrieval. That is, we identify PVM tasks where they logically fit 
within the work that the program is doing as opposed to dividing the work the program does into a set 
of generic PVM tasks.

The notion of logic first, parallelism second, has several implications for C++ programs. It means that 
we might spawn PVM tasks from the main() function. We might spawn PVM tasks from subroutines 
called  from main()  or  from other  subroutines.  We might  spawn PVM tasks  from within  methods 
belonging  to  objects.  Where  we spawn the  tasks  depends on  the  concurrency requirements  of  the 
function,  module,  or  object  that  is  performing  the  work.  The  PVM  tasks  generally  fall  into  two 
categories: SPMD (a derivative of SIMD) and MPMD (a derivative of MIMD). In the SPMD model, 
the tasks will execute the same set of instructions but on different pieces of data. In the MPMD model, 
each task executes different instructions on different data. Whether we are using the SPMD model or 
the MPMD model, the spawning of the task should be from the relevant areas of the program. Figure 6-
4 shows some possible configurations for spawning PVM tasks.
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Figure 6-4. Some possible configurations for spawning PVM tasks.

6.2.5.1 Using the SPMD (SIMD) Model with PVM and C++

In Figure 6-4, Case 1 represents the situation where the function main() spawns from 1 to N tasks where 
each task performs the same set of instructions but on different data sets. There are several options for 
implementing this scenario. Example 6.1 shows main() using the pvm_spawn routine.
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Example 6.1 Calling the pvm_spawn routine from main().

int main(int argc, char *argv[])
{
   int TaskId[10];
   int TaskId2[5];
   pvm_spawn("set_combination",NULL,0," ",10,TaskId); // 1rst Spawn
   pvm_spawn("set_combination",argv,0," ",5,TaskId2); // 2nd Spawn
   //...
}

In  Example 6.1, the first spawn creates 10 tasks. Each task will execute the same set of instructions 
contained in the set_combination program. The TaskId array will contain the task identifiers for the 
PVM tasks if the spawn was successful. Once the program in Example 6.1 has the TaskIds, then it can 
use the pvm_send() routines to send specific data for each program to work on. This is possible because 
the pvm_send() routine contains the task identifier of the receiving task. The second spawn in Example 
6.1 creates five tasks but in this case it passes each task information through the argv parameter. This is 
an additional method to pass information to tasks during startup. This is another way for a child task to 
uniquely identify itself by using values it receives in the argv parameter. In  Example 6.2, the main() 
function uses multiple calls to pvm_spawn() to create N tasks as opposed to a single call.

Example 6.2 Using multiple calls to pvm_spawn from main().

int main(int argc, char *argv[])
{
   int Task1;
   int Task2;
   int Task3;
   //...
   pvm_spawn("set_combination",NULL,1,"host1",1,&Task1);
   pvm_spawn("set_combination",argv,1,"host2",1,&,Task2);
   pvm_spawn("set_combination",argv++,1,"host 3",1,&,Task3);
   //...
}

The  approach  used  in  Example  6.2 can  be  used  when you want  the  tasks  to  execute  on  specific 
computers. This is one of the advantages of the PVM environment. A program can take advantage of 
some  particular  resource  on  a  particular  computer,  for  example,  special  math  processor,  graphics 
processor,  or  MPP  capabilities.  Notice  in  Example  6.2 each  host  is  executing  the  same  set  of 
instructions but each host received a different command-line argument. Case 2 in Figure 6-4 represents 
the scenario where the main() function does not spawn the PVM tasks. In this scenario the PVM tasks 
are  logically  related  to  funcB()  and  therefore  funcB()  spawns  the  tasks.  The  main()  function  and 
funcA() don't need to know anything about the PVM tasks so there is no reason to put any of the PVM 
housekeeping code in those functions. Case 3 in  Figure 6-4 represents the scenario where the main() 
function and other functions in the program have natural parallelism. In this case the other function is 
funcA(). Also the PVM tasks executed by main() and the PVM tasks executed by funcA() execute 
different code. Although the tasks that main() spawns execute identical code and the tasks that funcA() 
spawns executes identical code, the two sets of tasks are different. This illustrates that a C++ program 
may use collections of tasks to solve different problems simultaneously. There is no reason that the 
program has to be restricted to one problem at a time. In Case 4 from Figure 6-4, the parallelism is 
contained within an object,  therefore one of the object's methods spawns the PVM tasks. Here, the 
logical place to initiate the parallelism was within a class as opposed to some free-floating function.

As in the other cases, the PVM tasks spawned in Case 4 all execute the same instructions but with 
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different data. This SPMD (Single Program Multiple Data) method is a commonly used technique for 
parallelization of  certain  kinds  of  problem solving.  The fact  that  C++ has  support  for  objects  and 
generic  programming  using  templates  makes  C++  a  particularly  powerful  choice  for  this  kind  of 
programming. The objects  and templates allow the C++ programmer to represent very general  and 
flexible solutions to entire classes of problems with a single piece of code. This single piece of code fits 
in nicely with the SPMD model of parallelism. The notion of a class extends the SPMD model so that 
an entire class of problems can be solved. The templates allow the class of problems to be solved for 
virtually any data type. So although each task in the SPMD model is executing the same piece of code, 
it might be for an object or any of its descendants and it might be for different data types (different 
objects!). For example, Example 6.1 uses four PVM tasks to generate four sets in which each has C(n,r) 
elements:  C(24,9),  C(24,12),  C(7,4),  and  C(7,3).  Specifically,  Example  6.3 enumerates  the 
combinations of a set of 24 colors taken 9 and 12 at a time. It also enumerates the combinations of a set 
of 7 floating point numbers taken 4 at a time and 3 at a time. For an explanation of the notation C(n,r), 
see Sidebar 6.1.

Example 6.3 Creating combinations of sets.

int main(int argc,char *argv[])
{
   int RetCode,TaskId[4];
   RetCode = pvm_spawn("pvm_generic_combination",NULL,0," ",4,TaskId);
   if(RetCode == 4){
      colorCombinations(TaskId[0],9);
      colorCombinations(TaskId[1],12);
      numericCombinations(TaskId[2],4);
      numericCombinations(TaskId[3],3);
      saveResult(TaskId[0]);
      saveResult(TaskId[1]);
      saveResult(TaskId[2]);
      saveResult(TaskId[3]);
      pvm_exit();
   }
   else{
      cerr << "Error Spawning ChildProcess" << endl;
        pvm_exit();
   }
   return(0);
}

Notice in Example 6.3 we spawn four PVM tasks:

pvm_spawn("pvm_generic_combination",NULL,0," ",4,TaskId);

Each task will  execute the program named pvm_generic_combination.  The NULL argument in our 
pvm_spawn call means that we are not passing any options via the argv[] parameter. The 0 in our 
pvm_spawn call means we don't care which computer the tasks execute on. TaskId is an array of four 
integers and will contain the task identifiers for each of the PVM tasks spawned if the call is successful. 
Notice in Example 6.3 we call colorCombinations() and numericCombinations(). These two functions 
assign the PVM tasks work. Example 6.4 contains the function definition for colorCombinations().
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Example 6.4 Definition of the colorCombinations() function.

void colorCombinations(int TaskId,int Choices)
{
   int MessageId =1;
   char *Buffer;
   int Size;
   int N;
   string Source("blue purple green red yellow orange
                 silver gray ");
   Source.append("pink black white brown light_green
                 aqua beige cyan ");
   Source.append("olive azure magenta plum orchid violet
   maroon lavender");
   Source.append("\n");
   Buffer = new char[(Source.size() + 100)];
   strcpy(Buffer,Source.c_str());
   N = pvm_initsend(PvmDataDefault);
   pvm_pkint(&Choices,1,1);
   pvm_send(TaskId,MessageId);
   N = pvm_initsend(PvmDataDefault);
   pvm_pkbyte(Buffer,strlen(Buffer),1);
   pvm_send(TaskId,MessageId);
   delete Buffer;
}

Notice in  Example 6.3 there are two calls to colorCombinations().  Each call assigns a PVM task a 
different number of color combinations to enumerate: C(24,9) and C(24,12). The first PVM task will 
produce 1,307,504 color combinations and the second task will produce 2,704,156 color combinations. 
The program named in the pvm_spawn() call does all the work. Each color is represented by a string. 
Therefore, when the pvm_generic_combination program is producing combinations it does so using a 
set of strings as the input. This is in contrast to the numericCombinations() function shown in Example 
6.5.  The  code  in  Example  6.3 makes  two  calls  to  the  numericCombinations()  function.  The  first 
generates C(7,4) combinations and the second generates C(7,3) combinations.

Example 6.5 Using PVM tasks to produce numeric combinations.

void numericCombinations(int TaskId,int Choices)
{
   int MessageId = 2;
   int N;

   double ImportantNumbers[7] = {3.00e+8,6.67e-11,1.99e+30,
                                 1.67e-27,6.023e+23,6.63e-34,
                                 3.14159265359};
   N = pvm_initsend(PvmDataDefault);
   pvm_pkint(&Choices,1,1);
   pvm_send(TaskId,MessageId);
   N = pvm_initsend(PvmDataDefault);
   pvm_pkdouble(ImportantNumbers,5,1);
   pvm_send(TaskId,MessageId);
}

In the numericCombinations() function in Example 6.4, the PVM task is sent an array of floating point 
numbers as opposed to an array of bytes representing strings.  So the colorCombinations()  function 
sends its data to the PVM tasks using:
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pvm_pkbyte(Buffer,strlen(Buffer),1);
pvm_send(TaskId,MessageId);

The numericCombination() function sends its data to the PVM tasks using:

pvm_pkdouble(ImportantNumbers,5,1);
pvm_send(TaskId,MessageId);

The colorCombinations() function in Example 6.4 builds a string of colors and then copies that string of 
colors into an array of char called Buffer. The array of char is then packed and sent to the PVM task 
using the pvm_pkbyte() and pvm_send() functions. The numericCombinations() function in  Example 
6.5 creates an array of doubles and sends it to the PVM task using the pvm_pkdouble() and pvm_send() 
functions. One function sends a character array; the other function sends an array of doubles. In both 
cases the PVM tasks are executing the same program pvm_generic_combination. This is where the 
advantage of using C++ templates and genericity comes in. The same tasks are able to do work not only 
with different data but on different data types without a code change. The template facility in C++ helps 
to  make  the  SPMD model  more  flexible  and  efficient.  The  pvm_generic_combination  program is 
almost unaware of what data types it will be working with. The use of C++ container classes allows it 
to generate combinations of any vector<T> of objects. The pvm_generic_combination program does 
know that it  will  be working with two data types.  Example 6.6 shows a section of code from the 
pvm_generic_combination program.

Example 6.6 Using the MessageId tag to distinguish data types.

pvm_bufinfo(N,&NumBytes,&MessageId,&Ptid);
if(MessageId == 1){
   vector<string> Source;
   Buf = new char[NumBytes];
   pvm_upkbyte(Buf,NumBytes,1);
   strstream Buffer;
   Buffer << Buf << ends;
   while(Buffer.good())
   {
      Buffer >> Color;
      if(!Buffer.eof()){
         Source.push_back(Color);
      }
   }
   generateCombinations<string>(Source,Ptid,Value);
   delete Buf;
}
if(MessageId == 2){
   vector<double> Source;
   double *ImportantNumber;
   NumBytes = NumBytes / sizeof(double);
   ImportantNumber = new double[NumBytes];
   pvm_upkdouble(ImportantNumber,NumBytes,1);
   copy(ImportantNumber,ImportantNumber +(NumBytes + 1),
   inserter(Source,Source.begin()));
   generateCombinations<double>(Source,Ptid,Value);
   delete ImportantNumber;

}

Here we use the MessageId tag to distinguish which data type we are working with. But in C++ we can 
do better. If the MessageId tag contains a 1, then we are working with strings. Therefore, we make the 
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declaration:

vector<string> Source;

If the MessageId tag contains a 2, then we know we are working with floating point numbers, and we 
make the declaration:

vector<double> Source;

Once we declare  what  type of  data  the  vector  source  will  contain,  the  rest  of  the function  in  the 
pvm_generic_combination  is  generalized.  Notice  in  Example  6.6 that  each  if()  statement  calls  the 
generateCombinations() function. This generateCombinations() function is a template function. This 
template architecture helps us to achieve the genericity that will extend the SPMD and the MPMD 
scenarios  for  our  PVM  programs.  We  will  come  back  to  the  discussion  of  our 
pvm_generic_combination program after we present the basic mechanics of the PVM environment. It is 
important to note that C++ container classes, stream classes, and template algorithms add flexibility to 
PVM programming that cannot be easily implemented in other PVM environments.  This flexibility 
creates opportunities for sophisticated yet elegant parallel architectures.

6.2.5.2 Using the MPMD (MIMD) Model with PVM and C++

Whereas the SPMD model uses the pvm_spawn() function to create some number of tasks executing 
the  same  program  but  on  potentially  different  data  or  resources,  the  MPMD  model  will  use  the 
pvm_spawn() function to create tasks that are executing different programs each with their own data 
sets. Example 6.7 shows how a single C++ program could implement a MPMD model of computation 
using PVM calls.

Example 6.7 Using PVM to implement the MPMD model of computation.

int main(int argc, char *argv[])
{
   int Task1[20];
   int Task2[50];
   int Task3[30];
   //...
   pvm_spawn("pvm_generic_combination",NULL,1,"host1",20,Task1);
   pvm_spawn("generate_plans",argv,0," ",50,Task2);
   pvm_spawn("agent_filters",argv++,1,"host 3",30,&Task3);
   //...
}

The code in Example 6.7 creates 100 tasks. The first 20 tasks are generating combinations. The next 50 
tasks are generating plans from the combinations as the combinations are being created. The last 30 
tasks are filtering the best plans from the set of plans being generated by the set of 50 tasks. This is in 
contrast to the SPMD model, where all of the programs spawned by the pvm_spawn() function were the 
same. Here, we have pvm_generic_combination, generate_plans, and agent_filters performing the work 
of the PVM tasks. They are all executing concurrently. They each have their own set of data; although 
they are working with transformations of the data. The pvm_generic_combination transforms its input 
into  something  that  generate_plans  can  use.  The  generate_plans  program transforms  its  input  into 
something that  agent_filters  can use.  Obviously these tasks  will  send messages to  each other.  The 
messages will represent input and control information between the processes. Also notice in Example 
6.7 that  we used the pvm_spawn() routine to allocate 20 pvm_generic_combination on a computer 
named host1. The generate_plans task was allocated to 50 anonymous processors, but each of the 50 
tasks received the same command-line argument through the argv parameter. The agent_filters tasks 
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were also directed  to  a  particular  computer.  In  this  case,  the computer  was  host  3,  and each task 
received the same command-line argument through the argv parameter. This emphasizes the flexibility 
and power of the PVM library.  Figure 6-5 shows some options available for MPMD configurations 
using the PVM environment.

Figure 6-5. Some options available for MPMD configurations using the PVM environment.

We can  take  advantage  of  particular  resources  of  particular  computers  if  so  desired.  We can  use 
arbitrary anonymous computers in other cases. In addition, we can assign different work to different 
tasks simultaneously. In Figure 6-5 Computer A is a MPP (Massively Parallel Processor) computer, and 
Computer B has a number of specialized numeric processors. Also notice that the PVM in Figure 6-5 
consists of PowerPCs, Sparcs, Crays, and so on. In some cases we don't care what specific capabilities 
of the computers in a PVM are, but in other cases we do. The pvm_spawn() routine allows the C++ 
programmer to use the anonymous approach by simply not specifying which computer to create the 
tasks on. On the other hand, if there is something special about some member of the PVM, then that 
feature can be exploited by specifying the particular member using pvm_spawn().

S 6.1. Combination Notation
Suppose we wish to choose a team of eight programmers from a pool of 24 candidates. How many 
different teams of eight programmers could we come up with? One of the results that follow from the 
Fundamental  Principle  of  Counting  tells  us  there  are  735,471 different  teams consisting  of  eight 
programmers  that  can  be  selected  from a  pool  of  24.  The  notation  C(n,r)  is  read  the  number  of 
combination of n choose r. That is, the number of choices taken r at a time from n items. C(n,r) is 
calculated by the formula:
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When we have a set that represents a combination, for example, {a,b,c} would be considered the same 
as the set {b,a,c}, or {c,b,a}. That is, we don't care about the order of the members in the set; we are 
only concerned about the members in the set. Many parallel programs, search algorithms, heuristics, 
and artificial intelligence–based programs have to deal with large sets of combinations and their close 
relative, permutations.

6.3 The Basic Mechanics of the PVM

The PVM environment consists of two components: the PVM daemon (pvmd) and the pvmd library. 
One pvmd daemon runs on each host computer in the virtual machine. The pvmd serves as a message 
router and controller. A pvmd is used to start additional pvmds. Each pvmd manages the lists of PVM 
tasks on its host machine. The pvmd performs process control, some minimal authentication, and fault 
tolerance. Usually the first pvmd is started manually. This pvmd then starts the other pvmds. Only the 
original pvmd may start additional pvmds. Only the original pvmd may unconditionally stop another 
pvmd.The pvmd library contains the routines that allow one PVM task to interact with other PVM 
tasks. The library also contains routines that allow the PVM task to communicate with its pvmd. Figure 
6-6 shows the basic architecture of the PVM environment.

Figure 6-6. Basic architecture of the PVM environment.

The PVM environment will consist of two or more PVM tasks. Each task will contain one or more send 
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buffers. However, only one send buffer may be active at a time. This is called the active send buffer. 
Each task has an active receive buffer. Notice in Figure 6-6 that communication between PVM tasks is 
actually accomplished using TCP sockets. The pvm_send() routines make socket access transparent. 
The programmer does not access the TCP socket  calls  directly.  Figure 6-6 also shows PVM tasks 
communicating  to  their  pvmds  using  TCP sockets  and  pvmds  communicating  between themselves 
using UDP sockets. Again, the socket calls are performed by the PVM routines. The programmer does 
not have to do low-level socket programming. The PVM routines we use in this book fit into four 
categories:

• Process Management and Control

• Messaging Packing and Sending

• Message Unpacking and Receiving

• Message Buffer Management

While there are other categories of PVM routines, such as the Information and Utility Functions and the 
Group Operations, we focus on the message processing and process management routines. We will 
discuss any other routines in the context of the programs in which they are used.

6.3.1 Process Management and Control Routines

There are six commonly used process management and control routines.

Synopsis
#include "pvm3.h"

int pvm_spawn(char *task, char **argv, int flag, char *location,
              int ntask,int *taskids);
int pvm_kill(int taskid);
int pvm_exit(void);
int pvm_addhosts(char **hosts,int nhosts,int *status);
int pvm_delhosts(char **hosts,int nhosts,int *status);
int pvm_halt(void);

The pvm_spawn() routine is used to create new PVM tasks. The routine can specify how many tasks to 
create, where to create the tasks, and arguments to be passed to each task. For example:

pvm_spawn("agent_filters",argv++,1,"host 3",30,&Task3);

The task parameter should contain the name of the program that the pvm_spawn() is to execute. Since 
the  program that  is  executed  by the  pvm_spawn()  routine  is  a  standalone  program,  command-line 
arguments may be required. The argv parameter is used to pass any command-line arguments to the 
program.  The  location  parameter  specifies  which  host  the  task  is  to  be  executed  on.  The  taskids 
parameter will contain either the task identifiers for the spawned tasks or status codes representing any 
error conditions that might have been created during the spawn process. The ntasks parameter specifies 
how many instances of the task to create. The pvm_kill() routine is used to kill tasks other than the 
calling task. The taskid passed to pvm_kill() can reference any other user-defined task in the PVM. This 
routine works by sending the SIGTERM signal to the PVM task to be killed. The pvm_exit() routine is 
used to cause the calling task to be removed from the PVM. While the task can be removed from the 
PVM, the process that the task belonged to may continue to execute. Keep in mind that a task executing 
PVM calls may have other work to perform that is not related to the PVM. The pvm_exit() routine 
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should  be  called  by  any  task  that  no  longer  has  work  relevant  to  the  PVM  processing.  The 
pvm_addhosts() allows the caller to dynamically add more computers to an existing PVM. Typically, 
the pvm_addhosts() is called with a list of one or more hostnames:

int Status[3];
char *Hosts[] = {"porthos", "dartagnan","athos"};
pvm_addhosts("porthose",1,&Status);

//... or ...

pvm_addhosts(Hosts,3,Status);

The Hosts parameter will usually contain the names of one or more hosts listed in the .rhosts file or 
the .xpvm_hosts file. The nhost parameter will contain the number of hosts to be added to the PVM, 
and the status parameter will contain a value = to nhosts if the call was successful. If the call was not 
able to add any hosts, the return value will be less than 1. If the call was only partially successful, the 
return value will represent the number of hosts added. Likewise, the pvm_delhosts() allows the caller to 
dynamically remove one or more computers from an existing PVM. The hosts parameter will contain a 
list of one or more hosts. The nhosts parameter will contain the number of hosts to be removed. For 
instance:

pvm_delhosts("dartagnan",1);

causes  the  computer  with  hostname  dartagnan  to  be  removed  from  the  PVM  environment.  The 
pvm_addhosts() and pvm_delhosts() may be called during runtime. This allows the programmer to have 
a dynamically sizeable PVM. Any PVM task running on a host computer that is deleted from the PVM 
will be killed. If there are any pvmds running on the computers that are deleted from the PVM, the 
pvmds will be stopped also. If a host fails for some reason, the PVM environment will automatically 
delete the host.  The return values for pvm_delhosts  are the same as they are pvm_addhosts().  The 
pvm_halt() routine shuts down the entire PVM system. All tasks and pvmds are stopped.

6.3.2 Message Packing and Sending

Geist, Beguelin, and colleagues state the message model of the PVM environment accordingly:

PVM daemons and tasks can compose and send messages of arbitrary lengths containing 
typed  data.  The  data  can  be  converted  using  XDR1 when  passing  between  hosts  with 
incompatible data formats. Messages are tagged at send time with a user-defined integer 
code and can be selected for receipt by source address or tag. The sender of a message does 
not wait for an acknowledgement from the receiver, but continues as soon as the message 
has been handed to the network and the message buffer can be safely deleted or reused. 
Messages are buffered at the receiving end until received. PVM reliably delivers messages, 
provided the destination exists. Message order from each sender to each receiver in the 
system is preserved; if one entity sends several messages to another, they will be received in 
the same order.

The PVM library consists of a family of routines used to pack the various data types into a send buffer. 
There are pack routines for character arrays, doubles, floats, ints, longs, bytes, and so on.  Table 6-3 
shows the list of pvmpk routines by type.
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Table 6-3. pvmpk Routines

Message Packing Functions

bytes

int pvm_pkbyte(char *cp, int count, int std);

complex/double complex

int pvm_pkcplx(float *xp, int count, int std);
int pvm_pkdcplx(double *zp, int count, int std);

double

int pvm_pkdouble(double *dp, int count, int std);

float

int pvm_pkfloat(float *fp, int count, int std);

int

int pvm_pkint(int *np, int count, int std);

long

int pvm_pklong(long *np, int count, int std);

short

int pvm_pkshort(short *np, int count, int std);

string

int pvm_pkstr(char *cp);

Each of the pack routines in Table 6-3 are used to store an array of data in the send buffer. Notice in 
Figure 6-6 that each PVM task will have at least one send and receive buffer. Each of the pack routines 
takes a pointer to an array of the appropriate data type. Every pack routine except for pvm_pkstr() takes 
the total number of items to be stored in the array (not the number of bytes!). The pvm_pkstr() routine 
assumes the character array it is working with will be NULL terminated. Each pack routine except the 
pvm_pkstr() has as the last parameter a value that represents how to traverse the source array as items 
are selected to be packed into the send buffer. The parameter is often referred to as the stride. For 
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instance, if the stride is four, then every fourth element will be selected from the source to be stored in 
the send buffer. It is important to note that the pvm_initsend() routine should be used prior to sending 
each message. The pvm_initsend() routine clears the buffer and prepares it to send the next message. 
The pvm_initsend() routine prepares the buffer to send the message in one of three formats: XDR, Raw, 
or In Place.

XDR (External Data Representation) is a standard used to describe and encode data. Keep in mind that 
the hosts involved in a PVM can be different machine types. For instance, a PVM might consist of Sun, 
Macintosh, Crays, and AMD machines. These machines might have different word sizes and may store 
data types differently. In some instance the bit ordering might be different from one machine to another. 
The XDR standard is used to allow the machines to exchange data in an architecture-independent way. 
The Raw format is used to send the data in the native format of the sending machine.  No special 
encoding is used. The in place format really does not pack the data in the send buffer. Instead, only 
pointers to the data and size of the data is sent. The receiving task copies the data directly. These three 
types of encoding are represented by three constants in the PVM library:

PvmDataDefault XDR

PvmDataRaw No special encoding

PvmDataInPlace Only pointers and sizes copied to send buffer

For example:

int BufferId;
BufferId = pvm_initsend(PvmDataRaw);
//...

specifies  that  data  be  packed  into  the  send buffer  as  is,  that  is,  with  no  special  encoding.  If  the 
pvm_initsend() call is successful, it will return the number of the send buffer in BufferId. It is important 
to remember that although only one send buffer can be active at a time, a PVM task can have multiple 
send buffers. Each buffer will have a number associated with it. The PVM library defines several send 
routines.

Synopsis
#include "pvm3.h"

int pvm_send(int taskid, int messageid);
int pvm_psend(int taskid, int messageid,char *buffer,int len,
              int datatype);
int pvm_mcast(int *taskid,int ntask,int messageid);

In each of these routines, taskid is the task identifier of the PVM task that receives the message. In the 
case of pvm_mcast(), the taskid refers to a collection of tasks represented by the task identifiers passed 
in the array *taskid. The messageid parameter specifies which message to send. The message identifiers 
are integers and are user-defined. They are used by the sender and receiver to identify which message 
will be waited on by the receiver and which message will be sent by the sender. For example:



pvm_bufinfo(N,&NumBytes,&MessageId,&Ptid);

//...

switch(MessageId)
{
   case 1 : // do something
            break;

   case 2 : // do something else
            break
            //...
}

In this case, the pvm_bufinfo() routine is used to get information about the last message received by 
receive buffer N. We can get the number of bytes, the messageid, and who sent the message. Once we 
get the messageid we can execute the appropriate logic. The pvm_send() routine performs a pseudo-
blocking send to the specified task, that is, the task only blocks as long as it takes to make sure that the 
message has been properly sent. The task does not wait for the receiver to actually receive the task. The 
pvm_psend() routine sends the message directly to the specified task.  Notice that  the pvm_psend() 
routine has a buffer parameter used to contain the message to be sent. The pvm_mcast() is used to send 
a message to multiple tasks simultaneously. The arguments for the pvm_mcast() will include an array 
of taskids that receives the message, the number of tasks involved in the multicast, and the messageid to 
identify the message sent.  Figure 6-6 shows that each PVM task has its own send buffer. The buffer 
exists just long enough for the message to be guaranteed to be on its way.

With the exception of control messages, the meaning of the messages between any two PVM tasks is 
application defined, that is, the sending and the receiving task must have a predefined use for each 
message. The messages are asynchronous, of arbitrary data types, and of arbitrary length. This provides 
for maximum flexibility within the application. The counterparts to the pvm_send messages are the 
PVM receive messages. There are five important functions in the receive family of routines.

Synopsis
#include "pvm3.h"

int pvm_recv(int taskid, int messageid);
int pvm_nrecv(int taskid, int messageid);
int pvm_precv(int taskid, int messageid, char *buffer,
              int size, int type, int sender, int messagetag,
              int messagelength);
int pvm_trecv(int taskid,int messageid,
              struct timeval *timeout);
int pvm_probe(int taskid, int messageid);

The pvm_recv() routine is used to receive messages from other PVM tasks. This routine creates a new 
active buffer that will contain the message received. The taskid parameter specifies the task identifier of 
the sending task. The messageid parameter identifies the message that is being sent from the sender. 
Keep in mind that a task may send multiple messages, each with different or the same messageid. If the 
taskid  =  -1,  then  the  pvm_recv()  routine  will  accept  a  message  from any  task.  If  the  messageid 
parameter = -1, then the routine will accept any message. The pvm_recv() routine return value will be 
the buffer id of the new active buffer if the call is successful and will be a value < 0 if an error has 
occurred. When a task calls the pvm_recv() routine will block and wait until the message has been 
received. After the message is received, it is retrieved from the active message buffer using one of the 
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unpack routines. For instance:

//...
float Value[10];
pvm_recv(400002,2);
pvm_unpkfloat(400002, Value,1);
cout << Value..

The pvm_recv() routine causes this code to wait on a message from a task identified as 400002. The 
messageid received from 400002 must be 2 before the routine unblocks. The unpack routine is then 
used to retrieve the array of floats. Whereas the pvm_recv() routine causes the task to wait until it 
receives a message, the pvm_nrecv() routine is a nonblocking receive. If the appropriate message has 
not  arrived,  the  pvm_nrecv()  routine  will  immediately  return.  If  the  message  has  arrived,  the 
pvm_nrecv()  will  return  immediately  and  the  active  buffer  will  contain  the  message.  If  an  error 
condition occurs, then pvm_nrecv() will return a value < 0. If the message has not arrived, the routine 
returns 0. If the message has arrived, the number for the new active buffer will be returned. The taskid 
parameter will contain the task identifier for the sending task. The messageid parameter will contain a 
user-defined message id. If the taskid = -1, then the pvm_nrecv() routine will accept a message from 
any task. If the messageid = -1, or then the routine will  receive any message. When messages are 
received in the active buffer by either pvm_recv() or pvm_nrecv(), a new active buffer is created and 
the current receive buffer is cleared.

Whereas the pvm_recv(), pvm_nrecv(), and the pvm_trecv() receive their messages into a new active 
buffer, the pvm_precv() routine receives its message directly into a user-defined buffer. The taskid 
parameter contains the task identifier for the sending task. The messageid parameter identifies which 
message is being received. The buffer parameter will contain the actual message. So instead of getting 
the message from the active buffer using one of the unpack routines, the message is retrieved directly 
from the buffer parameter. The size parameter contains the length in bytes of the message. The type 
parameter specifies the data type of the message. The values for data type are:

PVM_STR PVM_BYTE

PVM_SHORT PVM_INT

PVM_FLOAT PVM_DOUBLE

PVM_LONG PVM_USHORT

PVM_CPLX PVM_DCPLX

PVM_UINT PVM_ULONG

The pvm_trecv()  is  an  important  routine  that  allows  the  programmer  to  use  a  timed receive.  The 
pvm_trecv() routine causes the calling task to block and wait for the message, but only for the amount 
of time specified for the timeout parameter.  The specified parameter is  a structure of type timeval 
defined time.h. For example:



#include "pvm3.h"

 //...

 struct timeval TimeOut;
 TimeOut.tv_sec = 1000;
 int TaskId;
 int MessageId;
 TaskId = pvm_parent();
 MessageId = 2;
 pvm_trecv(TaskId,MessageId,&TimeOut);
 //...

the TimeOut variable has the tv_sec member set to 1000 seconds. The timeval struct can be used to set 
the timeout values in seconds and microseconds. The timeval is a struct has the structure:

struct timeval{
   long tv_sec; // seconds
   long tv_usec; // microseconds
};

This means the pvm_trecv() routine will block the calling task for at the most 1000 seconds. If this 
message gets there before the 1000 seconds have expired, the routine will return. This routine can be 
used to help prevent indefinite postponement and deadlock. If pvm_trecv() is successful, it will return 
the number of the new active buffer. If an error occurs, then a value < 0 will be returned. If taskid = -1, 
the routine will accept a message from any sender. If the messageid parameter = -1, it will accept any 
message.

The  pvm_probe()  routine  determines  whether  a  particular  message  has  arrived  from the  specified 
sender. The taskid parameter identifies the sender. The messageid parameter identifies the particular 
message. If the pvm_probe() routine sees the specified message, then the routine returns the buffer 
number for the new active buffer. If the specified message has not arrived, the routine returns a 0. If an 
error condition has occurred, the routine will return a value < 0.

Synopsis
#include "pvm3.h"

int pvm_getsbuf(void);
int pvm_getrbuf(void);
int pvm_setsbuf(int bufferid);
int pvm_setrbuf(int bufferid);
int pvm_mkbuf(int Code);
int pvm_freebuf(int bufferid);

There  are  six  useful  buffer  management  routines  that  can  be  used  for  setting,  identifying,  and 
dynamically creating the send and receive buffers. The pvm_getsbuf() routine is used to get the number 
for the active send buffer. If there is no current buffer, this routine will return 0. The pvm_getrbuf() 
routine is used to get the id number for the active receive buffer.  Keep in mind that every time a 
message is received, a new active receive buffer is created and the current receive buffer is cleared. If 
there is no current receive buffer, pvm_getrbuf() will return 0. The pvm_setsbuf() routine sets the active 
send buffer to bufferid. Typically, a PVM task has only one send buffer. However, sometimes multiple 
send buffers are required. Although only one send buffer can be active at a time, a PVM task may 
create additional send buffers using the pvm_mkbuf() routine. The pvm_setsbuf() can be used to set the 



active buffer to send buffers that have been created at runtime. This routine returns the buffer identifier 
for  the  previous  active  send  buffer.  The  pvm_setrbuf()  sets  the  active  receive  buffer  to  bufferid. 
Remember that the PVM unpack routines work with the active receive buffer. If there is more than one 
buffer, then the pvm_setrbuf() can be used to set the current buffer to be used by the unpack routines. If 
the call to pvm_setrbuf() is successful, it will return the buffer id of the previous buffer. If the buffer 
identifier passed to pmv_setrbuf() is not valid or does not exist, then the routine can return one of the 
following error  messages:  PvmBadParam or  PvmNoSuchbuf.  The  pvm_mkbuf()  routine  is  used to 
create a new message buffer. The Code parameter specifies whether the buffer will be set up to contain 
data encoded as XDR format, native machine format, or pointers and sizes. The Code parameter can be 
one of three values:

PvmDataDefault XDR

PvmDataRaw Machine dependent (no encoding)

PvmDataInPlace Pointers to the data and sizes of data only used

If the pvm_mkbuf() routine is successful, it will return the buffer id of the new active buffer. If an error 
occurs, the function will return a value < 0. For every call to pvm_mkbuf() there should be a call made 
to pvm_freebuf() when the send buffer is no longer needed. The memory allocated by the pvm_mkbuf() 
routine is released by pvm_freebuf(). pvm_freebuf() should only be used on a buffer that is no longer 
needed, for example, after the message has been sent.

6.4 Accessing Standard Input (stdin) and Standard Output (stdout) within PVM 
Tasks

A PVM environment ties a collection of machines together and presents them to the program as one 
logical machine with multiple processors. Which machine in the PVM should act as the console? When 
a PVM task inserts data into the cout ostream object, where will the data be displayed? If a PVM task 
attempts to get data from a keyboard, which keyboard will it read the data from? The stdout for each 
child process is intercepted and sent to a designated PVM task as a PVM message. Each child process 
inherits information that determines which task will receive information written to stdout and how that 
information should be identified. Each child process's stdin is tied to /dev/null. Anything written to 
/dev/null disappears. If /dev/null is opened for reading, the equivalent of end-of-file is returned. This 
means child processes should not be designed to rely on input from stdin (cin) or on sending output to 
stdout (cout). When designing input and output processing, this behavior of stdin and stdout in a PVM 
environment must be considered. However, stdin and stdout for the main or parent task behaves as 
expected.  PVM tasks use messages to communicate.  Input may be retrieved from messages, pipes, 
shared memory, environment variables, command-line arguments, or files. Output may be written to 
messages, pipes, shared memory, and files.

6.4.1 Retrieving Standard Output (cout) from a Child Task

Output  written  to  stdout  or  inserted into cout  behaves  differently  for  PVM-spawned children.  The 
parent decides what ultimately happens to the output. When output from a spawned child is inserted 
into  cout  or  cerr,  it  is  intercepted  by the  pvmd for  that  task  and is  packaged into  standard  PVM 
messages and sent to a TaskId specified by the parent. The parent associates a pair (TaskId, Code) to 
the cout and cerr of its children. This is done using the pvm_setopt() routine. This routine is called 
before the children are spawned. If the TaskId is 0, the messages will go to the master pvmd, where 



they will be written to its error log. A spawned child may only set the TaskId to 0, the value inherited 
from its parent, or its own TaskId. This means the parent ultimately controls where cout or cerr would 
write to. A child PVM designate other PVM tasks to receive data inserted into cout or cerr. The typical 
approach is to let the spawning task manage any important data written to stdout or stdin and let the 
master pvmd take everything else.

Summary

The PVM library is a flexible library that supports the major models of parallel programming. The 
advantage of a PVM environment is its ability to work with heterogeneous collections of computers that 
may consist of different processor speeds, sizes, and architectures. Besides hardware compatibility, it 
works nicely with the C++ standard library and with the UNIX/Linux system library. When combined 
with  the  C++  template  capabilities,  object-oriented  programming  capabilities,  and  collection  of 
algorithms, the power of the PVM environment is increased considerably. The template facility has a 
nice application to SPMD programming. The containers and algorithms can be used to enhance the 
MIMD (MPMD) capabilities of the PVM. In Chapter 13, we dig a little deeper into the PVM and show 
how it can be used to help implement blackboards using C++. The blackboard is one of our primary 
choices for implementing parallel problem solving.
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Chapter 7. Error Handling, Exceptions, and Software Reliability
"It is always possible to invent over-elaborate models to explain a set of observable facts, 
but  the  scientist,  if  not  the  philosopher,  will  always  accept  the  simplest  theory  that  is 
consistent with all the data."

—Alastair Rae, Quantum Physics Illusion or Reality

In this Chapter

• What is Software Reliability?  

• Failures in Software Layers and Hardware Components  

• Definitions of Defects Depend on Software Specifications  

• Recognizing Where to Handle Defects versus Where to Handle Exceptions  

• Software Reliability: A Simple Plan  

• Using Map Objects in Error Handling  

• Exception Handling Mechanisms in C++  

• Event Diagrams, Logic Expressions, and Logic Diagrams  

• Summary  

One of the primary goals of software design and engineering is to produce software that meets the user's 
requirements  correctly  and  reliably.  Users  demand  reliable  and  correct  software  regardless  of  the 
software's function. Gamers have high expectations for their software in the same way as users in a 
business  environment.  Unreliable  software,  whether  in  financial,  industrial,  medical,  scientific,  or 
military applications, can have devastating ramifications. The dependency on software by people and 
machines at all levels in our society requires that every effort be made to produce reliable, robust, and 
fault-tolerant  software.  This  necessity  presents  additional  challenges  to  the  software  designer  and 
developer who has to develop systems that contain concurrency. Programs that contain concurrency or 
components that execute in distributed environments contain more layers of software. The more layers 
involved, the more complexity that must be managed. The more complexity that needs to be managed, 
the greater possibility that software defects will go undiscovered. The more defects a piece of software 
contains, the stronger the guarantee that the software will fail, doing so at the worst possible time.

Programs divided into concurrently executing or distributed tasks have the additional challenges that 
are found in the process of correctly identifying the WBS (Work Breakdown Structure) of a solution. 
Also, the problems that are inherently part of network communications have to be handled. In addition 
to WBS and communication problems, synchronization woes such as deadlock and data race must be 
tackled. Concurrent programming is almost by definition more complex than sequential programming 
and therefore the error handling and exception handling for concurrent programs require more thought, 
more  effort,  and  more  coding.  The  interesting  thing  to  note  here  is  that  the  trend  for  software 
development is toward applications that require parallel and distributed programming. The Internet and 
the intranet model are pervasive in today's software design. General-purpose computers with multiple 
processors  are  becoming  the  norm rather  than  the  exception.  Embedded  and  industrial  computing 
devices are becoming more sophisticated with more onboard computing power and multiple processors. 
The notion of the cluster is quickly becoming the de facto standard for server deployment. It is our 
contention that today's software designer and developer have little choice but to understand how to 
design  and  develop  reliable  software  for  parallel  processor  or  networked  environments.  The 
requirements for software are growing in complexity and sophistication.
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In many of the code examples in this book we do not show the necessary error handling or exception 
handling  code  because  it  would  detract  from  some  idea  or  concept  that  we  are  presenting.  It  is 
important  to  keep in  mind that  the  examples  presented  in  this  book are  introductory  in  nature.  In 
practice,  the  amount  of  error  handling  and  exception  handling  code  for  programs  that  require 
concurrency or distribution is significant. Error handling and exception handling must be part of the 
design of the software at every phase of its development. We advocate a modeling approach toward 
discovering the parallelism within a problem domain or solution domain. It is during this modeling 
phase that the exception handling and error handling models need to be developed. In Chapter 10, we 
discuss how the UML (Unified Modeling Language) can be used to visualize the design of systems 
requiring concurrency or distributed programming. The design of error handling and exception handling 
techniques can also take advantage of the UML and visualization process. There is no real substitute for 
this visualization process. Therefore, as an initial goal you want to see your software's reliability using 
tools like the UML, event diagrams, event expressions, synchronization diagrams, and so on. In this 
chapter we take advantage of several  design techniques that aid with the visualization of error and 
exception handling design. We also take advantage of C++'s exception handling facilities, including the 
exception class hierarchy, to act as a foundation for developing reliable and robust software.

7.1 What is Software Reliability?

Software reliability is the probability of failure-free operation of a computer program for a specifiedin a 
specified environment. Ideally, that probability should be as close to 100% as necessary. When failure 
is not an option, the software must be designed using the techniques of fault-tolerant programming. A 
fault-tolerant system is one that corrects or survives software faults. A fault is a program defect that can 
cause a piece of software to fail. We define "software failure" as the execution of some component of 
software that deviates from system specifications. We rely on Musa, Iannino, and Okumoto in their 
work Software Reliability for a complete characterization of faults and failures:

A fault is the defect in the program that when executed under particular conditions, causes a 
failure. There can be different sets of conditions that cause failures, or the conditions can be 
repeated. Hence a fault can be the source of more than one failure. A fault is a property of 
the program rather than a property of its execution or behavior. It is what we are really 
referring to in general when we use the term "bug." A fault is created when a programmer 
makes an error.

The errors that a programmer or software developer makes may be from a misinterpretation of the 
software requirements, or from a poor, incorrect, or incomplete translation of the software requirements 
into code. When the programmer makes these kinds of errors, he or she introduces defects or faults into 
the software.  When those defects  or faults  are  executed,  they can cause software failure.  Software 
failure can only occur during the execution. The process of testing and debugging software removes 
faults from software, thereby preventing the possibility of software failure. Note that we use the terms 
"defect"  and  "fault"  interchangeably.  We  use  the  term  "error"  to  refer  to  the  mistakes  that  the 
programmer makes that introduce faults (defects) into the software. Fault tolerance is a property that 
allows a piece of software to survive and recover from the software failures caused by faults introduced 
into the software as a result of human error. The most robust fault tolerance can even correct these 
failures.

Some failures are the result of software faults. Other failures are the result of exceptional conditions 
(not necessarily due to human error) that can occur in either hardware or software. For instance, a 
network card damaged as a result of a power surge can cause the software that depends on it to fail. A 
virus may corrupt a data transmission that will cause the software that depends on the data transmission 
to fail. A user may inadvertently remove critical components of a system, thereby causing the software 
to fail. These kinds of failures are not due to defects in the software, but are created by conditions that 
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we  call  exceptions.  An  exception  is  an  abnormal  condition,  exceptional  circumstance,  or  an 
extraordinary occurrence that the software encounters that causes all or part of the software to fail. 
Although both defects and exceptions cause software failure, it  is important to distinguish between 
them. The techniques for dealing with defects and exceptions can be and usually are different. While 
the end result of applying those techniques is reliable software, exception handling and error (defect) 
handling use different design approaches and coding constructs.

7.2 Failures in Software Layers and Hardware Components

Designing reliable fault-tolerant software requires that we design software that continues to operate 
even  after  some  of  its  components  fail.  These  components  can  be  either  hardware  or  software 
components. If our software is fault tolerant, it will have features that counter the effects of hardware or 
software  faults.  At  the  very  minimum,  our  fault-tolerant  designs  should  provide  for  graceful 
degradation of service as opposed to immediate interruption of service. If our software is fault tolerant 
and it encounters failed component(s), it should continue to function but at reduced levels. The failures 
that our software must handle can be divided into two categories: software and hardware.  Figure 7-1 
contains a breakdown of some of the hardware components as well as the layers of software that may 
be involved in failure.

Figure 7-1. A breakdown of some of the hardware components and layers of software involved in failure.

In Figure 7-1, we make a distinction between the hardware components and the software layers because 
the techniques for handling hardware failures are often different from the techniques used to handle 
software failures. Also in Figure 7-1, there are several software layers involved. Some of the software 
layers are beyond the direct control of the developer and require special consideration during exception 
and error handling. The software design, development, and testing phases have to take into account the 
kinds  of  problems  caused  by  hardware  failures  and  the  software  layers  where  failure  can  occur. 
Programs that require parallelism or that consist of distributed components have additional hardware 
failures to consider. For instance, distributed programs rely on communications hardware and software. 
Failure  in  a  communication component  can cause the entire  system to fail.  Programs designed for 
parallel  processors  may  fail  if  the  anticipated  number  of  processors  is  not  available.  Also,  if 
communications or processors are available during startup, failure may occur at some time after the 
program has begun to execute. Exceptions may occur with any of the hardware components and in any 
of the software layers.  In  addition,  each software layer  may contain defects  that  must  be handled. 
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During the software design phase it is useful to approach exception and error handling layer by layer. 
The options for recovery or repair for an application that faces failure at layer 2 are different from the 
options that are available at layer 3. In addition to the failures that may occur in the various software 
layers and hardware components, the failures may also be characterized by location. Figure 7-2 depicts 
how as the distance between the tasks increases, so does the level of difficulty of error and exception 
handling.

Figure 7-2. Contrasting the increase of distance between location of tasks and the increase of the level of difficulty of 
error and exception handling.

The more distance in software or hardware components between the concurrently executing tasks, the 
more  sophistication  required  when  designing  exception  and  error  handling  components.  So  from 
Figures 7-1 and 7-2, we can see that in order to design and develop reliable software, we will have to 
make provisions for the what and where of defects and exceptions.

7.3 Definitions of Defects Depend on Software Specifications

A software specification is the measuring stick that we use to decide whether a piece of software has 
defects.  We cannot  determine  a  software  component's  correctness  without  access  to  the  software's 
specification.  The  specification  contains  the  description  and  requirements  for  what  a  software 
component is supposed to do and what it is not supposed to do. It is important to note that complete, 
thorough, and accurate specifications are notoriously difficult to produce. Specifications typically fall 
between two extremes: The specification may come as a set of formal documents and requirements 
compiled by end users, analysts, user interface engineers, domain specialists, and others, or it may only 
have  been  a  set  of  goals  and  loosely  defined  objectives  verbally  communicated  to  the  software 
designers and developers. The deviation of a software component from the software specification is a 
defect or fault. The higher the quality of the specification, the easier it is to define what a defect is or to 
identify  where  the  programmer  made  mistakes.  When  a  project's  specification  is  vague,  and  the 
elements are poorly defined and the requirements are not definitive, then the definition of a software 
defect for that project is a moving target. If the specifications are ambiguous, we cannot say what is 
defective and what is not. We cannot state with certainty whether the developer is correct. Vaguely 
defined  specifications  lead  to  vaguely  defined  defects.  Fault-tolerant  and  reliable  software  is  not 
possible under these situations.
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7.4 Recognizing Where to Handle Defects versus Where to Handle Exceptions

In general, software defects (which are the result of programmer error) should be detected and corrected 
during the testing phases defined in Table 7-1.

Table 7-1. Types of Testing Used During the Software Development Process

Types  of 
Testing

Description

Unit testing The software is tested one component or unit  at  a time. A unit  is  described as a 
software module, a collection of modules, a function, a procedure, an algorithm, an 
object, or a program.

Integration 
testing

An assembly of components of the software is tested. The components are collected 
into logical groups and each group is tested as a unit. The groups can be subjected to 
the same tests. As groups pass the test, they are added to an assembly, which in turn 
must  be  tested.  The  number  of  elements  that  must  be  tested  will  grow 
combinatorially.

Regression 
testing

Modules  are  retested  once  they  are  changed.  Regression  testing  guarantees  the 
changes to the component do not cause it to lose any functionality.

Stress testing Testing that pushes a component or system to and beyond its limits. This will include 
testing  boundary  conditions,  which  help  in  determining  what  happens  at  the 
boundaries.

Operational 
testing

Test the system in full operation. The software is placed in a live environment to be 
tested  under  a  complete  system  load.  This  testing  is  also  used  to  determine 
performance in a totally foreign environment.

Specification 
testing

The  component  is  audited  against  the  original  specifications.  The  specification 
dictates what components are involved in the system and the relationships between 
those components. This is part of the software verification process.

Acceptance 
testing

Testing performed by the end user of the module, component, or system to determine 
performance. This is part of the software validation process.

Through the process of testing and debugging, defects should be identified and removed. On the other 
hand, exceptions are handled during execution of the program at runtime. We also distinguish between 
exceptional conditions and unwanted conditions. For instance, if we have designed a program that will 
add a list of numbers typed in by the user and the user types in some numbers and some characters that 
are not numbers, then this is an unwanted condition, not an exceptional condition. We should design 
programs to be robust through input validation so that the user is forced to enter the data that  our 
program requires for proper execution. If part of a program that we design saves information to external 
storage and the program encounters an out-of-space condition, then the out-of-space condition is an 
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unwanted situation, not an exceptional or extraordinary condition. We reserve exception handling for 
the  unusual,  not  the  unwanted.  We  reserve  exception  handling  techniques  for  the  unanticipated. 
Situations that are unwanted but have a reasonable probability should be handled by ordinary program 
logic such as the following:

If Input data not acceptable then
  request input data again
else
  perform required operation
end if

Checking  conditions  in  this  way  is  part  of  the  fundamental  art  of  programming.  This  kind  of 
programming prevents problems from happening. It certainly doesn't rise to the definition of exception. 
There is a difference between defects and exceptions and between exceptions and unwanted conditions. 
Defects  are  dealt  with  using  testing  and  debugging.  Unwanted  conditions  are  handled  within  the 
confines  of  the  regular  program  logic  and  exceptions  are  handled  using  exception  handling 
programming  techniques.  Table  7-2 contrasts  the  difference  between  the  characteristics  of  error 
handling, exception handling, and the handling of unwanted conditions.

Table 7-2. Differences between the Characteristics of Error and Exception Handling and the Handling of Unwanted 
Conditions

Error Handling Exception Handling Handling Unwanted Conditions

• Logical errors 
discovered during 
design and testing

• Correct programs do 
not contain errors

• Use program logic 
to anticipate and 
correct errors

• Normal flow of 
control is 
maintained

• Describes unanticipated 
conditions during 
execution time

• Correct programs can 
encounter exceptions

• Use exception handling 
to recover from 
exceptions

• Normal flow of control 
is disrupted

• Describes unwanted conditions 
that have a reasonable 
probability of occurring during 
execution time

• Correct programs may 
encounter unwanted conditions

• Use program logic to correct 
unwanted conditions

• Attempt to maintain normal 
flow of control

The goal is to build error handling and exception handling components that can then be integrated with 
the  other  components  that  make  up  our  parallel  or  distributed  programs.  The  error  handling  and 
exception handling components must have the capability of identifying and reporting what the problem 
is  as  well  as  recovering from or  correcting the  problem.  The recovery  and correction  can involve 
everything from prompting the user to reenter the data to restarting a subsystem within the software. 
Recovery  and correction  efforts  can  involve  extensive  file  processing,  database  backouts,  network 
rerouting,  processor  masking,  device  reinitialization,  and  for  some  systems,  even  hardware  part 
replacements. Error and exception handling components can take on a range of forms, from simple 
assertion statements to smart agents whose sole purpose it is to anticipate failures and prevent them 
before they happen. A significant portion of any serious piece of software will be devoted to the error 
and exception handling components.  Figure 7-3 shows the architecture for a simple error  handling 
component.
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Figure 7-3. Architecture of a simplified error handling component.

Component 1 in Figure 7-3 is a simple map component that contains a list of error numbers and their 
descriptions.  Component  2  contains  a  map  object  that  maps  the  error  numbers  to  jump locations, 
functions, or subsystems. Depending on what the error number is, component 2 is used to determine 
where to transfer. Component 3 is a map that maps the error numbers to the report hierarchy and report 
logic.  The report  hierarchy contains who or what  should be notified of the error.  The report  logic 
determines what the notification should be. Component 4 contains two map objects. The first object 
maps the error numbers to objects whose purpose it is to correct some failure condition. The second 
object maps error numbers to objects who will return the system to a stable or at least a partially stable 
state. The simple error handling component in  Figure 7-3 can be applied to software of all sizes and 
shapes. How the error handling and exception handling components are used will be determined by the 
amount of software reliability desired.

7.5 Software Reliability: A Simple Plan

Keep in  mind that  we distinguish  between error  conditions  and inconvenient/unwanted  conditions. 
Inconvenient or unwanted conditions should be handled by the normal program logic. Errors (defects) 
require special processing. C++ Programming Language (Stroustrup, 1997) lists four basic alternative 
actions that a program can take when it encounters an error. According to Stroustrup, upon detecting a 
problem that cannot be handled locally, the program could:

Option 1. Terminate the program.

Option 2. Return a value representing an "error."

Option 3. Return a legal value and leave the program in an illegal state.

Option 4. Call a function supplied to be called in case of error.

These four alternatives are generally seen in producer-consumer relationships of all sizes. The producer 
is  typically  a  piece  of  code  that  implements  a  library  function,  class,  class  library,  or  application 
framework. The consumer is typically a piece of code that calls a library function, class, class library, or 
application framework. The consumer makes a request. The producer encounters an error in attempting 
to fulfill the request, and the four alternatives immediately become applicable. The problem with these 
four alternatives is that none of them is applicable in every situation.

Obviously terminating the program every time an error occurs is simply not acceptable. We agree with 
Stroustrup. We can and must do better than program termination upon encountering an error. With 
option 2, simply returning an error value may help in some situations but not in others. Not every return 
value can be interpreted as success or failure. For example, if a function has a return value of floats and 
the range of the function includes both negative and positive values, then which value of the function 
can be used to represent error? This is not always possible. As far as we are concerned, option 3 is also 
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unacceptable. The assumption will be if the value is legal, then the operation worked. This will cause 
problems. Option 4 is where most of the effort should be spent whether we are discussing error or 
exception handling.

7.5.1 Plan A: The Resumption Model, Plan B: The Termination Model

Once an error or exception is encountered, there are two basic plans of attack for implementing option 
4. The first plan of attack is to attempt to correct the condition or adjust for the condition that caused the 
failure, then resume execution at the point where the error or exception was encountered. This approach 
is called resumption. The second approach is to acknowledge the error or exception and perform a 
graceful exit of the subsystem or subroutine that caused the problem. The graceful exit is accomplished 
by closing  the  appropriate  files,  destroying  the  appropriate  objects,  logging  the  error  (if  possible), 
deallocating  the  appropriate  memory,  and  handling  any  devices  that  need  to  be  dealt  with.  This 
approach is called termination, not to be confused with the notion of just abruptly exiting the program. 
Both  plans  are  valid  and  are  useful  in  different  situations.  Before  we  discuss  how  to  implement 
resumption or termination, lets look at the support C++ has for error handling and exception handling.

7.6 Using Map Objects in Error Handling

A map is a simple component that can be used as a part of any error handling or exception handling 
strategy. A map associates one item with another. For example, a map can be used to associate error 
numbers with descriptions:

//...
map<int,string> ErrorTable;
ErrorTable[123] = "division by zero";
ErrorTable[4556] = "no dial tone";
//...

Here, the number 123 is associated with "division by zero." If we write:

cout << ErrorTable[123] << endl;

Then "division by zero" will be written to cout.

In addition to mapping built-in data types, we may also map user-defined objects with built-in types. 
Instead of simply returning a message description for each error number, we may return an object with 
each error number. The object can have methods designed for error correction, error reporting, and 
error logging. For example, if we have a user-defined object called

defect_response:

class defect_response{
protected:
   //...
   int DefectNo;
   string Explanation;

public:
   bool operator<(defect_response &X);
   virtual int doSomething(void);
   string explanation(void);
   //...
};



We can add defect_response objects to the map using something like:

//...
map<int, defect_reponse *> ErrorTable;
defect_response * Response;
Response = new defect_response;
ErrorTable[123] = Response;
//...

This associates a response object with error number 123. Using polymorphism, the map object can 
contain pointers to any defect_response object or any object that is descended from defect response. For 
instance, if we have a class:

class exception_response : public defect_response{
   //...
public:
   int doSomething(void)
   //...
};

called exception_response that is descended from defect_response, then we may also add pointers to 
type exception_response to the ErrorTable object.

//...
map<int,defect_reponse *> ErrorTable;
defect_response * Response;
exception_response *Response2;
Response = new defect_response;
Respone2 = new exception_response;
ErrorTable[123] = Response;  // Stores an object of type
                                defect_response
ErrorTable[456] = Response2; // Stores an object of type
                                exception_response
//...

This  shows  that  the  ErrorTable  object  can  map  different  objects  with  different  explanations  and 
capabilities with the appropriate error number. Therefore, the references to the doSomething() method:

//...
defect_response *ProblemSolver;
ProblemSovler = ErrorTable[123];
ProblemSolver->doSomething();
ProblemSovler = ErrorTable[456];
ProblemSovler->doSomething();
//...

will  each  cause  the  ProblemSolver  object  to  execute  a  different  set  of  instructions.  Although 
ProblemSolver is a pointer to a defect_response object, polymorphisms allow ProblemSolver to also 
point to an exception_response object or any other object descended from defect_response. Because the 
doSomething() method is declared virtual in the defect_response class, the compiler can do dynamic 
binding. This will ensure that the correct doSomething() method will be called at runtime. This dynamic 
binding is important because each descendant of defect_response will define its own do-Something() 
method.  We  want  the  doSomething()  method  to  be  called  based  on  which  descendant  of 
defect_response is referenced. This technique allows us to associate error numbers with objects that are 
specialized in handling certain error conditions. Using this technique, we can make the error handling 
code simpler. Example 7.1 shows how the return value from some function can be used to summon the 
appropriate error handling object:
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Example 7.1 Using a function's return values to determine the correct ErrorHandler object to access.

void importantOperation(void)
{
   //...
   Result = reliableOperation();
   if(Result != Success){
      defect_response *Solver;
      Solver = ErrorTable[Result];
      Solver->doSomething();
   }
   else{
      // continue processing
   }
   //...
}

Notice in Example 7.1 that we do not have a series of if() statements or case statements. The map object 
allows us to directly access the error handling object we want by index. The doSomething() method 
called in Example 7.1 will depend on the value of Result. Obviously this is an oversimplification of the 
processing. For example, Example 7.1 doesn't show who's responsible for memory management of the 
dynamically allocated objects stored in the ErrorTable map. Also, both the reliableOperation() routine 
and the doSomething() function might fail. So things can be a little more complicated than what is 
shown in  Example 7.1. However, the example does illustrate how a single piece of code can handle 
many error situations. We can do better: Example 7.1 assumes that all the errors will be addressed by 
objects in ErrorTable. The objects in ErrorTable are either defect_response objects or objects descended 
from defect_response. What if we have multiple families of error handling classes? Example 7.2 shows 
how we can make the importantOperation() more general using templates.

Example 7.2 Using a template in the importantOperation() function.

template<class T,class U> int importantOperation(void)
{
   T ErrorTable;
   //...
   U *Solver;
   //...
   Solver = ErrorTable[Result];
   Solver->doSomething();
   //...
};

In  Example 7.2, ErrorTable is not restricted to defect_response objects. This technique allows us to 
further simplify and expand the flexibility of our error handling code. This example uses both vertical 
and horizontal polymorphism. This kind of polymorphism is extremely useful in SPMD and MPMD 
programs.  See  Chapter  9 for  a  discussion  on  simplifying  programs that  require  concurrency using 
templates and polymorphism. Using map objects and error handling objects are important steps in the 
direction  of  increasing  software  reliability.  We can  also  take  advantage  of  the  exception  handling 
mechanism and the exception handling classes in C++. These facilities add exception handling to error 
handling techniques.
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7.7 Exception Handling Mechanisms in C++

Ideally, the testing and debugging process will remove all defects from the software or at least as many 
defects as possible from the software. Unwanted and inconvenient conditions should be handled by 
regular program logic. After defects are removed and unwanted or inconvenient conditions are handled, 
everything left is an exception. Exception handling is supported in C++ by three keywords: try, throw, 
and catch.  Any code  that  encounters  an  exceptional  condition  that  it  cannot  cope  with  throws  an 
exception hoping that some exception handler (somewhere) can handle the problem (Stroustrup, 1997). 
The throw keyword is used to throw an object of some type. Throwing the object transfers control to an 
exception handler coded to deal with the type of object thrown. The catch keyword is used to identify 
handlers designed to catch exception objects. For example:

void importantOperation
{
   // executeImportCode()
   // the Impossible Happens Somehow
   impossible_condition ImpossibleCondition;
   throw ImpossibleCondition;
   //...
}

catch (impossible_condition &E)
{
   // Do something about E
   //...
}

The importantOperation() routine attempts to do its work and encounters an unusual condition that it 
cannot  cope  with.  In  our  example,  it  creates  an  object  of  type  impossible_condition  and uses  the 
keyword throw to throw the object. The block of code that uses the catch keyword is designed to catch 
objects  of type impossible_condition.  This block of code is called an exception handler.  Exception 
handlers are associated with blocks of code contained within a try expression. A try block is used to 
surround code that possibly contains a routine that will encounter some exceptional situation. A catch 
block may only follow a try block or another catch block. So we might have:

try{
   //...
   importantOperation()
   //...
}

catch(impossible_condition &E)
{
   // do something about E
   //...
}

Here, either the routine importantOperation() or one of the routine importantOperation() calls have the 
potential  to  encounter  some condition  that  it  simply  cannot  cope  with.  The  routine  will  throw an 
exception.  Control  will  be  transferred  to  the  first  exception  handler  that  accepts  an  error  of  type 
impossible_condition. Either that routine will handle the exception or throw the exception to be handled 
by another exception handler. The objects thrown can be user-defined objects that can form simple to 
sophisticated error codes and messages. They may contain code that will help the exception handler 
perform its work. If we used objects like exception_response objects from Examples 7.1 and 7.2, they 
may be used by the exception handler to either correct the problem or allow the program to somehow 
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recover its state. We may also use the built-in exception classes to create exception objects.

7.7.1 The Exception Classes

The standard C++ class library has nine exception classes divided into two basic groups.  Table 7-3 
shows the runtime error group and the logic error group. The runtime error group represents errors that 
are  somewhat  difficult  to  prevent.  The  logic  error  group  represents  errors  that  are  "theoretically 
preventable."

Table 7-3. Runtime and Logic Error Classes

runtime error Classes logic error Classes

range_error domain_error

underflow_error invalid_argument

overflow_error length_error

 out_of_range

7.7.1.1 The runtime_error Classes

Figure  7-4 shows  the  class  relationship  diagram  for  the  runtime_error  family  of  classes.  The 
runtime_error family of classes is derived from the exception class. Three classes are derived from 
runtime_error:  range_error,  overflow_error,  and  underflow_error.  The  runtime_error  classes  report 
internal computation or arithmetic errors. The runtime_error classes get their primary functionality from 
the exception class ancestor. The what() method, assignment operator=(), and the constructors for the 
exception handling class provide the capability of the runtime_error classes. The runtime_error classes 
provide an exception framework and architectural blueprint to build upon.

Figure 7-4. The class relationship diagram for the runtime_error family of classes.

They offer little inherent functionality—the programmer must specialize them through inheritance. For 
example, the defect_response and exception_response classes created in Examples 7.1 and 7.2 might be 
derived from either runtime_error or logic_error classes. Let's look at how the basic exception classes 
work with no specialization. Example 7.3 shows how an exception object and a logic_error object can 
be thrown.
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Example 7.3 Throwing an exception object and a logic_error object.

try{
   exception X;
   throw(X);
}

catch(const exception &X)
{
   cout << X.what() << endl;
}

try{
   logic_error Logic("Logic Mistake");
   throw(Logic);
}
catch(const exception &X)
{
   cout << X.what() << endl;
}

The basic exception classes have only construction, destruction, assignment, copy, and simple reporting 
capabilities. They do not contain the capability to correct a fault that has occurred. The error message 
returned by the what() method of the exception classes will be determined by the string passed to the 
constructor  for  the  logic_error  object.  In  Example  7.3,  the  string  "Logic  Mistake"  passed  to  the 
constructor will be returned by the what() message in the catch block.

7.7.1.2 The logic_error Classes

The logic_error family of classes is derived from the exception class. In fact, most of the functionality 
of the logic_error  family of classes is  also inherited from the exception class.  The exception class 
contains the what() method, used to report to the user a description for the error being thrown. Each 
class in the logic_error family contains a constructor used to tailor a message specific to that class. 
Figure 7-5 shows the class relationship diagram for the logic_error classes.

Figure 7-5. The class relationship diagram for the logic_error family of classes.

Like the runtime_error classes, these classes are really designed to be specialized. Unless the user adds 
some functionality to these classes, they cannot do anything other than report the error and the type. 
The nine generic exception classes provide no corrective action or error handling.
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7.7.1.3 Deriving New Exception Classes

The exception classes can be used as-is, that is, they can be used simply to report an error message 
describing  the  error  that  has  occurred.  However,  this  is  virtually  useless  as  an exception  handling 
technique. Simply knowing what the exception was doesn't do much to increase software reliability. 
The real value of the exception class hierarchy is the architectural road map that they provide for the 
designer and the developer. The exception classes provided basic error types that the developer can 
specialize. Many of the exceptions that occur in a runtime environment can be placed into either the 
logic_error or runtime_error family of classes. To demonstrate how to specialize an exception class, lets 
use the runtime_error class as an example. The runtime_error class is a descendant of the exception 
class. We can specialize the runtime_error class through inheritance. For instance:

class file_access_exception : public runtime_error{
protected:
   //...
   int ErrorNumber;
   string DetailedExplanation;
   string FileName;
   //...
public:
   virtual int takeCorrectiveAction(void)
   string detailedExplanation(void);
   //...

};

Here, the file_access_exception inherits runtime_error and specializes it by adding a number of data 
members  and  member  functions.  Specifically,  the  takeCorrectiveAction()  method  is  added.  This 
method can be used to  help the exception handler  perform its  recovery and correction work.  This 
file_access_exception object knows how to identify deadlock and how to break deadlock. It also has 
specialized logic for dealing with viruses that can damage files as well as specialized knowledge for 
dealing with file transfers that  get  unexpectedly interrupted.  Each of these situations can introduce 
runtime  exceptions.  We  can  use  our  file_access_exception  objects  with  the  throw,  catch,  and  try 
facilities of C++. For instance:

try{
   //...
   fileProcessingOperation();
   //...
}

catch(file_access_exception &E)
{
   cerr << E.what() << endl;
   cerr << E.detailedExplanation() << endl;
   E.takeCorrectiveAction();
   // Handler Take Additional Corrective Action
   //...
}

This technique allows you to create ExceptionTable map objects similar to the ErrorTable map objects 
used in Examples 7.1. and 7.2 Using vertical and horizontal polymorphism will also simplify exception 
handler processing.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex01


7.7.1.4 Protecting the Exception Classes from Exceptions

The exception objects are thrown when some software component encounters a software or hardware 
anomaly.  But  note,  the  exception  objects  themselves  do  not  throw  exception.  This  has  many 
implications.  If  the  processing  of  the  exception  is  complex  enough  to  potentially  cause  another 
exception to be generated, then the exception processing should be redesigned and simplified where 
possible. The exception handling mechanism is unnecessarily complicated when exception handling 
code can generate exceptions.  Therefore,  most  of the methods in the exception classes contain the 
empty throw() specification.

7.8 Event Diagrams, Logic Expressions, and Logic Diagrams

Exception handling should be used as the last line of defense because the mechanism totally alters the 
natural flow of control within the program. There are schemes that try to mask this fact,  but those 
schemes  are  typically  not  flexible  enough  to  scale  to  our  programs  that  require  concurrency  or 
distribution. In the vast majority of situations where the temptation is to use catchall exception handlers, 
the logic can be made more robust by solid error handling or through improving the logic of a program. 
It is often useful to use an event diagram to help identify those components of an application that are 
critical  to  an  acceptable  completion  of  the  application's  work.  Event  diagrams  can  show  which 
components  can  be  potentially  bypassed  and  which  components  lead  to  system  failure.  In  some 
applications a single component's failure does not necessarily lead to system failure. Where a single 
component's failure would lead to system failure, then exception handling techniques can be used in 
conjunction with error handling techniques to provide the failure-is-notan-option feature.  Figure 7-6 
shows a simple event diagram.

Figure 7-6. A simple event diagram.

We use the event diagram to come up with a scheme to use in exception handling. Figure 7-6 depicts a 
system that consists of seven tasks labeled A, B, C, D, E, F, and H. Notice that each label is located at a 
switch.  If switches are closed,  then the component is functioning; otherwise,  the component is not 
functioning. The terminal point at the left represents the beginning execution and the terminal at the 
right represents the end of execution.  In order for the program to successfully end, a path through 
functioning components must be found. We can illustrate how this can be applied to our exception 
handling situation.  Lets  say that we start  the program executing at  A. In order for the program to 
successfully complete, A and C must both function properly. That is, the A switch and the C switch 
must be closed. In this event diagram both A and C are on the same branch. This means that A and C 
are executing concurrently. If either A or C fails, then an exception is thrown. The exception handler 
could possibly start A and C again. However, our event diagram tells us that this operation will be 
successful if either AC or DE or FBH is successful. Therefore, we design our exception handler to 
execute one of an alternative set of components (e.g., DE or FBH). There is an OR relationship between 
AC, DE, and FBH. This means that either set of these components concurrently executing represents 
success. The simple event diagram in Figure 7-6 indicates how we can approach our exception handler. 
The expression:

S = (AC + FBH + DE)
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in  Figure 7-6 is often referred to as a logic expression or boolean expression. This expression means 
that (A and C) or (F and B and H) or (D and E) must successfully execute in order for the system to be 
in a reliable state. The event diagram can also be used to tell us which combinations of component 
failure can lead to system failure. For instance, if only the components E and B fail, then the system 
may still successfully execute if components A and C are functioning. However, if components A, H, 
and D were to fail, then the entire system fails. The event diagram and the logic expression are useful 
tools  for  describing  concurrently  dependent  and  independent  components.  They  are  also  good for 
determining how to approach processing in the exception handler. For example, from Figure 7-6, we 
can use:

try{
   start(task A and B)
}

catch(mysterious_condition &E){
   try{
      if(!(A && B)){
         start(F and B and H)
      }
   }
   catch(mysterious_condition &E){
      start(D and E)
   }
};

This  kind  of  strategy  aims  at  improving  software  reliability.  Also  note  that  the  concurrency  and 
opportunities for fault tolerant planning can be seen in the traditional logic diagram shown in Figure 7-
7.

Figure 7-7. A logic diagram showing three AND gates OR'ed with OR gates to obtain the success of the system.

Figure 7-7 shows three AND gates and how they are OR'ed together to get to the S that represents the 
success  of  the  system.  The  event  diagram in  Figure  7-6 and the  logic  diagram in  Figure  7-7 are 
examples of simple techniques that can be used to visualize the critical paths and critical components in 
a piece of software. Once the critical paths and components are correctly identified, the developer must 
design software responses in case any of the critical components fail. If the termination model is used, 
then the exception handling does not attempt to resume execution at the point where the exception 
occurred; rather, the function or procedure where the exception occurred is exited, and steps are taken 
to  put  the  system in  as  stable  a  state  as  possible.  However,  if  the  resumption  model  is  used,  the 
condition(s) that created the exception are either corrected or adjusted and the program resumes from 
the point where the exception occurred. It is important to note that the resumption model carries with it 
several challenges. For example, if we have a succession of nested procedure calls such as:
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try{
   A calls B
     B calls C
       C calls D
         D calls E
           E encounters an anomaly that it cannot cope with
}
catch(exception Q)
{

}

and an anomaly occurs in E and an exception is thrown, then there is the issue of what to do about the 
call stack. There are also object destruction issues and suspended return values that need to be resolved. 
What happens if C and D are recursive? Even if we fix the condition that caused the exception in 
procedure E, how can we return the program to the state it was in just prior to the exception? We will 
have to keep stack information, object construction and destruction tables, interrupt tables, and so on. 
This requires a lot of overhead and cooperation between the callee and the caller. These issues represent 
only the surface. It is because of the complexity of implementing the resumption model and the fact that 
large-scale systems can be developed without it that the termination model was chosen for C++. In The 
Design and Evolution of C++, Stroustrup (1994) presents a complete rationale about why the ANSI 
committee  eventually  selected  the  termination  model  of  exception  handling.  While  the  resumption 
model does present challenges, if the reliability and the continuity of the software are critical enough, 
then the effort to implement a resumption model will have to be expended and the exception handling 
facilities in C++ can be used to implement a resumption model.

// Class declaration for exception class

class exception {
public:
   exception() throw() {}
   exception(const exception&) throw() {}
   exception& operator=(const exception&) throw()
      {return *this;}
   virtual ~exception() throw() {}
   virtual const char* what() const throw();
};

Note  the  throw()  declarations  with  empty  arguments.  The  empty  argument  shows that  the  method 
cannot throw an exception. If the method attempts to throw an exception, a compile-time error message 
is generated. If the base class cannot throw an exception, then the corresponding method in any derived 
class cannot throw an exception.

Summary

Producing  reliable  software  is  serious  business.  Exception  handling  and defect  removal  should  be 
approached with extreme rigor. Thorough testing then debugging of a software component should be 
the primary  defense  against  software  defects.  Exception  handling should be  added to  the  software 
system or subsystem after the software has undergone rigorous testing. Throwing exceptions should not 
be used as a generic error handling technique because it destroys the flow of control of the program. 
Exceptions  should  only  be  thrown  after  all  of  the  measures  have  been  exhausted.  The  standard 
exception handling classes should be used as architectural road maps for the programmer who wishes to 
design more complete and useful exception classes. If not specialized through inheritance, the standard 
classes  can  only  report  errors.  More  useful  exception  classes  can  be  built  that  have  corrective 



functionality  as well  as more information.  In general,  both the termination and resumption models 
allow the program to continue to execute. Both models resist simply aborting the program when an 
error occurs. For a more complete discussion of exception handling, see The Design and Evolution of 
C++ (Stroustrup, 1994).

Chapter 8. Distributed Object-Oriented Programming in C++
"So a basic naively determined difference between the human situation and the android 
situation is that the human being comes equipped with an ego, whereas the robot does not."

—Cary G deBessonet, Towards A Sentential 'Reality' for the Android

In this Chapter

• Decomposition and Encapsulation of the Work  

• Accessing Objects in Other Address Spaces  

• The Anatomy of a Basic CORBA Consumer  

• The Anatomy of a CORBA Producer  

• The Basic Blueprint of a CORBA Application  

• A Closer Look at Object Adapters  

• Implementation and Interface Repositories  

• Simple Distributed Web Services Using CORBA  

• The Trading Service  

• The Client/Server Paradigm  

• Summary  

Distributed objects  are objects  that  are  part  of the same application but reside in  different address 
spaces. The address spaces may be on the same computer or on different computers connected by a 
network or another form of communication. The objects involved in the application could have been 
designed  originally  to  work  together  or  they  may  have  been  designed  by  different  departments, 
divisions,  companies,  or  organizations  at  different  times  and  for  different  purposes.  A  distributed 
object-oriented application can be anything from a one-time collaborative effort  by a  collection of 
unrelated objects to a multigenerational application whose objects are spread over the entire Internet. 
The location of the objects can be intermixed between intranets, extranets, and the Internet. In the most 
general description of distributed objects, the object may be implemented in different languages such as 
C++, Java, Eiffel,  and Smalltalk.  Distributed objects play a number of roles. In some situations an 
object  or  collection  of  objects  is  used  as  a  server  that  can  provide  database,  application,  or 
communication services. In other situations objects play the part of clients. Distributed objects can be 
used in collaborative problem-solving models such as blackboards and multiagent systems. Besides 
collaborative  problem-solving  models,  distributed  objects  can  be  used  to  implement  parallel 
programming paradigms such as SPMD and MPMD. Objects within the same application don't need 
any  special  protocol  to  communicate.  The  communication  is  achieved  through  normal  method 
invocation, parameter passing, and global variables. Since distributed objects reside in different address 
spaces, inter-process communication techniques are required and in many cases network programming 
is necessary.
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Applications that require distribution can be necessary for several reasons:

• Resources needed (e.g.,  databases,  special processors, modems, printers, etc.)  are located on 
different computers. Client objects interact with server objects in order to access these resources.

• Objects developed at different times, by different parties, which reside in different locations 
need to interoperate in order to perform some necessary work or solve some problem.

• Agents implemented as objects are highly specialized and each agent requires its own address 
space because it is started as a separate process.

• Objects are used as the basic unit of modularity and the modules have been implemented as 
separate programs, each with its own address space.

• Objects have been implemented in a SPMD or MPMD architecture in order to facilitate parallel 
programming, and the objects are located in different processes and on different computers.

In an object-oriented application, the work that a program does is divided between a number of objects. 
These objects are models of some real-world person, place, thing, or idea. The execution of an object-
oriented program causes its objects to interact with each other according to the models they represent. 
In a distributed object-oriented application, some interacting objects will have been created by different 
programs possibly running on different computers. Recall from Chapter 3 that each executing program 
has one or more processes associated with it. Each process has its own resources. For instance, each 
process has its own memory, file handles, stack space, process id, and so on. Tasks executing in one 
process do not have direct access to the resources owned by another process. If the tasks executing in 
one process need information stored in the memory of another process, then the two processes must 
explicitly exchange the information either through files, pipes, shared memory, environment variables, 
or sockets. Objects that reside in different processes that need to interact must also explicitly exchange 
information in one of these ways. The challenges for the C++ developer that wants to do distributed 
object-oriented programming include:

• Decomposition and encapsulation of the problem and solution into a set of objects, with the 
realization that some of the objects will belong to different processes and may be located on 
different computers.

• Communication between objects residing in different processes (address spaces).

• Synchronization of the interaction between the local and the remote objects.

• Error and exception handling in the distributed environment.
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8.1 Decomposition and Encapsulation of the Work

Object-oriented software design is the process of translating the software requirements into a blueprint 
where objects model each aspect of the system to be developed and work to be done. The blueprint is 
centered  around  the  structure  and  hierarchy  of  collections  of  objects  and  their  relationships  and 
interactions. The C++ class keyword is used to support the notion of a software model. There are two 
basic types of models. The first type of model is a scaled representation of some process, concept, or 
idea. This type of model is used for the sake of analysis or experimentation. For example, a class can be 
used to develop a molecular model.  The hypothesis  and structure of some chemical process within 
molecules can be modeled using C++'s class concept. A molecule's behavior when new groups of atoms 
are introduced can then be studied in software. The second type of software model is a reproduction in 
software of some real-world task, process, or idea. The purpose of this model is to function as its real-
world  counterpart  as  a  part  of  some system or  application.  The  software  takes  the  place  of  some 
component in a manual system, or some physical thing. For example, we may use the class concept to 
model an adding machine. Once we have correctly modeled all of the characteristics and behavior of 
the adding machine, then an object can be instantiated from that class and used in place of a real adding 
machine. The software adding machine takes the place of the real-world adding machine. The modeled 
class serves as a virtual stand-in for some real-world person, place, thing, or idea. The software model 
captures the essence of the real thing.

For our purposes, decomposition is the process of dividing a problem and its solution into units of 
work, collections of objects, and the relationships between those objects. Likewise, encapsulation is the 
capturing or modeling of the characteristics, attributes, and behavior of some person, place, thing, or 
idea using the C++ class construct. This modeling (encapsulation) and decomposition is part of the 
object-oriented software design phase. Object-oriented applications that contain distributed objects add 
an additional layer to the design considerations. In one view of the design, the locations of objects 
within an application should not affect the design of the attributes and characteristics of those objects. 
The class is a model and unless location is part of that model, the ultimate location of the objects that 
will instantiate that class should not matter. On the other hand, objects don't exist in a vacuum. They 
interact and communicate with other objects. If some of the objects that communicate are located on 
different computers, possibly different networks, then this consideration has to be part of the original 
software design process. Although there is a lot of disagreement as to where in the design process 
distribution needs to be considered, it must be considered. The error handling and exception handling 
between objects located in different processes or computers are different from the error handling and 
exception handling between objects that are part of the same process. Also, the communication and 
interaction between objects located within the same process is performed differently if those objects are 
located in different processes where the processes may be on different computers. This must be taken 
into account during the design phase. In a distributed object-oriented application, the work that must be 
done is divided between the objects in the application and is implemented as member functions of the 
various objects. The objects will be logically divided into some WBM (Work Breakdown Model). They 
may be divided into a client-server, producer–consumer, peer-to-peer, blackboard, or multiagent model. 
Figure 8-1 shows the logical structure of each of these models and how the objects are distributed in 
each model.
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Figure 8-1. The logical structure and distribution of objects in the producer–consumer, peer-to-peer, blackboard, 
and multiagent models.

In each model shown in  Figure 8-1, the objects involved may or may not be on the same computer. 
However, they will be in different processes. The fact that they are in different processes is what makes 
them distributed.[1] Each model represents a different approach to the division of work between the 
objects.

[1] We do not include multithreaded programs in the category of distributed programs.
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8.1.1 Communication between Distributed Objects

If the objects are located within the same process, then parameter passing, regular method invocation, 
and global variables can be used as a means of communication. If the objects are located in different 
processes on the same computer, then files, pipes, fifos, shared memory, clipboards, or environment 
variables are needed to facilitate communication between the objects.  If  the objects  are  located on 
different computers, then sockets, remote procedure calls, and other types of network programming will 
be required to facilitate communication. Not only must we be concerned with how the objects in a 
distributed application communicate, we must also be concerned with what they communicate. Object-
oriented applications can include anything from simple to complex user-defined classes. These classes 
are  often  communicated between objects.  So not  only do distributed objects  need  to  communicate 
simple built-in data types such as ints, floats, and doubles, they also need to communicate any type of 
user-defined class that might be necessary to allow some object to complete its work. Also, one object 
needs a  way to  be able  to invoke methods of  another  object  located in  another  address  space.  To 
complicate matters, there needs to be some way for one object to know the methods of a remote object. 
While C++ does support pure object-oriented programming, it does not have distributed communication 
facilities built in. It does not have built-in methods for locating and querying remote objects.

There are several important protocols for distributed object communication. Two of the most important 
protocols are IIOP (Internet Inter-ORB Protocol; pronounced "eye-op"), and the RMI (Remote Method 
Invocation).  Using  these  protocols,  objects  located  virtually  anywhere  on  any  network  can 
communicate. In this chapter, we will discuss techniques for implementing distributed object-oriented 
programs  using  these  protocols  and  the  CORBA  (Common  Object  Request  Broker  Architecture) 
specification. The CORBA specification is the industry standard for specifying the relationships, the 
interaction, and the communication between distributed objects. IIOP and GIOP are the two primary 
protocols  that  the  CORBA  specification  works  with.  These  protocols  operate  well  with  TCP/IP. 
CORBA is the easiest and most flexible way to add distributed programming to the C++ environment. 
The facilities provided by a CORBA implementation support the two major models of object-oriented 
parallelism  that  we  use  in  this  book:  blackboards  and  multiagent  systems.  Because  the  CORBA 
specification reflects  object-oriented programming,  applications  ranging from the small  to  the very 
large  can  be  reasonably  implemented.  In  this  book  we  use  MICO[2] which  is  an  open-source 
implementation of the CORBA specification. The MICO implementation supports the major CORBA 
components and services. C++ interacts with MICO through a collection of classes and class libraries. 
CORBA supports distributed object-oriented modeling at every level.

[2] Any CORBA examples in this book are implemented using MICO 2.3.3 on SuSE Linux 
and MICO 2.3.7 on Solaris 8.

8.1.2 Synchronization of the Interaction between the Local and the Remote Objects

Mutexes and semaphores can be used to help synchronize data and resource access between two or 
more objects located in different processes but on the same computer. This is because each process, 
although segregated, still has access to the computer's system memory. This system memory acts as a 
kind of shared memory between processes. However, multiple computers don't have any memory in 
common and therefore synchronization schemes must be implemented differently when the processes 
are  distributed across  different  computers.  Synchronizing access depending on the WBM used can 
require  considerable  communication  between  the  distributed  objects.  For  synchronization  we  will 
enhance the traditional methods of synchronization with CORBA's communication abilities.

8.1.3 Error and Exception Handling in the Distributed Environment

Perhaps one of the most challenging areas of exception or error handling in a distributed environment is 
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the area of partial failure. In a distributed system, one or more components may fail while the other 
components operate under the assumption that everything is fine. In a local application where all of the 
components are within the same process, if one function or routine fails, it is not difficult for the entire 
application to know about it. This is not so for distributed applications. A network card might fail on 
one computer and the other objects executing on other computers will have no knowledge that a failure 
has happened. What happens if one of the objects needs to communicate or interact with an object 
whose  network  communications  have  been  mysteriously  interrupted?  In  a  peer-to-peer  model  of 
problem solving where we have groups of objects working on various facets of some problem and one 
of the groups fails, how will the other groups know? Furthermore, what do we do about it? Should a 
single component's failure lead to system failure? If one client fails, should we shut the server down? If 
the server fails, should we shut the client down? What if the server or the clients only partially fail? So, 
in  addition  to  data  race  and  deadlock,  we  must  also  find  ways  to  cope  with  partial  failure  of  a 
distributed system where one or more of the components in the system have totally or partially failed. 
Again,  what  is  necessary  is  a  distributed  approach  to  C++'s  exception  handling  mechanism.  The 
CORBA facilities provide a sufficient start.

8.2 Accessing Objects in Other Address Spaces

Objects that share the same scope can interact. They can access each other through their names, aliases 
for their names, or through pointers. An object can only be accessed where its name or a pointer to it is 
visible. Scope determines the visibility of object names. C++ has four basic levels of scope:

• block scope

• function scope

• file scope

• class scope

Recall that a block is defined in C++ by {} so that assigning Y to X in Example 8.1 would be illegal 
because Y is only visible within the block that it is declared in. The function main() does not know the 
name Y after the closing brace of the block where Y was declared.

Example 8.1 Simple example of block scope.

int main(int argc, char argv[])
{
   int X;
   int Z;
   {
      int Y;
      Z = Y;    // Legal
      //...
   }
   X = Y ;     // Illegal, Y is no longer defined
}

However, the name Y is visible to any other code that occurs in the same block where Y is declared. A 
name has  function  scope  when  it  is  declared  within  the  function  or  the  function's  declaration.  In 
Example 8.1, X and Z are visible only to the function main() and cannot be accessed by other functions. 
File scope refers to source files. Since a C++ program can consist of multiple files, we can have objects 
that are visible within one file but not in another. Names that have file scope visibility are visible from 
the point they are declared until the end of the source file. Names with file scope visibility will not be 
declared in any particular function. They are usually referred to as global variables. Names that have 
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object scope are visible to any member function declared as part of the object. We use scope as the first 
level  of  access  to  an  object's  capabilities.  The  object's  private,  protected,  and  public  interfaces 
determine the second level. Although an object's name may be visible, private and protected members 
still  have restricted access. Scope simply tells us if the object's name is visible. In a nondistributed 
program, scope is associated with a single address space. Two objects in the same address space can 
refer to each other by name or pointer and can interact simply by invoking each other's methods.

Example 8.2 Using objects which invoke methods of other objects of the same address space.

//...
some_object   A;
another_object  B;
dynamic_object  *C;
C = new dynamic_object;

//...
B.doSomething(A.doSomething());
A.doSomething(B.doSomething());
C->doMore(A.doSomething());
//...

In Example 8.2, objects A and B are within the same scope, B is visible to A and A is visible to B. A 
may call B's member functions and vice versa. How is scope affected when two objects are on different 
machines? What happens when B is created by another program and is in a totally different address 
space? How will A know of B's existence? More importantly, how will A know B's name and interface? 
How can A call member functions that belong to B if B is part of another program? In Example 8.2, 
objects A and B are created at compile time and object C is created at runtime. They are part of the 
same program, they have the same scope, and their addresses are part of the same process. In order for a 
process to execute an instruction, it needs to know the address of the instruction. When the program in 
Example 8.2 is compiled, the addresses of objects A and B are stored in the executable. Therefore, the 
process that executes the program in Example 8.2 will know where objects A and B can be found. The 
address for object C is assigned during runtime. The exact location of the object C is unknown until the 
new() function has been called. However, the pointer C does have an address within the same space as 
objects A and B and therefore the process will use the pointer to get to the object. We have access to 
each object because we have access to their addresses either directly or indirectly. The object's variable 
name is simply an alias for the object's address. If the object's name is within our scope then we may 
access it. The trick is how we associate a remote object with our local scope. If we want to access 
object D that is in another address space we need some way to introduce the address of the remote 
object to our executing process. We need some way to associate the remote object with our local scope. 
We need a visible name that is an alias for an address in another process that might even be on another 
machine. In some cases the other machine might be on another network! It would be convenient if we 
could simply ask for the remote object by some agreed-upon description and receive a reference for the 
address of the remote object. Once we had the reference, we could then interact with the remote object 
in  our  local  scope.  Here  is  where  a  CORBA  implementation  can  be  used  to  do  distributed 
programming.

8.2.1 IOR Access to Remote Objects

The  IOR  (Interoperable  Object  Reference)  is  the  standard  object  reference  format  for  distributed 
objects. Each CORBA Object has an IOR. The IOR is a handle that uniquely identifies the object. 
Whereas a pointer contains a simple machine address for an object, an IOR can contain a port number, 
a host name, an object key, and more. In C++ we use a pointer to access dynamically created objects. 
The pointer tells where the object is located in memory. When an object's pointer is dereferenced, the 
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address is used to access the services of that object. The dereferencing process requires more effort 
when the object  to  be accessed is  located in  a  different  address space and possibly on a  different 
computer. The pointer must contain enough information to resolve the object's exact location. If the 
object  is  located  on  another  network,  then  the  pointer  must  contain  either  directly  or  indirectly  a 
network address, a network protocol, hostname, port address, object key, and physical address. The 
standard IOR acts as a kind of distributed pointer to a remote object.  Figure 8-2 shows a high-level 
breakdown of some component contained in an IOR under the IIOP protocol.

Figure 8-2. A high-level breakdown of some component contained in an IOR under the IIOP protocol.

Logical Components of an IOR

HOST PORT OBJECT KEY OTHER COMPONENTS

Identifies  the 
Internet host.

Contains  the  TCP/IP  port 
number  where  the  target 
object  is  listening  for 
requests.

A  value  that  maps 
unambiguously  to  a 
particular object.

Additional information that may 
be used in making invocations, 
e.g., security.

The notion of a portable object reference is an important advancement in distributed computing.  It 
allows local references to remote objects to appear virtually anywhere on the Internet or an intranet. 
This  has  important  implications  for  multiagent  systems  where  agents  may  need  to  travel  between 
systems and throughout the Internet. The IOR standard creates some foundation for mobile objects and 
distributed agents. Once your program has access to an object's IOR, then an ORB (Object Request 
Broker) can be used to interact with the remote object through method invocation, parameter passing, 
return values, and so on.

8.2.2 ORBS (Object Request Brokers)

The ORB acts on behalf of your program. It sends messages to the remote object and returns messages 
from the remote object. The ORB acts as a middleman between your objects and the remote objects. 
The ORB takes care of all the details involved in routing a request from your program to the remote 
object,  and  routing  the  response  from  the  remote  object  back  to  your  program.  It  makes  the 
communications  between  systems  virtually  transparent.  The  ORB  removes  the  need  to  do  socket 
programming between processes on different computers. Similarly, it removes the need to do pipe or 
fifo  programming between processes on the same computer.  It  takes care  of much of  the network 
programming that is required for distributed programs. Furthermore, it hides the differences between 
operating  systems,  computer  languages,  and  hardware.  The  local  objects  are  not  aware  of  what 
language the remote objects have been implemented in, what platform they are running on, or whether 
they  are  located  on  the  Internet  or  some local  intranet.  The  ORB uses  the  IOR to  help  facilitate 
communications  between machines,  networks,  and objects.  Notice  in  Figure 8-2 that  an IOR does 
contain information that can be used to make TCP/IP connections. We present only a high-level partial 
description of the IOR because the IOR is meant to be a black box for the developer. The ORB uses the 
IOR to locate the target object. Once the target object is located, the ORB activates it and transmits any 
arguments that are necessary to call the object. The ORB waits for the request to complete and returns 
the necessary information to the calling object or an exception if the method invocation or call fails. 
Figure 8-3 contains a simplified overview of the steps that an ORB uses on behalf of a local object.
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Figure 8-3. The simplified overview of the steps that an ORB uses on behalf of a local object.

SIMPLIFIED ORB METHOD INVOCATION STEPS

1) Locate the remote object.

2) Activate the module containing the target object if it is not already activated.

3) Transmit arguments to the remote object.

4) Wait for response from the invocation of the remote object's method.

5) Return information to the local object or exception if the remote method invocation failed.

The steps in Figure 8-3 present a simplified overview of what the ORB does during an interaction with 
a remote object. These steps are almost transparent to the local object. The local object invokes one of 
the methods of the remote object and the ORB performs these steps on behalf of the local object. The 
ORB does a lot of processing with a few simple lines of code. Typically, a distributed object-oriented 
application requires at least two programs. Each program has one or more objects that will interact with 
each other across address spaces. The object interaction may be client-server, producer-consumer, or 
peer-to-peer in nature. Therefore, if we have two programs, one will act as the client and the other as 
the server, or one as the producer and the other as the consumer, or they will both be peers. Program 8.1 
implements a consumer that invokes a simple remote adding machine object. The program shows how a 
remote object may be accessed and how an ORB is initialized and used.

Program 8.1 

 1  using namespace std;
 2  #include "adding_machine_impl.h"
 3  #include <iostream>
 4  #include <fstream>
 5  #include <string>
 6
 7
 8  int main(int argc, char *argv[])
 9  {
10     CORBA::ORB_var Orb = CORBA::ORB_init(argc,argv,"mico-local-orb");
11     CORBA::BOA_var Boa = Orb->BOA_init(argc,argv,"mico-local-boa");
12     ifstream In("adding_machine.objid");
13     string Ref;
14     if(!In.eof()){
15     In >> Ref;
16     }
17     In.close();
18     CORBA::Object_var Obj = Orb->string_to_object(Ref.data());
19     adding_machine_var Machine = adding_machine::_narrow(Obj);
20     Machine->add(700);
21     Machine->subtract(250);
22     cout << "Result is " << Machine->result() << endl;
23     return(0);
24  }
25

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08fig03


On line 10 the ORB is initialized. On line 15 the IOR for the adding_machine object is read from a file.  
One of the nice features of the IOR is that it can be stored as a simple string and communicated to other 
programs. Transmitting the IOR through command line arguments, stdin,  environment variables, or 
files are the simplest methods. An IOR can be sent using e-mail or ftp. IORs can be shared through 
common file systems and can be downloaded from Web pages. Once a program has an IOR for a 
remote object, then an ORB can be used to access the remote object. We shall cover other techniques 
for communicating IORs later in this chapter. But the file system technique is enough to get us started. 
The IOR was originally converted from an object reference to its stringified form by the remote adding 
machine's ORB and written to a file. On line 18 the local Orb object converts the stringified IOR back 
to an object reference. On line 19 the object reference is used to instantiate an adding_machine object. 
The interesting thing about this adding_machine object is that when its methods are invoked they will 
cause code on the remote machine to execute. The calls on line 20, 21, and 22

Machine->add(700);
Machine->subtract(250);
cout << "Result is " << Machine->result() << endl;

although made in our local scope, refer to executable code in another address space and in this case on 
another machine. To the developer the Machine object's location is transparent. After the object has 
been created on line 19 it is used like any other C++ object. Although there are very specific differences 
between local  object  invocations  and remote object  invocations,[3] the object-oriented  metaphor  is 
maintained, and from the object-oriented programming perspective remote objects look and feel like 
local objects. The code in Program 8.1 is client code or consumer code because it uses the services of 
the adding_machine object.  In order for this simple adding machine application to be complete, we 
need the code that implements the adding_machine object. The code in Program 8.2 shows the second 
component to our simple adding machine application.

[3] Remote objects invocation introduces latency, security requirements, and the possibility 
of partial failure.

Program 8.2 

1  #include <iostream>
2  #include <fstream>
3  #include "adding_machine_impl.h"
4
5
6
7
8  int main(int argc, char *argv[])
9  {
10   CORBA::ORB_var Orb = CORBA::ORB_init(argc,argv,"mico-local-orb");
11   CORBA::BOA_var Boa = Orb->BOA_init(argc,argv,"mico-local-boa");
12   adding_machine_impl *AddingMachine = new adding_machine_impl;
13   CORBA::String_var Ref = Orb->object_to_string(AddingMachine);
14   ofstream Out("adding_machine.objid");
15   Out << Ref << endl;
16   Out.close();
17   Boa->impl_is_ready(CORBA::ImplementationDef::_nil());
18   Orb->run();
19   CORBA::release(AddingMachine);
20   return(0);
21  }
22
23
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Notice on line 10 that the producer program also has to initialize an Orb object. This is an important 
requirement  for  CORBA-based  programs.  Each  program  communicates  with  the  aid  of  an  ORB. 
Initializing the ORB is one of the first things that a CORBA program must do. On line 12, the actual 
adding_machine object is declared. This is the object that Program 8.1 will actually communicate with. 
On line 13, the object reference for the actual adding_machine object is converted to its stringified 
form. It's then written to a simple text file that can be easily read. Once the IOR is written to the file, the 
Orb object waits for a request. Each time one of its methods is called, it performs the necessary addition 
or subtraction to a persistent value. This value is accessed by calling the adding_machine's result() 
method. Programs 8.1 and 8.2 represent barebones CORBA programs that show the basic structure that 
CORBA programs will have. The code that makes the adding_machine object distributed begins with 
its CORBA class declaration. Each CORBA object starts out as an IDL (Interface Definition Language) 
design.

8.2.3 Interface Definition Language (IDL): A Closer Look at CORBA Objects

The IDL is the standard object-oriented design language used to design classes that will be used for 
distributed programming. It  is used to express class interfaces and class relationships. It  is  used to 
specify member function prototypes, parameter types, and return types. One primary function of the 
IDL is  to separate the class interface from the implementation.  Therefore,  the actual definitions of 
methods are not specified with the IDL. Neither the implementation of member functions nor data 
members are specified using IDL. The IDL only specifies the function interface. Table 8-1 contains the 
commonly used keywords in the IDL.

Table 8-1. IDL Keywords

IDL Keywords    

abstract enum native struct

any factory Object supports

attribute FALSE octet typedef

boolean fixed oneway unsigned

case float out union

char in raises ValueBase

const inout readonly valuetype

cell interface sequence void

double long short wchar
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IDL Keywords    

exception module string  

The keywords in  Table 8-1 are reserved words in a CORBA program. In addition to specifying the 
function  interface  for  a  class,  the  IDL is  used  to  specify  relationships  between  classes.  The  IDL 
supports:

• user-defined types

• user-defined sequences

• array types

• recursive types

• exception semantics

• modules (similar to namespaces)

• single and multiple interitance

• bitwise and arithmetic operators

Here is the IDL definition for adding_machine class from Example 8.2:

interface adding_machine{
   void add(in unsigned long X);
   void subtract(in unsigned long X);
   long result();
};

It begins with the CORBA keyword interface. Notice that this adding_machine declaration does not 
include  any  variables  to  hold  the  result  of  the  additions  and subtractions.  Its  add()  and  subtract() 
methods accept a single unsigned long as a parameter. The parameter is accompanied by the CORBA 
keyword in to denote that the parameter is an input parameter. This class declaration is stored in a 
separate source file and named adding_machine.idl. Source files containing IDL definitions must end in 
the .idl suffix. The source file containing the IDL declaration must be converted to C++ before it can be 
used. This conversion can be done using a preprocessor step or by a standalone program. All CORBA 
implementations include an IDL compiler. There are IDL compilers for C, Smalltalk, C++, Java, and so 
on. The IDL compiler converts  IDL definitions into the appropriate language.  In our case the IDL 
compiler converts the interface declaration into legitimate C++ code. Depending on the implementation 
of CORBA that you use, the IDL compiler is called with syntax that will be similar to:

idl adding_machine.idl

This command will produce a file that contains C++ code. Since our IDL definition is saved in a file 
named adding_machine.idl,  the MICO IDL compiler  produces a  file  named adding_machine.h that 
contains several C++ skeleton classes and some CORBA data types. Table 8-2 contains the basic IDL 
data types.
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Table 8-2. Basic IDL Data Types

IDL Datatypes Range Size

long –231 to 231 – 1 > = 32 bits

short –215 to 215 – 1 > = 16 bits

unsigned long 0 to 232 – 1 > = 32 bits

unsigned short 0 to 216 – 1 > = 16 bits

float IEEE single-precision > = 32 bits

double IEEE double-precision > = 64 bits

char ISO Latin-1 > = 8 bits

string ISO Latin-1, except ASCII NULL Variable length

boolean TRUE or FALSE Unspecified

octet 0-255 > = 8 bits

any Runtime identifiable arbitrary type Variable length

Even after the IDL compiler creates C++ code from the interface class, the implementation for the 
interface class methods are still undefined. The IDL compiler produces several C++ skeletons that are 
to be used as base classes.  Example 8.3 shows two of several classes generated by our MICO IDL 
compiler from the file adding_machine.idl.

Example 8.3 Two classes generated by MICO IDL compiler from the adding_machine.idl.

class adding_machine : virtual public CORBA::Object{
public:
   virtual ~adding_machine();

   #ifdef HAVE_TYPEDEF_OVERLOAD
   typedef adding_machine_ptr _ptr_type;
   typedef adding_machine_var _var_type;
   #endif
   static adding_machine_ ptr _narrow( CORBA::Object_ ptr obj );
   static adding_machine_ ptr _narrow( CORBA::AbstractBase_ ptr obj );
   static adding_machine_ ptr _duplicate( adding_machine_ ptr_obj );

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08ex03


   {
      CORBA::Object::_duplicate (_obj);
      return _obj;
   }

   static adding_machine_ ptr _nil()
   {
      return 0;
   }

   virtual void *_narrow_helper( const char *repoid );
   static vector<CORBA::Narrow_proto> *_narrow_helpers;
   static bool _narrow_helper2( CORBA::Object_ptr obj );
   virtual void add( CORBA::ULong X ) = 0;
   virtual void subtract( CORBA::ULong X ) = 0;
   virtual CORBA::Long result() = 0;

protected:
   adding_machine() {};
private:
   adding_machine( const adding_machine& );
   void operator=( const adding_machine& );
};

class adding_machine_stub : virtual public adding_machine{
public:
   virtual ~adding_machine_stub();
   void add( CORBA::ULong X );
   void subtract( CORBA::ULong X );
   CORBA::Long result();

private:
   void operator=( const adding_machine_stub& );
};

adding_machine.idl is input to the compiler and adding_machine.h along with its skeleton classes is 
output from the compiler. The developer uses inheritance to actually provide implementations for the 
function interfaces declared in the IDL source file. For instance,  Example 8.4 shows the user-defined 
class that provides the implementation for one of the skeleton classes produced by the IDL compiler.

Example 8.4 User-defined class implementation of skeleton classes.

class adding_machine_impl : virtual public adding_machine_skel{
private:
   CORBA::Long Result;
public:
   adding_machine_impl(void)
   {
      Result = 0;
   };
   void add(CORBA::ULong X)
   {
      Result = Result + X;
   };
   void subtract(CORBA::ULong X)
   {
      Result = Result - X;
   };
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   CORBA::Long result(void)
   {
      return(Result);
   };
};

One of the skeletons that  IDL compiler  creates  from the adding_machine interface class is  named 
adding_machine_skel. Notice that the IDL uses the name used in the interface definition to derive new 
classes.  Our  adding_machine_impl  class  provides  the  implementation  for  the  function  interfaces 
declared using the IDL. First, the adding_machine_impl class declares a data member named Result. 
Second, it declares the actual implementations for the add(), subtract(), and the result() methods. So 
while  the  adding_machine  interface  class  specifies  the  declaration  of  these  methods,  the 
adding_machine_impl  class  provides  implementation  of  the  methods.  The  userdefined 
adding_machine_impl class will inherit a lot of functionality useful for distributed programming from 
the  base  class.  This  is  the  basic  scheme when doing  CORBA programming.  An interface  class  is 
designed that represents the interfaces to be used. The IDL compiler is called to generate real C++ class 
skeletons from the interface definition. The developer derives a class from one of the skeletons and 
provides implementations for the methods defined in the interface class and data members that will be 
used to hold attributes of the object. Generating real C++ classes from IDL is a three-step process:

1. Design the class interfaces, relationships, and hierarchies using the IDL.

2. Use the IDL Compiler to generate real C++ skeletons from the IDL classes.

3. Use inheritance to create descendants from one or more of the skeleton classes and implement 
the interface methods inherited from the skeleton classes.

We'll discuss this process in more detail later in this chapter. First, let's take a closer look at the basic 
structure of a consumer program.

8.3 The Anatomy of a Basic CORBA Consumer

One of the most common models for distributed programming is the consumer-producer model. In this 
model, one program plays the role of producer and another plays the role of consumer. The producer 
creates some service or data used by a consumer. For example, we could have a program that generates 
unique license plate numbers upon demand. The consumer is the program that makes requests for new 
license plate numbers and the producer is the program that generates the license plate numbers. 
Typically, the consumer and producer are located in different address spaces. Figure 8-4 shows several 
components and steps that most CORBA consumer programs contain.
Figure 8-4. Components and steps used by a CORBA consumer program.
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To communicate with objects on other computers or in different address spaces, each program involved 
in the communication must declare an ORB object. Once the Orb object is declared, then the consumer 
program has access to its member functions. In Figure 8-4, the ORB is initialized using the call:

CORBA::ORB_var Orb = CORBA::ORB_init(argc,argv,"mico-local-orb");

This initializes an ORB object. The CORBA::ORB_var type is a handle to an object of type ORB. In 
CORBA  implementations,  objects  that  have  the  _var  designation  take  care  of  deallocating  its 
underlying reference. This is in contrast to the objects that have the _ptr designation. The command-line 
arguments are passed to the ORB's constructor along with an orb_id. In our case, the orb_id is "mico-
local-orb".  The  string  passed  to  the  ORB_init()  function  that  names  the  ORB to  be  initialized  is 
implementation specific and can differ between implementations. The derived object is referred to as 
the servant object.

Once  the  ORB and the  object  adapter  are  initialized,  the  next  basic  component  that  any  CORBA 
application will need is the IOR for the remote object(s). In Figure 8-4, the IOR is retrieved from a file 
named adding_machine.ior. The IOR has been written in its stringified form to the file. The ORB object 
is used to convert the IOR from a string back to its object form using its string_to_object() method. In 
Figure 8-4, this is accomplished by the call:

CORBA::Object_var Obj = Orb->string_to_object(Ior.c_str());

Here, Ior.c_str() returns the stringified IOR and Obj will be a reference to the object form of the IOR. 
The object form of the IOR is then narrowed. This narrowing process is analogous to C++ type casting. 
The  narrowing  process  sizes  an  object  reference  to  the  appropriate  object  type.  In  this  case,  the 
appropriate type is adding_machine The consumer program in Figure 8-4 narrows the IOR object using 
the call:

adding_machine_var Machine = adding_machine::_narrow(Obj);

This process creates a reference to an adding_machine object. The consumer program can now call the 
methods defined in the IDL interface for the adding_machine class. For instance:

Machine->add(500);
Machine->subtract(125);

call the add() and subtract() methods of the remote object. Although the consumer program in Figure 8-
4 is an oversimplified consumer, it does show the basic components of a typical CORBA consumer or 
client program. The consumer program requires a producer program in order for the application to be 
complete. We will look at a simplified CORBA program that acts as the producer for the program in 
Figure 8-4.
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8.4 The Anatomy of a CORBA Producer

The producer is responsible for providing either data, routines, or services to its consumer programs. 
The producer,  together with the consumer,  make a  complete distributed application.  Each CORBA 
producer program is designed with the assumption that there will be consumer programs to invoke its 
services. Therefore, each producer program will create servant objects and provide IORs so that the 
objects may be accessed. Figure 8-5 contains a simple producer program used in conjunction with the 
consumer  program  from  Figure  8-4.  Figure  8-5 contains  the  basic  components  that  any  CORBA 
producer program will contain.

Figure 8-5. Basic components of a CORBA producer program.

Notice that part A for the consumer program and the producer program are essentially the same. Both 
the consumer and the producer program require an ORB to communicate. The ORB is used to get a 
reference to an object adapter. Figure 8-5 contains the call:

CORBA::BOA_var Boa = Orb->BOA_init(argc,argv,"mico-local-boa");

This call is used to get a reference to an object adapter. The object adapter is a middleman between the 
ORB and the object that implements the services to be called. Keep in mind that CORBA objects start 
as interface declarations only. At some point in the development process, a derived class provides the 
implementation  for  the  CORBA interface.  The  object  adapter  acts  as  the  middleman  between  the 
interface that the ORB interacts with and the real methods implemented by the derived class. The object 
adapters are used to access servant and implementation objects. The producer in Figure 8-5 creates an 
implementation object in part B using:

adding_machine_impl *AddingMachine = new adding_machine_impl;

This is the object that  will provide the implementation for the services that  the client or consumer 
objects will request. Also notice that in part C in Figure 8-5, the producer program uses the Orb object 
to convert the IOR to a string and writes the string to a file named adding_machine.ior. This file can be 
transmitted to the producer through ftp, e-mail, over http using Web pages, via NFS mounts and so on. 
There are other ways to communicate the IOR, but the file method provides a simple introduction. After 
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the IOR is written the producer program simply waits for requests from client or consumer programs. 
The producer program in  Figure 8-5 is also an oversimplification of the CORBA producer or server 
program, but it does contain the basic components that a typical producer program will have.

8.5 The Basic Blueprint of a CORBA Application

We can see from the programs in Figures 8-4 and Figures 8-5 that a barebones CORBA application will 
require two ORBs, an object adapter, a method for communicating an IOR, and at least one servant 
object. Figure 8-6 shows the logical structure of a barebones CORBA application.

Figure 8-6. The logical structure of a barebones CORBA application.

After  the  IOR is  obtained  and narrowed,  the  remote  method invocation  in  the  consumer  or  client 
program looks just like regular method calls in a C++ program. In the CORBA examples in this book, 
the  IIOP  (Internet  Inter  ORB  Protocol)  is  assumed.  Therefore,  the  ORBs  in  Figure  8-6 are 
communicating using a TCP/IP protocol. The IOR will contain enough information about the remote 
object's location to facilitate the TCP/IP communication. The object adapter in Figure 8-6 will typically 
be  a  portable  object  adapter.  However,  some older  or  simpler  programs may use  the  basic  object 
adapter. We will describe the difference between these two adapters later in this chapter. Each CORBA 
application has one or more servant objects that implements the interface designed in the IDL class. The 
simple  consumer  and  producer  programs  shown in  Figures  8-4 and  8-5 can  execute  on  the  same 
computer in different processes or on different computers. If the programs are executed on the same 
computer then the file adding_machine.ior should be accessible from both programs. If the programs 
are executed on different computers, then the file will have to be sent to the client computer via ftp, e-
mail, http, and so on. The compilation and execution details for the programs shown in Figure 8-4 and 
8-5 are shown in Profile 8.1 and Profile 8.2
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Program Profile 8.1
Program Name

adding_machine_client_impl.cc

Description

This program is a simple consumer program. It connects to the CORBA producer program shown in 
Figure 8-5.  It  adds  500 to  the adding machine and then subtracts  125.  It  sends  the result  of  the 
operations to cout using the results() method.

Libraries Required

mico2.3.3 or mico2.3.7

Headers Required

None

Compile & Link Instructions

idl –poa adding_machine.idl
mico-c++ -g -c adding_machine.cc -o adding_machine.o
mico-c++ -g -c adding_machine_impl.cc -o adding_machine_impl.o
mico-c++ -g -c adding_machine_client_impl.cc -o
adding_machine_client_impl.o
mico-ld -g -o adding_machine_client adding_machine_client_impl.o
adding_machine_impl.o adding_machine.o -lmico2.3.3

Test Environment

SuSE Linux 7.1 gnu C++ 2.95.2, Solaris 8 Workshop 7, MICO 2.3.3, MICO 2.3.7

Execution Instructions

Execute  the  binary  named  adding_machine_client  (e.g.,  ./adding_machine_client).  The  CORBA 
producer program needs to be started first. The producer program is shown in Figure 8-5 and is named 
adding_machine_server.

Notes

The CORBA producer program should be running at the time adding_machine_client is invoked.
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Program Profile 8.2
Program Name

adding_machine_server_impl.cc

Description

This program is a simple server program shown in  Figure 8-5. It accepts requests for additions and 
subtractions and produces the results of those requests.

Libraries Required

mico2.3.3 or mico2.3.7

Headers Required

None

Compile and Link Instructions

idl –poa adding_machine.idl
mico-c++ -g -c adding_machine.cc -o adding_machine.o
mico-c++ -g -c adding_machine_impl.cc -o adding_machine_impl.o
mico-c++ -g -c adding_machine_server_impl.cc -o
adding_machine_server_impl.o
mico-ld -g -o adding_machine_server adding_machine_server_impl.o
adding_machine_impl.o adding_machine.o -lmico2.3.3

Test Environment

SuSE Linux 7.1 gnu C++ 2.95.2, Solaris 8 Workshop 7, MICO 2.3.3, MICO 2.3.7

Execution Instructions

Execute the binary named adding_machine_server (e.g., ./adding_machine_server)

Notes

None

8.5.1 The IDL Compiler

The IDL compiler is a tool used to translate IDL Class definitions into C++ code. This code consists of 
a collection of class skeletons, enumerated types, and template classes. The IDL compiler used for the 
CORBA programs in this book is the MICO IDL compiler.  Table 8-3 contains some commonly used 
command-line options to the IDL compiler.
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Table 8-3. Some Commonly Used Command-Line Options to the IDL Compiler

IDL  Complier  Command-
Line Options

Description

--boa Generates skeletons that use the basic object adapter (BOA). This is 
the default.

--no-boa Turns off code generation of skeletons for the BOA.

--poa Generates skeletons that use the portable object adapter (POA).

--no-poa Turns off code generation of skeletons for the POA. This is currently 
the default.

--gen-included-defs Generate code that was included using the #include.

--version Prints the version of MICO.

-D<define> Defines  a  preprocessor  macro.  This  option  is  equivalent  to  the  -D 
switch of most UNIX C-compilers.

-I<path> Defines a search path for #include directives. This option is equivalent 
to the -I switch of most UNIX C-compilers.

The -boa and -poa switches in Table 8-3 can be used to determine what kind of adapter skeletons will 
be produced. For example, typing the command:

idl   -poa  -no-boa   adding_machine.idl

will  produce  a  file  named  adding_machine.h  that  contains  skeletons  for  the  poa  (portable  object 
adapter) and it will turn off the production of skeletons for the boa (basic object adapter). Typing the 
command:

idl -h

generates a complete list of the IDL compiler switches. If the man pages for the MICO distribution 
have been properly installed, then typing the command:

man   idl

will provide a complete explanation of the IDL switches available. Designing the IDL classes is the first 
step in CORBA programming. The next major step in a CORBA program is determining how the IORs 
for remote objects will be stored and retrieved.

8.5.2 Obtaining IOR for Remote Objects

The ORB class has two member functions that can be used for converting IOR objects between strings 
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and  Object_ptrs.  The  methods  are  string_to_object()  and  object_to_string().  The  string_to_object() 
member function takes a const char * and converts it to an Object_ptr. The object_to_string() member 
function takes an Object_ptr and converts it  to a char *. These methods are part of the ORB class 
interface.  The  object_to_string()  method is  used  to  stringify  object  IORs.  Once  the  IOR has  been 
stringified it  can be transmitted to  client  and consumer  programs through a  variety  of  techniques, 
including:

E-mail Shared file systems (NFS mounts)

ftp Embedded within html documents

Java applets/servlets Command-line arguments

Shared memory Traditional IPC (i.e., pipes, fifos)

Environment variables CGI get and post commands

The receiving program then takes the stringified IOR and uses its ORB's string_to_object() member 
function to convert the IOR to a CORBA object ptr. The CORBA object ptr is then narrowed and used 
to initialize the local object. Programs 8.1 and 8.2 use stringified objects and a file to communicate the 
IOR between the consumer program and the producer program. The stringified IOR can be used to 
facilitate very flexible connections to remote objects that can reside virtually anywhere on the Internet 
or on any intranet or extranet. In fact, the MIWCO (Wireless Mico) is an open-source implementation 
of wCORBA,[4] the wireless CORBA standard, and can be used to enhance the mobility of objects. 
The wireless specification enables mobility through a MIOR (Mobile IOR). The wireless specification 
has  support  for  TCP,  UDP,  and  WAP  WDP  (Wireless  Application  Protocol  Wireless  Datagram 
Protocol) transports. Multiagent and distributed agent systems can also benefit by taking advantage of 
the IOR standards. The IOR and MIOR are part of the building blocks for the next generation of object-
oriented Web services. It is important to note that although the stringified IOR provides a flexible and 
portable  object  reference,  it  may  not  be  ideal  for  all  situations  and  configurations.  Moving  a  file 
containing the IOR may not be practical for many installations. Forcing client and server applications to 
share  the  same file  system or  network  may not  be  practical.  Security  concerns  might  exclude  the 
stringified  IOR  as  an  option.  If  a  client-server  application  is  large  and  diverse  enough,  then  the 
stringified IOR sharing may be too restricting. The CORBA specification includes two other standards 
for obtaining or communicating object references: naming services, and trading services.

[4] wCorba is the CORBA standard for wireless remote object interaction. White papers and 
case studies for the wireless CORBA standard are available at www.omg.org.
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8.6 The Naming Service

The naming  service  standard  provides  a  mechanism for  mapping names  to  object  references.  The 
requester of an IOR provides a name to the naming service and the naming service returns the object 
reference associated with that name.

The naming service acts as a kind of telephone directory, in which the name is used to look up the 
number. It allows client and consumer programs to look up object references by name. The naming 
service can be used to map other application resources in addition to providing simple IOR maps. A 
mapping from a name to an object reference is called name binding. A collection of name bindings is 
associated with a naming context object. To illustrate the notion of a naming context, lets say we have 
an application that does travel planning that consists of a large and diverse collection of objects. We can 
organize these groups of objects according to function. Some objects are associated with file I/O, some 
object with security. Other objects are specifically related to transportation: train, bus, car, and bicycle 
objects.  Each grouping forms  a  context.  For  instance,  to  logically  group the  transportation  related 
objects  together  we  can  create  a  transportation  context,  and  associate  each  of  our  forms  of 
transportation with that context. This grouping forms a naming context. We bind the name of each form 
of  transportation  with  its  IOR.  This  is  name  binding.  We  then  associate  that  binding  with  the 
transportation context. We use contexts to logically organize groups of related objects. Furthermore, a 
collection of connected naming contexts forms a naming graph. Naming contexts are represented by 
objects. Since a naming context is implemented as an object, it can participate in name binding just like 
any other object. This means that a naming context can potentially contain other naming contexts. For 
instance,  Figure 8-7 contains several contexts including a logical representation for our transportation 
context.

Figure 8-7. Several different naming contexts.
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Notice that the last entry in the transportation context is the name airborne. The airborne name maps to 
another  context  named flying_machines.  The  flying_machines  context  contains  bindings  of  several 
objects related by function. The transportation context, together with the flying_machines context, form 
a naming graph. Notice in Figure 8-7 that the last object in the flying_machines context is named sonic. 
The  sonic  name maps  to  the  fast_flying_machines  context.  That  is,  the  sonic  name has  an  object 
reference of 8888. This adds another context to the naming graph. This is an example of one naming 
context containing another naming context. The naming graph can be used to represent the "big picture" 
of the structure of the relationships within a distributed object-oriented application. The naming graph 
captures the landscape of a distributed application. For multiagent systems the naming graph can be 
used as a kind of semantic network (see sidebar 8.1). Although the objects involved may be scattered 
among  diverse  hardware  platforms,  operating  systems,  programming  languages,  and  geographical 
locations, the naming graph can present a single logical structure of the relationships and connections 
between the objects. Figure 8-8 shows an alternative representation of the naming graph from Figure 8-
7. Figure 8-8 has the same naming contexts as Figure 8-7 and it clearly shows the relationships between 
the naming contexts. Figure 8-8 also demonstrates that there is a path from the transportation context to 
the fast_flying_machines context and then back to the transportation context.

Figure 8-8. An alternative representation of the naming graph.

Graph traversal algorithms can even be employed to traverse through the naming graph in the process 
of distributed problem solving. Using traversal in this way, various paths through a naming graph can 
represent solutions to problems. The naming service provides the requester access to naming contexts 
and  naming  graphs.  Naming  contexts  can  be  accessed  through  naming  graphs.  Bindings  can  be 
accessed through naming contexts. The binding provides a direct association between a name and an 
object reference. Program 8.3 shows a simple producer that creates a name binding and associates that 
name binding with a naming context.

Program 8.3 

 1  #include <iostream>
 2  #include <fstream>
 3  #include "permutation_impl.h"
 4  #define MICO_CONF_IMR
 5  #include <CORBA-SMALL.h>
 6  #include <iostream.h>
 7  #include <fstream.h>
 8  #include <unistd.h>
 9  #include <mico/CosNaming.h>
10
11
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12  int main(int argc, char *argv[])
13  {
14     CORBA::ORB_var Orb = CORBA::ORB_init
                             (argc,argv, "mico-local-orb");
15     CORBA::Object_var PoaObj =
             Orb->resolve_initial_references("RootPOA");
16     PortableServer::POA_var Poa =
                        PortableServer::POA::_narrow(PoaObj);
17     PortableServer::POAManager_var Mgr = Poa->the_POAManager();
18     inversion Server;
19     PortableServer::ObjectId_var Oid =
                        Poa->activate_object(&Server);
20     Mgr->activate();
21     permutation_ptr ObjectReference = Server._this();
22     CORBA::Object_var NameService =
              Orb->resolve_initial_references ("NameService");
23     CosNaming::NamingContext_var NamingContext =
        CosNaming::NamingContext::_narrow (NameService);
24     CosNaming::Name name;
25     name.length (1);
26     name[0].id = CORBA::string_dup ("Inflection");
27     name[0].kind = CORBA::string_dup (" ");
28     NamingContext->bind (name, ObjectReference);
29     Orb->run();
30     Poa->destroy(TRUE,TRUE);
31     return(0);
32  }
33
34

S 8.1. Semantic Networks
A  semantic  network  or  semantic  net  is  one  of  the  oldest  and  easiest  to  understand  knowledge 
representation schemes. A semantic network is basically a graphic depiction of knowledge that shows 
the hierarchical relationships between objects.  Sidebar Figure 8-1 shows a simple semantic network 
that conveys knowledge about vehicles in general and knowledge about certain vehicles in particular.

. Sidebar Figure 8-1 A simple vehicle semantic network.
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The circles in the semantic net are called nodes. The lines are called links. The links represent some 
kind  of  relationship  between  the  nodes.  The  nodes  are  used  to  represent  objects  and  facts  or 
descriptors.  Links are used to represent relationships and connections.  Some links are definitional 
while other links can be computational. The links can be used to show inheritance or subordination. 
Together  the  nodes  and the  links  convey chunks of  knowledge.  For  example,  from the  semantic 
network in Sidebar Figure 8-1, we know that a F-15 is a vehicle and a flying machine that has at least 
two wings. Semantic networks are used to understand and design the knowledge needed by problem-
solving software.

8.6.1 Using the Naming Service and Creating Naming Contexts

On line 22, the server program gets a reference to the naming service:

CORBA::Object_var NameService = Orb->resolve_initial_
references ("NameService");

In  addition  to  returning  object  references  for  the  Implementation  Repository  and  the  Interface 
Repository, the resolve_initial_references() method of the ORB is used to return a reference to the 
naming service. After obtaining a reference to the naming service, the server program creates a naming 
context from the object reference of the naming service on line 23:

CosNaming::NamingContext_var NamingContext =
CosNaming::NamingContext::_narrow(NameService);

This technique provides a naming context referred to as the initial naming context. The initial naming 
context plays the part of a default context. Once the naming service is located and the initial naming 
context is created, then the server program can add name/object reference pairs (name bindings) to the 
context. The names may be domain objects or other contexts. To add a name/object pair to a context, a 
name must first be created. Names are implemented in the CORBA standard by the NameComponent 
structure:

struct NameComponent {
   //...
   Istring_var id;
   Istring_var kind;
}
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The MICO implementation of CORBA declaring the NameComponent structure is the CosNaming.h 
file. The NameComponent structure has two attributes: id and kind. The first attribute is used to hold 
the text of the name and the second attribute is an identifier that can be used to classify the object. For 
example:

//...
CosNaming::Name ObjectName;
ObjectName.length(1);
ObjectName.id = Corba::string_dup("train");
ObjectName.kind = Corba::string_dup("land_transportation");
NamingContext->bind(ObjectName,ObjectReference);
//...

Declares a NameComponent object. The id attribute is set to "train" and the kind attribute is set to 
land_transportation. Obviously the id attribute should be descriptive of the object. The kind attribute 
can be used to describe the context or the logical group that the object belongs to. In this case, it 
classifies  train  as  a  land_transportation  object.  The  bind()  method  maps  the  ObjectName  to  the 
ObjectReference and associates it  with  the initial  naming context.  A name can consist  of  multiple 
NameComponent objects. If the name only consists of a single NameComponent, it is called a simple 
name. If it consists of multiple NameComponent objects, it is called a component name. If the name is a 
compound name,  then  the  kind  attribute  can  be used  to  describe  a  relationship.  This  technique  is 
discussed further in Chapter 12. Program 8.3 binds its object with an object reference and associates it 
with a naming context. Once it is associated with the naming context, then the client object may access 
it through the name service. In Programs 8.1 and 8.2, we used a file to communicate a stringified IOR 
between  the  consumer  program  and  the  producer  program.  The  naming  service  is  used  for 
communication with the client for Program 8.3.

The details  for installing and executing the naming service is  implementation specific.  The MICO 
environment contains a program named nsd that implements a COS-compliant naming service. The nsd 
program  requires  the  micod  daemon  to  be  running  and  appropriate  entries  to  be  made  to  the 
Implementation Repository before the naming service will be available to the consumer program. See 
the man pages for nsd, micod, and imr for a description of these programs and the MICO manual for a 
description of how they are used. Furthermore, the MICO distribution is accompanied by a wealth of 
examples of how to use the imr, nsd, micod, and ird programs. Example 8.5 is an excerpt from the shell 
script used to set up the server in  Program 8.3 so that the name service would be available to the 
consumer program.

Example 8.5 Shell script that adds an entry to the Implementation Repository and starts the naming service.

micod -ORBIIOPAddr inet:hostname:portnumber  -forward &
imr create NameService poa 'which nsd' IDL:omg.org/CosNaming/
NamingContext:1.0#NameService \
    -ORBImplRepoAddr inet:hostname:portnumber \
    -ORBNamingAddr inet:hostname:hostname:portnumberportnumber

imr create permutation persistent "'pwd'/permutation_server \
    -ORBImplRepoAddr inet:hostname:portnumber \

 -ORBNamingAddr inet:hostname:portnumber" IDL:permutation:1.0 \
   -ORBImplRepoAddr inet:hostname:portnumber \
 -ORBNamingAddr inet:hostname:portnumber
imr activate permutation -ORBImplRepoAddr inet:hostname:portnumber \
   -ORBNamingAddr inet:hostname:portnumber

This shell script can be used in conjunction with the server in Program 8.3. In fact, this script actually 
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helps to automatically start  the server program named permutation_server.  Note that  hostname and 
portnumber in Example 8.5 need to be replaced by the hostname of the computer where the server is 
running and an appropriate port number.

8.6.2 A Name Service Consumer/Client

Program 8.3 associates the name of an object with a naming context. Program 8.4 contains a consumer 
program that  uses  the  naming service  to  access  the  object/reference  bindings  that  were  created  in 
Program  8.3 Program  8.3 produces  a  permutation  of  any  string  of  characters  that  it  receives. 
Permutations are creating by inflections of the characters within a string. For instance:

Objcte JbOetc tbOjec

Ojbect JObetc  

Ojbcet JtObec  

are permutations of the string Object. The client gives the server a string to permute and the server 
generates N permutations. The server associates the name "Inflection" with the naming context. This 
name is the name that the client program will have to specify in order to get the object reference from 
the naming context.

Program 8.4 

 1  int main(int argc, char *argv[])
 2  {
 3
 4   try{
 5          CORBA::ORB_var Orb = CORBA::ORB_init
             (argc,argv,"mico-local-orb");
 6          object_reference Remote("NameService",Orb);
 7          Remote.objectName("Inflection");
 8          permutation_var Client =
            permutation::_narrow(Remote.objectReference());
 9          char Value[1000];
10          strcpy(Value,"Common Object Request Broker");
11          Client->original(Value);
12          int N;
13          for(N = 0;N < 15;N++)
14          {
15          cout << "Value of nextPermutation() "
                 << Client->nextPermutation() << endl;
16          }
17      }
18      catch (CosNaming::NamingContext::NotFound_catch &exc) {
19             cerr << " Object NotFound exception" << endl;
20      }
21      catch (CosNaming::NamingContext::InvalidName_catch &exc) {
22              cerr << "InvalidName exception" << endl;
23      }
24
25      return(0);
26  }
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Three steps the consumer program must take to access the appropriate object in the naming context are:

1. Get a reference to the name service.

2. Obtain a reference to the appropriate naming context through the name service.

3. Obtain a reference to the appropriate object through the naming context.

Step 1 is accomplished by calling the resolve_initial_references() method:

//...
CORBA::Object_var NameService;
NameService = Orb->resolve_initial_references ("NameService");
//...

This will return an object reference to the name service. In Step 2 this reference is used to get an object 
reference for the naming context:

CosNaming::NamingContext_var NameContext;
NameContext = CosNaming::NamingContext::_narrow (NameService);

The value of NameService is narrowed in Step 3, resulting in an object reference for NameContext. The 
consumer program needs  the NameContext  object  so that  it  may call  the NameContext's  resolve() 
method. The technique from Program 8.3 lines 24-27 is used to construct the name that will passed to 
the NameContext's resolve() method:

Name.length (1);
Name[0].id = CORBA::string_dup ("Inflection");
Name[0].kind = CORBA::string_dup (" ");
try {
       ObjectReference = NameContext->resolve (Name);
}

The resolve() method will return the object reference associated with the name. In this case, the object's 
name is "Inflection." Note that this is the same name associated with the naming context on line 28 
from Program 8.3. Once the consumer program has this object reference, it can be narrowed and then 
the  remote  object  can  be  accessed  by  the  consumer  program.  The  process  of  obtaining  an  object 
reference for a remote object is such a common event that it makes sense to simplify the process by 
encapsulating the components within a class.

class object_reference{
//...
protected:
   CORBA::Object_var NameService;
   CosNaming::NamingContext_var NameContext;
   CosNaming::Name Name;
   CORBA::Object_var ObjectReference;
public:
   object_reference(char *Service,CORBA::ORB_var Orb);
   CORBA::Object_var objectReference(void);
   void objectName(char *FileName,CORBA::ORB_var Orb);
   void objectName(char *OName);
//...
}

Program 8.4 takes advantage of the simple skeleton object_reference class that we have created for this 
purpose.
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Notice on line 6 from Program 8.4 that an object named Remote of type object_reference is created. On 
line 8, this object is used to obtain a reference to the remote object using the method call:

Remote.objectReference();

After making this call the consumer program has access to the remote object.  The object_reference 
class hides some of the work that needs to be done and therefore makes writing the consumer program 
easier. The constructor for the object_reference class is called on line 6 of Program 8.4. The constructor 
is implemented as:

object_reference::object_reference(char *Service,CORBA::ORB_var Orb)
{
    NameService = Orb->resolve_initial_references (Service);
    NameContext = CosNaming::NamingContext::_narrow (NameService);
}

The constructor gets a reference to the name service and instantiates the NameContext object. On line 
7, the object's name is passed to the method objectName(). This process will using the naming context 
to  retrieve  the  object  reference  associated  with  the  object's  name.  The  objectName()  method  is 
implemented as:

void object_reference::objectName(char *OName)
{
   Name.length (1);
   Name[0].id = CORBA::string_dup (OName);
   Name[0].kind = CORBA::string_dup (" ");
   try {
          ObjectReference = NameContext->resolve (Name);
   }
   catch(...){
        cerr << "   Problem resolving Name  " << endl;
   throw;
   }
}

After  the  objectName()  method  is  called  the  consumer  program has  access  to  the  remote  object's 
reference. All that is left to do is to call the objectReference() method. This occurs on line 8 of Program 
8.4. The resolve() function does most of the work in the objectName() method. Programs 8.3 and 8.4 
form a simple distributed client/server application that uses the naming service instead of stringified 
IORs to communicate object references. Both the naming service approach and the stringified IOR can 
be used in an intranet or on the Internet. Both can be used as support structure components within the 
context of the new Web services model.
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8.7 A Closer Look at Object Adapters

In addition to  the name service and naming context  object,  the server  in  Program 8.3 also uses  a 
portable object adapter. Recall from Figure 8-6 that the adapter acts as a kind of middleman between 
the ORB and the servant object that actually does the work of the CORBA object. We can compare a 
servant object to a ghost writer that writes a book on behalf of a celebrity. The publicists, marketers, 
and lawyers interact with the celebrity. The celebrity gets all the credit, but the ghost writer does the 
actual work and writing involved. The CORBA object publishes an interface to the outside world and is 
the celebrity in a CORBA program. The client or producer program interacts with the interface that the 
CORBA object  provides,  however,  it's  the  servant  object  playing  the  part  of  the  ghost  writer  that 
actually does the real work. The servant object has its own protocol. This protocol might be different 
from the one presented by the CORBA object. The CORBA object might present a C++ interface to the 
client.  The servant object might be implemented in Java,  Smalltalk,  Fortran and so on. The object 
adapter provides an interface to the servant object. It adapts the interface so that the implementation of 
the servant object is transparent to the ORB and the client program. A CORBA implementation will 
normally have  support  for  two types  of  object  adapters:  the  Basic  Object  Adapter  (BOA) and the 
Portable Object Adapter (POA). The BOA was the original adapter specified by the CORBA standard. 
The POA was designed to replace the BOA and is considerably more flexible and most commonly 
used. The BOA is a barebones adapter that has minimal capabilities. However, the BOA can be used to 
activate object implementations based on information stored in the Implementation Repository.  Table 
8-4 contains some of the commonly found elements in an Implementation Repository.

The BOA uses  the  activation  mode and the  path  from the  Implementation  Repository  to  start  the 
execution of a producer or server object. Although some of the simpler examples in this chapter used 
the BOA, we recommend that you use the POA for any serious CORBA development. The POA:

• Supports transparent object activation

• Supports transient objects

• Supports implicit activation of servant objects

• Supports persistent objects across server boundaries

Table 8-4. Some Commonly Found Elements in an Implementation Repository

Implementation Repository Elements Description

object name Unique identifier for each object.

activation mode Shared, unshared, persistent, permethod library.

path Name and path of the binary.

list of repository IDs  
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Perhaps  the  most  important  function  of  the  POA is  to  interact  with  servant  objects.  The  CORBA 
specification defines a servant accordingly:

A servant is a programming language object or entity that implements requests on one or 
more objects. Servants generally exist within the context of a server process. Requests made 
on an object's references are mediated by the ORB and transformed into invocations on a 
particular servant. In the course of an object's lifetime it may be associated with multiple 
servants.

Every servant object will have at least one POA. However, other configurations are possible. Figure 8-9 
shows the configuration possibilities between POAs and servants.

Figure 8-9. Configuration possibilities between POAs and servants.

POAs  are  managed  in  part  by  POA  manager  objects.  The  CORBA  specification  defines  a  POA 
manager accordingly.

A POA manager is an object that encapsulates the processing state of one or more POAs. 
Using operation on a POA manager, the developer can cause requests for the associated 
POAs  to  be  queued  or  discarded.  The  developer  can  also  use  the  POA  manager  to 
deactivate the POAs.

The server in Program 8.3 provides a simple example of how to use POAs and POA manager objects. A 
complete discussion of the POA is beyond the scope of this book. For a thorough discussion of POAs, 
see Advanced CORBA Programming with C++ by Michi  Henning and Steve Vinoski.  The MICO 
distribution also contains several examples of how to use some of the more advanced features of the 
POA.
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8.8 Implementation and Interface Repositories

The ORB uses the Implementation Repository to locate objects when stringified IORs are not available. 
Implementation Repositories are normally ORB specific and are used as a convenient place to store 
environment-specific  information  (e.g.,  security  information,  debugging  information,  etc.).  The 
Implementation Repository will contain enough information to allow the ORB to locate the object's 
path  and  binary  executable.  The  imr  tool  is  used  with  MICO  distributions  to  manage  the 
Implementation  Repository.  The  imr  tool  is  used to  display,  list,  add,  and  delete  entries  from the 
Implementation Repository. For example:

imr create permutation persistent " 'pwd'/permutation_server \
     -ORBImplRepoAddr inet:hostname:portnumber \
     -ORBNamingAddr inet:hostname:portnumber"  IDL:permutation:1.0 \

Adds  an  entry  to  the  repository  with  the  name  permutation.  The  executable  file  is  located  at 
'pwd'/permutation_server. The entry also includes the hostname and the portnumber that the program 
should be executed on. The Implementation Repository is a good place to store this type of information 
about an object. This entry is also given the mode of persistent. The ORB uses the information in this 
entry to properly initiate the execution of the program named permutation_server. See the man pages 
for a complete list of options available for the imr tool. The Interface Repository is used in addition to 
the  Implementation  Repository  to  store  runtime  information  about  each  object.  The  Interface 
Repository can be used to  discover  the interface to  CORBA objects  dynamically  because the IDL 
information about CORBA objects can be stored in the Interface Repository. The ird tool implements 
the  Interface  Repository  for  MICO  distributions  of  CORBA.  Although  the  CORBA  specification 
describes  the  logical  features  of  the  Implementation  Repository  and  the  Interface  Repository,  the 
specifics are environment, distribution, and vendor specific. Also, the manner in which information is 
placed into and managed within an Implementation and Interface Repository will be vendor specific.

8.9 Simple Distributed Web Services Using CORBA

The addresses for Implementation Repositories and naming services can be imbedded within HTML 
and used as part  of a  CGI call  to a Web server.  This technique can be used to  implement  simple 
distributed Web services using CORBA. Example 8.6 shows a simple HTML entry. When the link is 
clicked, a CORBA client executes. The CORBA client can then get to the server using the address of 
the Implementation Repository and the naming service that was passed from the HTML CGI command.

Example 8.6 A HTML document with an embedded call to a CORBA client program.

<HTML>
<HEAD>
<TITLE> CORBA</TITLE>
</HEAD>
<BODY>
<a href="http://www.somewhere.org/cgi-bin/client?-
ORBImplRepoAddr+inet:hostname:port+-
ORBNamingAddr+inet:hostname:port">Click</a>
<P>
</HTML>

Here the client refers to a program that will access a CORBA producer or server program. The client 
has  the  name of  the  object  that  needs  to  be  accessed  and uses  the  naming service  to  resolve  the 
reference. This technique does not require code to be downloaded to the user's computer. Instead, the 
client code is executed on the Web server and will access the CORBA-based server program whether it 

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec9.htm#ch08ex06


is on an intranet connected to a Web server or somewhere else on the Internet. The client program will 
respond to the HTML browser using the appropriate CGI protocol.  Figure 8-10 shows a simple Web 
services configuration using CORBA components.

Figure 8-10. A simple Web services configuration using CORBA components.

In addition to http, telnet can be used to launch CORBA-based clients and servers. The http protocol 
and  the  telnet  protocol  can  be  used  to  support  global  distribution  of  CORBA  components.  It  is 
important to remember software, data, and system security when considering the design of distributed 
components that will be used across the Internet or intranet. Although security implementations and 
requirements are beyond the scope of this book, we mention it as a fundamental consideration in any 
distributed design. The Implementation Repository can be used to store security-type information. A 
CORBA implementation can be used in conjunction with SSL (Secure Socket Layer) and SSH (Secure 
Shell).

8.10 The Trading Service

In addition to  stringified IORs and the naming service,  the CORBA specification includes  a  more 
advanced and dynamic method of obtaining object references called the trading service. The trading 
service  offers  a  more  discovery-based  approach  to  interacting  with  remote  objects.  Instead  of 
interacting  with  a  naming service,  the client  interacts  with a  trader.  A trader  has  access  to  object 
references in the same manner as a naming service. However, the trader associates descriptions, and 
interfaces with the object references instead of a simple name. Whereas the naming service contains 
name/reference pairs, the trader contains descriptions-interfaces/reference pairs. Clients can describe 
the object they are looking for to the trader and the trader responds with an object reference if a match 
is  found. This  a  very powerful  search method.  Not  only can the client  be unaware of the object's 
location, it can also be unaware of the object's name. This allows the client to query a trader based on a 
list of services that it needs instead of looking for a particular object. This allows the client to have a I-
don't-care-who-or-where approach. The CORBA specification defines a trader accordingly:
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A trader is an object that supports the trading object service in a distributed environment. It 
can be viewed as an object through which other objects can advertise their capabilities and 
match  their  needs  against  advertised  capabilities.  Advertising  a  capability  or  offering  a 
service  is  called  "export."  Matching  against  the  needs  or  discovering  services  is  called 
"import." Export and import facilitate dynamic discovery of, and late binding to, services.

In the same way that connecting two or more naming contexts produce naming graphs, connecting two 
or more traders produce trading graphs. Naming and trading graphs are powerful methods of knowledge 
and capability representation. Naming graphs and trading graphs provide the foundations for global 
Web services and telnet services. Traversing naming and trading graphs might include hops that have 
the potential to visit anywhere on the local network, intranet, extranet, or the Internet. Like naming 
contexts, traders typically represent certain kinds of objects. For instance, we might have some traders 
that have access to credit card objects while other traders have access to compression and encryption 
objects. We can have traders that deal in weather and geography objects. We can have traders that deal 
in financial and insurance services. If each of these traders were linked, we would have a trading graph. 
If one trader trades on behalf of other traders, we would have what is known as a trade federation. 
When a client describes the services that it needs to one trader and that trader then contacts other traders 
to locate the required services, the client and the trader are involved with a trade federation. This is the 
most  powerful  and  flexible  form of  I-don't-care-who-or-where  request  that  the  client  can  perform. 
When a  trade federation returns an object reference it  can literally be from anywhere and may be 
implemented by a servant object(s) whose operating system and language are totally foreign to the 
client program. Federations of traders provide access to very large and diverse collections of services. 
Keep  in  mind  that  the  CORBA  standard  includes  a  wireless  specification  wCORBA.  This  has 
tremendous implications for the design of mobile agent and multiagent systems. Figure 8-11 shows the 
basic architecture of a CORBA-based client/server application that makes requests of traders.

Figure 8-11. Basic architecture of a CORBA-based client-server application that makes requests of traders.

A client program may interact directly with a trader or traders or indirectly with a trader through the 
federation. Notice in Figure 8-11 that the object reference is obtained and then the interaction with the 
ORB occurs. Table 8-5 shows common terms used with trader programming.
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Table 8-5. Common Trader Programming Terms

Trader 
Programming Terms

Description

Exporter Advertises a service with a trader. An exporter can be the service provider or 
it can advertise a service on behalf of another.

Importer Uses a trader to search for services matching some criteria. An importer can 
be the potential service client or it can import a service on behalf of another.

Service offer Contains a description of the service being advertised. It contains a service 
type name, object reference, and object properties.

8.11 The Client/Server Paradigm

The  terms  "client"  and  "server"  are  applied  in  many  ways  to  many  different  kinds  of  software 
applications. The client/server paradigm divides a patten of work between two parties represented by 
either processes or threads. One party, the client, makes requests for data or for action. The other party, 
the server, fulfills the requests. The roles of requester and request satisfier are common themes found in 
many different software applications. The terms client/server are used at the operating-system level to 
describe many producer–consumer relationships that can occur between processes. For instance, when a 
fifo is used to connect two processes, one of the processes takes on the role of server and the other of 
client. Sometimes a client can take on the role of server when it receives requests. Similarly, a server 
may take on the role of client when it needs to make requests of another program. The client/server 
configuration is the most fundamental  architecture for distributed programming. The type of server 
involved usually characterizes the entire application. Table 8-6 shows the most commonly found types 
of software servers.

Blackboards  and multiagent  systems are the two primary architectures that  we use in this  book to 
support parallel and distributed programming. We place special emphasis on the logic server defined in 
Table 8-6. The logic server is a special type of an application server, and is used to perform problem 
solving that requires intense symbolic and possibly parallel computation. The process of inference and 
deduction  is  often  processor  intensive  and can  benefit  from parallel  processors.  Usually  the  more 
processors available to logic servers, the better. The Agent and Blackboard architectures that we discuss 
in  Chapter  12 and 13  rely  on  the  notion  of  distributed  logic  servers  that  can  cooperatively  solve 
problems over a network, an intranet, or the Internet. Although the Blackboard and Agents form more 
of a peer-to-peer architecture, they are clients to the logic servers that they access. Distributed objects 
are  used  to  implement  all  of  the  components  involved.  CORBA is  used  to  facilitate  the  network 
programming.

Summary

Distributed  programming  involves  programs  that  execute  in  different  processes.  Each  process  can 
potentially reside on a different computer and possibly on a different network with different network 
protocols.  Distributed  programming  techniques  allow  the  developer  to  divide  an  application  into 
separately executing modules that will either have some kind of producer–consumer relationship or 
peer-to-peer relationship.  The modules each have their  own address space and computer resources. 
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Distributed programming can be used to take advantage of special processors, peripherals, and other 
computer resources (i.e.,  database servers, applications servers, e-mail servers, etc.).  CORBA is the 
standard  for  distributed  object-oriented  programming.  We  provide  an  introduction  to  some  of  the 
simple  basics  of  CORBA programming.  However,  this  chapter  barely  scratches  the  surface  of  the 
CORBA specification and CORBA services. It provides only enough to see what the basic components 
look like and how a simple distributed program can be constructed. The CORBA specifications for 
Web services, MAF, naming services, and so on, can be obtained from www.omg.org. Michi Henning 
and Steve Vionosk provide a detailed resource in their Advanced CORBA Programming with C++. The 
naming and trader graphs provide the basis for powerful distributed knowledge representation that can 
be used in conjunction with multiagent programming. They provide the basis for the next level of smart 
Web services.

Table 8-6. Common Types of Software Servers

Types  of 
Software 
Servers

Description

Application 
servers

Used to provide multiple clients with access to an application. It divides work in an 
application between the client and the server. The majority of the work is done on the 
server and the client (with its own processor) performs part of the work.

File servers Acts as a central repository for shared documents, multimedia files, databases, and so 
on. The clients are usually terminals or workstations on a network. The client makes 
requests for files or records within the files, then the file server transmits the request to 
the client. The file server maintains data integrity and enforces file access security.

Database 
servers

Splits  the  processing  of  an  application  between  different  machines  in  a  network 
environment. A client makes requests for an item of data, then the database server 
locates the data and transmits the request to the client. The database server can process 
complex  information  queries  that  may  require  joins  and  intersections  of  multiple 
databases.

Transaction 
servers

Used to perform transactions that take place on the machine or machines that contain 
the  transaction  server.  Every  action  or  update  completes  in  its  entirety  without 
interruption. If any problems are encountered, all actions or updates are undone and 
the transaction is tried again.

Logic servers Used to perform problem solving that requires intense symbolic computation. It is able 
to find both implicit and explicit information within a database. The logic server is 
able  to  deduce  or  infer  information  that  has  not  been  explicitly  entered  into  the 
database. It consists of a database with one or more built-in inference engines. The 
inference engine is used to obtain conclusions and inferences from the server. The 
database consists of rules, theorems, axioms, and procedures. Queries submitted to the 
logic  server  causes  it  to  perform  deduction,  induction,  abduction,  or  some 
combination.
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Chapter 9. SPMD and MPMD Using Templates and the MPI
"There must be an essentially non-algorithmic ingredient in the action of consciousness."

—Roger Penrose, The Emperor's New Mind

In this Chapter

• Work Breakdown Structure for the MPI  

• Using Template Functions to Represent MPI Tasks  

• Simplifying MPI Communications  

• Summary  

Templates  support  the  notion  of  parameterized  programming.  The  basic  idea  of  parameterized 
programming is to maximize software reuse by implementing software designs in as general a form as 
possible.  Function  templates  support  generic  procedural  abstractions  and  class  templates  support 
generic  data  abstractions.  Typically,  computer  programs  are  already  general  solutions  to  specific 
problems. A program that adds two numbers is usually designed to add any two numbers. However, if 
the program only performed the operation of addition, we could generalize this program by allowing it 
to perform different operations on any two numbers. If we want the most general program, can we stop 
with simply allowing it to perform different operations on any two numbers? What if the numbers are 
of different types, that is, complex numbers and floats? We may wish to design the program so that not 
only  can  it  perform different  operations  on  any two numbers  but  on  different  types  or  classes  of 
numbers (i.e., ints, floats, doubles, complex numbers, etc.). In addition, we would like the program to 
perform any kind of binary operation on any pair of numbers so long as that operation is legal for those 
two numbers. Once we have implemented such a program, the opportunities for reuse are significant. 
Function and class templates give this capability to the C++ programmer. This kind of generalization 
can be accomplished using parameterized programming.

The  parameterized  programming  paradigm  supported  by  C++,  combined  with  the  object-oriented 
paradigm that is also supported by C++, provide some unique approaches to MPI programming. As we 
discussed in  Chapter 1, the MPI (Message Passing Interface) is a standard of communication used in 
implementing programs that require parallelism. The MPI is implemented as a collection of more than 
300 routines. The MPI functions include everything from spawning tasks to barrier synchronization to 
set  operations.  There  is  also  a  C++  representation  for  the  MPI  functions  that  encapsulate  the 
functionality of the MPI into a set of classes. However, many of the advantages found in the object-
oriented paradigm are not used in the MPI library. The advantages of parameterized programming are 
also absent. So while the MPI has important value as a standard, it does not go a long way to simplify 
parallel  programming. It  does insulate the programmer from socket programming and many of the 
pitfalls of network programming. That insulation is not enough. Cluster, SMP, and MPP application 
programming can  be made easier.  The  template  facilities  in  C++,  and the  support  for  true object-
oriented programming, can be used to help us accomplish this goal. In this chapter, we use templates 
and techniques from object-oriented programming, to simplify the basic SPMD and MPMD approaches 
used with MPI programming.
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9.1 Work Breakdown Structure for the MPI

One of the advantages of using the MPI over traditional UNIX/Linux processes and sockets is the 
ability of an MPI environment to launch multiple executables simultaneously. An MPI implementation 
can launch multiple executables, establish a basic relationship between the executables, and identify 
each executable. In this book we use the MPICH[1] implementation of MPI. The command:

[1] All the MPI examples in this book were implemented using MPICH 1.1.2 and MPICH 
1.2.4 in the Linux environment.

$ mpirun -np 16 /tmp/mpi_example1

tells  the  MPI  runtime  to  launch  16  processes.  Each  process  will  execute  the  program  named 
mpi_example1. Each process may use a different processor if the processor is available. Also, each 
process may be on a different machine if the MPI is run in a cluster-type environment. The processes 
will execute concurrently. The mpirun command is a shell script that is responsible for starting MPI 
jobs  on the necessary processors.  This  script  insulates  the  user  from details  of  starting concurrent 
processes on different machines. Here it will launch 16 copies of the program mpi_example1. Although 
the MPI-2 standard does specify spawn routines that can be used to dynamically add programs to an 
executing  MPI  application,  this  technique  is  not  encouraged.  In  general,  the  number  of  processes 
needed are created at the start of an MPI application. This means that the code is replicated N number 
of times during startup. This scheme easily supports the SPMD (SIMD) model for concurrency because 
the same program is launched simultaneously on multiple processors. The data that each program needs 
to work on can be determined after  the programs are running.  This technique of starting the same 
program on multiple processors also has implications if the MPMD model is desired. The work that a 
MPI program will do is divided between the number of processes launched on startup. Which process 
does what and which process works on which data is coded in the executable. The computers that can 
be involved in the process are listed in the machines.arch (machines.Linux in our case) file by host 
name.  The  location  of  this  file  is  implementation  dependent.  Depending  on  your  installation,  the 
computers  listed  in  the  file  will  either  be  able  to  communicate  using  ssh  or  the  UNIX/Linux  'r' 
commands.

9.1.1 Differentiating Tasks by Rank

During the startup of the processes involved in an MPI application, the MPI environment assigns each 
process a rank and a communication group. The rank is stored as an int. The rank serves as a kind of 
process id for each MPI task. The communication group determines which processes can engage in 
point-to-point communications. Initially, all MPI processes are assigned to a default communication 
group. The members of a communication group can be changed after the application has started. After 
each process is started, one of the first things that it should do is determine its rank. This is done with 
the MPI_Comm_rank() routine. The MPI_Comm_rank() routine returns the rank of the calling process. 
The calling process specifies what  communicator  it  is  associated with in  the first  argument  to  the 
routine  and  the  rank  is  returned  in  the  second  argument.  Example  9.1 shows  how  the 
MPI_Comm_rank() routine is used.
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Example 9.1 Using the MPI_Comm_rank() routine.

//...
int Tag = 33;
int WorldSize;
int TaskRank;
MPI_Status Status;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&TaskRank);
MPI_Comm_size(MPI_COMM_WORLD,&WorldSize);
//...

The MPI_COMM_WORLD communicator is the default communicator that all MPI tasks are assigned 
upon  startup.  MPI  tasks  are  grouped  by  communicators.  The  communicator  is  what  identifies  a 
communication group. In Example 9.1 the rank is returned in the variable TaskRank. Each process will 
have a unique rank. Once the rank is determined, then the appropriate data may be given to that task or 
the appropriate code for that task to execute may be determined. For instance, in Case 1:

Case 1: Simple MPMD Case 2: Simple SIMD

if(TaskRank == 1){
  // do something
}

if (TaskRank == 2){
  // do something else
}

if(TaskRank == 1){
   // use this data
}

if(TaskRank == 2){
   // use that data
}

the rank is used to differentiate which process will do which work and in Case 2 the rank is used to 
differentiate which data each process will work on. Although each MPI executable starts out with the 
same code, MPMD (MIMD) may be achieved by using the rank and performing a branch. Likewise, 
once the rank is determined, data types may be assigned to the data of a process or specific data that a 
given process needs to work with may be identified. The rank is also used in message passing. MPI 
tasks identify each other in a communication exchange by ranks and communicators. The MPI_Send() 
and MPI_Recv() routines use rank for destination and source, respectively. The call:

MPI_Send(Buffer,Count,MPI_LONG,TaskRank,Tag,Comm);

will send Count number of longs to a MPI process with rank = TaskRank. The Buffer is a pointer to the 
data to be sent to the process TaskRank. Count represents the number of items in the Buffer, not the 
size of Buffer. Each message has a tag. The tag can be used to differentiate one message from another, 
to group messages into classes, to associate certain messages with certain communicators, and so on. 
The tag is an int and its value is user-defined. The Comm parameter represents the communicator that 
the process is assigned to or associated with. If the rank and communicator of a task are known, then 
messages may be sent to that task. The call:

MPI_Recv(Buffer,Count,MPI_INT,TaskRank,Tag,Comm,&Status);

will receive Count ints from a process with rank = TaskRank. This routine will cause the caller to block 
until it receives a message from a process with TaskRank and the appropriate value for Tag. The MPI 
does support wild-cards for the rank and tag parameters. These wildcards are MPI_ANY_TAG and 
MPI_ANY_SOURCE. If these values are used, the calling process will accept the next message that it 
receives regardless of the source and tag of that message. The Status parameter is of type MPI_Status. 
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Information about the receive operation can be retrieved from the Status object. Three fields contained 
in status are MPI_SOURCE, MPI_TAG, and MPI_ERROR. Therefore, the Status object can be used to 
determine what the tag and source of the sending process were. Once the processes know how many 
processes are involved, they can determine who to send messages to and who to receive messages from. 
Naturally, which task receives messages and which task sends messages will depend on the application. 
How the work is divided up between the processes will also be application dependent. Another piece of 
information that is determined immediately by each process before the work starts is how many other 
processes are involved in the application. This is done by a call to:

MPI_Comm_size(MPI_COMM_WORLD,&WorldSize);

This routine determines the size of the group of processes associated with a particular communicator. In 
this  case,  the  communicator  is  the  default  communication  MPI_COMM_WORLD. The number  of 
processes  involved  are  returned  in  the  WorldSize  parameter.  This  parameter  is  an  int.  Once  each 
process has the WorldSize, it knows how many processes are associated with its communicator and 
what its rank is relative to the other processes.

9.1.2 Grouping Tasks by Communicators

In addition to ranks, processes are also associated with communicators. The communicator specifies a 
communication domain for a set of processes. All processes with the same communicator are in the 
same communication group. The work that a MPI program does can be divided between communicator 
groups. MPI_COMM_WORLD is the default communicator group that all processes are in initially. 
MPI_Comm_create()  can  be  used  to  create  new  communicators.  Table  9-1 shows  a  list  of  short 
descriptions for the routines used to work with communicators.

Through the use of the rank and the communicator, MPI tasks are identified and differentiated. The 
rank and the communicator allow us to structure a program as SPMD or MPMD or some combination. 
We use the rank and the communicator in conjunction with paramaterized programming and object-
oriented techniques to simplify the code written for a MPI program. The templates can accommodate 
not  only  the  different  data  aspect  of  SIMD  but  different  data  types  may  also  be  specified  using 
templates. This greatly simplifies the many computational-intensive applications that do the same work 
but with different data types. We recommend runtime polymorphism (supported by objects), parametric 
polymorphism (supported by templates), function objects, and predicates to achieve MPMD (MIMD). 
These techniques are used in conjunction with the rank and the communicator of a MPI process to 
accomplish the division and assignment of work in an MPI application. When using an object-oriented 
approach, the work of a program is divided between families of objects. The families of objects are 
each  associated  with  different  communicators.  Associating  families  of  objects  with  different 
communicators helps with modularity in the design of an MPI application. This kind of division also 
helps with understanding how the parallelism can be applied. We have found that the object-oriented 
approach makes MPI programs more extensible, maintainable, and easier to debug and test.

9.1.3 The Anatomy of an MPI Task

Figure 9-1 contains a skeleton MPI program. The tasks involved in this MPI program simply report 
their ranks to the MPI task whose rank == 0.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec1.htm#ch09fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec1.htm#ch09table01


Figure 9-1. A MPI program.

Every  MPI  program  should  at  least  have  MPI_Init()  and  MPI_Finalize().  The  MPI_Init  routine 
initializes the MPI environment for the calling task. The MPI_Finalize() routine deallocates resources 
from the MPI task.

Table 9-1. Routines Used to Work with Communicators

MPI  Communicator  Routines  #include 
"mpi.h"

Description

int MPI_Intercomm_create
(MPI_Comm LocalComm,
 int LocalLeader,
 MPI_Comm PeerComm,
 int remote_leader,
 int MessageTag,
 MPI_Comm *CommOut);

Creates  an  intercommunicator  from  two 
intracommunicators.

int MPI_Intercomm_merge
(MPI_Comm Comm,int High,

Creates  an  intracommunicator  from  an 



MPI  Communicator  Routines  #include 
"mpi.h"

Description

 MPI_Comm *CommOut); intercommunicator.

int MPI_Cartdim_get
(MPI_Comm Comm,int *NDims);

Returns Cartesian topology information associated with 
a communicator.

int MPI_Cart_create
(MPI_Comm CommOld,int NDims,
 int *Dims,int *Periods,
 int Reorder,
 MPI_Comm *CommCart);

Creates  a  new  communicator  to  which  topology 
information has been attached.

int MPI_Cart_sub
(MPI_Comm Comm,
 int *RemainDims,
 MPI_Comm *CommNew);

Divides a communicator up into subgroups, which form 
lower dimensional Cartesian subgrids.

int MPI_Cart_shift
(MPI_Comm Comm, int Direction,
 int Display,int *Source,
 int *Destination);

Retrieves the shifted source and destination ranks, given 
a shift direction and amount.

int MPI_Cart_map
(MPI_Comm CommOld,
 int NDims,int *Dims,
 int *Periods,int *Newrank);

Maps process to Cartesian topology information.

int MPI_Cart_get
(MPI_Comm Comm,int MaxDims,
 int *Dims,int *Periods,
 int *Coords);

Returns Cartesian topology information associated with 
a communicator.

int MPI_Cart_coords
(MPI_Comm Comm, int Rank,
 int MaxDims, int *Coords);

Calculates process coords in Cartesian topology given 
rank in group.

int MPI_Comm_create
(MPI_Comm Comm,
 MPI_Group Group,
 MPI_Comm *CommOut);

Creates a new communicator.

int MPI_Comm_rank
(MPI_Comm Comm,int *Rank);

Calculates and returns the rank of the calling process in 
the communicator.

int MPI_Cart_rank
(MPI_Comm Comm,int *Coords,

Calculates  and  returns  the  process  rank  in  a 



MPI  Communicator  Routines  #include 
"mpi.h"

Description

 int *Rank); communicator given Cartesian location.

int MPI_Comm_compare
(MPI_Comm Comm1,
 MPI_Comm Comm2,
 int *Result);

Compares two communicators, Comm1 and Comm2

int MPI_Comm_dup
(MPI_Comm CommIn,
 MPI_Comm *CommOut);

Duplicates an already existing communicator along with 
all its cached information.

int MPI_Comm_free
(MPI_Comm *Comm);

Marks the communicator object to be deallocated.

int MPI_Comm_group
(MPI_Comm Comm,
 MPI_Group *Group);

Accesses  the  group  associated  with  the  given 
communicator.

int MPI_Comm_size
(MPI_Comm Comm,int *Size);

Calculates and returns the size of the group associated 
with a communicator.

int MPI_Comm_split
(MPI_Comm Comm,int Color,
 int Key,MPI_Comm *CommOut);

Creates new communicators based on colors and keys.

int MPI_Comm_test_inter
(MPI_Comm Comm,int *Flag);

Determines if a communicator is an intercommunicator.

int MPI_Comm_remote_group
(MPI_Comm Comm,
 MPI_Group *Group);

Accesses  the  remote  group  associated  with  the  given 
intercommunicator.

int MPI_Comm_remote_size
(MPI_Comm Comm,int *Size);

Calculates  and  returns  the  size  of  the  remote  group 
associated with an intercommunicator.

Every  MPI  task  should  call  the  MPI_Finalize()  routine  prior  to  exiting.  Notice  the  calls  to 
MPI_COMM_rank() and MPI_COMM_Size() in  Figure 9-1. They are used to get the rank and the 
number of processes that belong to an MPI application. Most MPI applications should call this function. 
The remaining MPI functions will depend on the application. The MPI environment supports over 300 
functions. Consult your man pages for a complete listing and discussion of the MPI functions.
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9.2 Using Template Functions to Represent MPI Tasks

Function templates  allow us  to  generalize a  procedure for  any type.  Let's  look at  a  multiplication 
procedure that works for any data type for which multiplication is defined:

template<class T> T multiplies(T X, T Y)
{
   return(X * Y);
}

To use a template function such as this one we provide the necessary parameters for the type T. T is a 
stand-in for some data type that will be supplied when the template is instantiated. So we can instantiate 
multiplies() accordingly:

//...
multiplies<double>(3.2,4.5);
multiplies<int>(7,2);
multiplies<rational>("7/2","3/4");
//...

with T instantiated to double, int, and rational, thereby determining the exact implementation of the 
multiplication operation. Multiplication is defined differently for each data type. So the specification of 
the data type causes slightly different code to be executed. The template function allows us to write the 
multiplies() operation once and apply it to many different data types.

9.2.1 Instantiating Templates and SPMD (Datatypes)

Parameterized functions can be used with the MPI to handle situations where each process is executing 
the same code but is working with a different type of data. So once we have determined the TaskRank 
of the process, we can differentiate what data and type of data the process should work with. Example 
9.2 shows how to instantiate different tasks for different ranks.

Example 9.2 Using template functions to designate what the MPI task will do.

int main(int argc, char *argv[])
{
   //...
   int Tag = 2;
   int WorldSize;
   int TaskRank;
   MPI_Status Status;
   MPI_Init(&argc,&argv);
   MPI_Comm_rank(MPI_COMM_WORLD,&TaskRank);
   MPI_Comm_size(MPI_COMM_WORLD,&WorldSize);
   //...
   switch(TaskRank)
   {
      case 1: multiplies<double>(3.2,4.6);
              break;
      case 2: multiplies<complex>(X,Y)
              break;

      //case n:

      //...
   }
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}

Since no two tasks have the same rank,  each branch in the case statement in  Example 9.2 will  be 
executed by a different MPI task.  Also, you may extend this  type of parameterization to container 
arguments for template functions. This allows you to pass different containers of objects containing 
different types of objects to the same generic template function. For instance Example 9.3 contains a 
generic search() template.

Example 9.3 Using container templates as arguments to template functions.

template<T> bool search(T Key,graph<T>)
{
   //...
   locate(Key)
   //...
}

//...
MPI_Comm_rank(MPI_COMM_WORLD,&TaskRank);
//...
switch(TaskRank)
{

   case 1:
         {
            graph<string> bullion;
            search<string> search("gold", bullion)
         }
         break;
   case 2:
         {
            graph<complex> Coordinates;
            search<complex>((X,Y),Coordinates);
         }
         break;

//...

In Example 9.3, the process with TaskRank == 1 searches a graph named bullion that contains string 
objects and the process with TaskRank == 2 searches a graph named Coordinates containing complex 
numbers. We did not have to change the search() routine to accommodate the different data or data 
types and the MPI program is made simpler because we can reuse the search function template to 
search a graph container containing any type. Using templates simplifies SPMD programming. The 
more generic we make the MPI task, the more flexible it is. Also, once the template is debugged and 
tested, the reliability of all of the MPI tasks are increased since they all execute the same code.

9.2.2 Using Polymorphism to Implement MPMD

Polymorphism is a primary characteristic of object-oriented programming. In order for a language to 
support true object-oriented programming, the language must support encapsulation, inheritance, and 
polymorphism. Polymorphism is the ability of an object to take on many forms. Polymorphism supports 
the notion of "one interface, multiple implementations." A user uses one name or interface implemented 
in different ways by different objects. To illustrate the concept of polymorphism, lets look at a vehicle 
class, its descendants, and a simple function called travel() that uses the vehicle class. Figure 9-2 shows 
the simple hierarchy for our vehicle class family.
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Figure 9-2. The vehicle class family hierarchy.

Airplanes, helicopters, cars, and submarines are all descendants of type vehicle. A vehicle object can 
start its engine, move forward, turn right, turn left, stop, and so on. Example 9.4 demonstrates how the 
travel function uses a vehicle object to make a computerized trip.

Example 9.4 The travel() function using a vehicle object.

void travel(vehicle *Transport)
{

   Transport->startEngine();
   Transport->moveForward();
   Transport->turnLeft();
   //...
   Transport-> stop();
}

int main(int argc, char *argv[])
{
   //...
   car *Car;
   Transportation = new Vechicle();
   travel(Car);
   //...
}

The travel() function accepts a pointer to a vehicle object. The travel() function invokes the appropriate 
methods of the vehicle object. Notice that the main() function in Example 9.4 declares an object of type 
car and not type vehicle. A car object is passed to the function travel() instead of a vehicle object. This 
is possible because in C++ a pointer to a class can point to an object of that type or any objects that are 
descendants of that type. Since car inherits vehicle, a vehicle pointer can point to an object of type car. 
The  function  travel()  is  written  without  the  knowledge  of  what  types  of  vehicle  object  it  will 
manipulate. The travel() function simply requires that its vehicle objects have the capability of starting 
an engine, moving forward, turning left and right, and so on. As long as its vehicle object can perform 
those actions, then the travel() function can do its work. Notice in Figure 9-2 that the methods of the 
vehicle class have been declared as virtual. Declaring the methods as virtual in a base class is necessary 
for runtime polymorphism to work. The car, helicopter, submarine, and airplane class will each define:
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startEngine();
moveForward();
turnLeft();
turnRight();
stop();
//...

relative to their type of machine. Although each type of vehicle moves forward, the method in which a 
car moves forward is different from the way a submarine moves forward. The way an airplane turns 
right is different from the way a car turns right. Therefore, each vehicle type has to implement the 
necessary operations to complete its class. Since these operations are declared as virtual in the base 
class, they are candidates for polymorphism. When the travel() function's vehicle pointer actually points 
to a car object, then the startEngine(), moveForward(), and so on called will be those methods defined 
in the car class. If the travel () function's vehicle pointer was assigned a pointer to an airplane class, 
then the startEngine(), moveForward(), and so on methods that belonged to the airplane class would be 
called. This is where the many forms, or single interface multiple implementations, come in. Although 
the travel() function only calls a single set of methods, the behavior of those methods can be radically 
different  depending on what  type of vehicle  has been assigned to the vehicle  pointer.  In this  way 
travel() is polymorphic because it may do something very different each time it is called. In fact, as 
long as the travel() function uses a pointer to a vehicle type, it may be used in the future for vehicle 
types that were unknown or that did not exist at the time the travel() function was designed. As long as 
the future vehicle classes inherit vehicle and define the necessary methods then they can be manipulated 
by the travel() function. This type of polymorphism is called runtime polymorphism. It's called runtime 
polymorphism  because  the  travel()  function  does  not  know  exactly  which  startEngine(), 
moveForward(), or turnLeft() functions it will call until the program is executing.

This type of polymorphism is useful when implementing MPI programs that use a MPMD model. If the 
work that the MPI tasks perform manipulate pointers to base classes, then polymorphism allows the 
MPI class to also manipulate any derived classes of the base class. If instead of pointers, the travel() 
function in Example 9.4 had a declaration:

void travel(vehicle Transport);

then the startEngine(), moveForward(), and so on calls would belong to the vehicle class and there 
wouldn't be an easy way to manipulate derived classes. The pointer to the vehicle class and the fact that 
the methods in the vehicle class are declared virtual are what makes the polymorphism work. MPI tasks 
that manipulate pointers to base classes can take advantage of polymorphism in the same way that the 
travel() function is able to work with any kind of vehicle object present or future. This technique holds 
a lot of promise for the future of cluster, smp, and mpp applications that will need to implement MPMD 
models. To see how this MPMD works in a MPI context, let's use our travel() function as a MPI task 
that is part of a search and rescue simulation. Each MPI task is responsible for performing a search and 
rescue mission with a different type of vehicle object. Each vehicle will obviously have different means 
of mobility. Although the problem to be solved requires that each MPI task perform a search, the code 
is different because each task uses a different kind of vehicle object that works different and requires 
different data. Example 9.5 would be launched in our MPICH environment using:

$ mpirun -np 16  /tmp/search_n_rescue
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Example 9.5 MPI tasks implementing simple search and rescue simulation.

template<T> bool travel(vehicle *Transport,set<T> Location,
                              T Object)
{

   //...
   Transport->startEngine();
   Transport->moveForward(XDegrees);
   Transport->turnLeft(YDegrees);
   //...
   if (Location.find(Transport->location() == Object){
      //... rescue()
   }
   //...
}

int main(int argc, char *argv[])
{
   //...
   int Tag = 2;
   int WorldSize;
   int TaskRank;
   MPI_Status Status;
   MPI_Init(&argc,&argv);
   MPI_Comm_rank(MPI_COMM_WORLD,&TaskRank);
   MPI_Comm_size(MPI_COMM_WORLD,&WorldSize);
   //...
   switch(TaskRank)
   {
       case 1:
              {
                 //...
                 car * Car;
                 set<streets> SearchSpace
                 travel<streets>(Car, SearchSpace,Street);
                 //...
              }
              break;
       case 2:
              {
                 //...
                 helicopter *BlueThunder;
                 set<air_space> NationalAirSpace;
                 travel<air_space>(BlueThunder,NationalAirSpace,
                                         AirSpace);
                 //...
               }
       //case n:

       //...
   }

}

This will cause search_n_rescue to be launched in 16 processes, with each process potentially running 
on a different processor and each processor potentially on a different computer. Although each process 
is executing the same executable, the work (code) and data that each process works with is radically 



different. Templates and polymorphism are used to differentiate what each MPI task will do and what 
data it will use. Notice in Example 9.5 that the MPI process that has a TaskRank == 1 will use a Car 
object to perform a search and rescue with a container that contains street objects. The MPI process that 
has a TaskRank == 2 will perform its simulation using helicopters and air_space objects. Both tasks call 
the travel() template function. Since the travel() template function manipulates pointers to the vehicle 
class, it can take advantage of polymorphism and perform its operations with any descendant of type 
vehicle. This means that although each MPI task is calling the same travel() function, the operation that 
the travel() function performs will not be the same. Notice there are no case statements or if statements 
in the travel() function that attempt to identify what type of vehicle it is working with. The particular 
vehicle  object  it  is  working  with  is  determined by  the  type  that  vehicle  is  pointing  to.  This  MPI 
application would work with potentially 16 different vehicles, each with its own type of mobility and 
search  space.  There  are  other  techniques  that  can  be  used  to  implement  MPMD  within  a  MPI 
environment but the polymorphic approaches generally require less code.

The two primary types of polymophism we demonstrate are dynamic binding polymorphism supported 
by inheritance and virtual methods and parametric polymorphism supported by templates. The travel() 
function in  Example 9.5 uses both types of polymorphism. The inheritance-based polymorphism is 
demonstrated by the use of the vehicle *Transport. The parameterized polymorphism is demonstrated 
by the use of set<T>, and T Object. Parametric polymorphism is the mechanism by which the same 
code  is  used  on  different  types  passed  as  parameters.  Table  9-2 lists  the  different  types  of 
polymorphism that may be used to simplify MPI tasks and shorten the code required to implement an 
MPI program.

Table 9-2. Different Types of Polymorphism That May Be Used to Simplify MPI Tasks

Types  of 
Polymorphism

Mechanisms Description

Runtime (dynamic) inheritance  virtual 
methods

All information needed to determine which function is to 
be executed is not known until runtime.

Parametric templates A  mechanism  in  which  the  same  code  is  used  on 
different types that are passed as parameters.

9.2.3 Adding MPMD with Function Objects

Function  objects  are  also  used  by  the  standard  algorithms  to  implement  a  kind  of  horizontal 
polymorphism. The polymorphism implemented using vehicle *Transport in  Example 9.5 is vertical 
because in order for it to work the classes must all be related through inheritance. When horizontal 
polymorphism is used, the classes are not related by inheritance but by interface. Function objects each 
has the operator() defined. Function objects would allow MPI tasks to be designed with the general 
form:

// function object
class some_class{
   //...
   operator();
   //
};

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex05


template<class T> T mpiTask(T X)
{
   //...
   T Result;
   Result = X()
   //...

}

The mpiTask()  template  function  will  then  work  with  any type  T that  has  the  operator()  function 
appropriately defined:

//...
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&TaskRank);
MPI_Comm_size(MPI_COMM_WORLD,&WorldSize);
//...

if(TaskRank == 0){
   //...
   user_defined_type M;
   mpiTask(M);
   //...
}

if(TaskRank == N){
   //...
   some_other_userdefined_type N;
   mpiTask(N);
}
//....

This horizontal polymorphism does not rely on inheritance or virtual functions. So if our MPI task gets 
its rank and then declares any type of object that has the operator() defined, then when mpiTask() is 
called its behavior will be dictated by whatever functionality is found in the operator() method. So 
although each process launched with the mpirun script is identical, the polymorphism of templates and 
the function objects allow each MPI task to perform different work on different data.



9.3 Simplifying MPI Communications

In addition to simplifying and shortening the code of the MPI task with polymorphism and templates, 
we  can  also  simplify  the  communication  between  MPI  tasks  by  taking  advantage  of  operator 
overloading. The MPI_Send() and MPI_Recv() class of functions have the form:

MPI_Send(Buffer,Count,MPI_LONG,TaskRank,Tag,Comm);
MPI_Recv(Buffer,Count,MPI_INT,TaskRank,Tag,Comm,&Status);

where the calls require that the user specify the data type involved in the call and a buffer that will hold 
the data to be sent or received. The specification of the data type for each call of the send and receive 
routines can be tedious and can introduce subtle errors if the wrong types are passed. Table 9-3 contains 
short descriptions for each of the MPI send and receive functions and their prototypes.

The goal  is  to make the data  types and buffers as transparent  as possible during send and receive 
operations. We would like to send and receive MPI data using the stream metaphor of the iostream 
classes. We would like to send data using syntax such as:

//...
int X;
float Y;
user_defined_type Z;

cout << X << Y << Z;

//...

Here, the developer does not have to specify the types when inserting data into cout. The three data 
types to be displayed each have the operator << defined. These definitions specify how to translate the 
type during the insertion into the cout stream. Likewise, extraction from the cin stream:

//...

int X;
float Y;
user_defined_type Z;

cin >> X >> Y >> Z;
//...

occurs without specifying the types involved. Operator overloading allows the developer to use this 
technique for MPI tasks. The cout stream is instantiated from an ostream class and cin is instantiated 
from an istream class. These classes define the operator << and >> for the built-in C++ data types. For 
instance, the ostream class contains a number of overloaded operator << functions:

//...
ostream& operator<<(char c);
ostream& operator<<(unsigned char c);
ostream& operator<<(signed char c);
ostream& operator<<(const char *s);
ostream& operator<<(const unsigned char *s);
ostream& operator<<(const signed char *s);
ostream& operator<<(const void *p);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(unsigned long n);
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Table 9-3. MPI Send and Receive Functions and Their Prototypes

MPI Send and Receive Routines #include "mpi.h" Description

int MPI_Send
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm);

Performs a basic send.

int MPI_Send_init
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Initializes a handle for a standard send.

int MPI_Ssend
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm);

Performs a basic synchronous send.

int MPI_Ssend_init
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Initializes a handle for a synchronous send.

int MPI_Rsend
(void *Buffer, int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm);

Performs basic ready send.

int MPI_Rsend_init
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Initializes a handle for a ready send.

int MPI_Isend
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,

Starts a nonblocking send.



MPI Send and Receive Routines #include "mpi.h" Description

 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

int MPI_Issend
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Starts a nonblocking synchronous send.

int MPI_Irsend
(void *Buffer, int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Starts a nonblocking ready send.

int MPI_Recv
(void *Buffer,int Count,
 MPI_Datatype Type,
 int source,int MessageTag,
 MPI_Comm Comm,
 MPI_Status *Status);

Performs a basic receive.

int MPI_Recv_init
(void *Buffer,int Count,
 MPI_Datatype Type,
 int source,int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Initializes a handle for a receive.

int MPI_Irecv
(void *Buffer,int Count,
 MPI_Datatype Type,
 int source,int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Begins a nonblocking receive.

int MPI_Sendrecv
(void *sendBuffer,
 int SendCount,
 MPI_Datatype SendType,
 int Destination,int SendTag,
 void *recvBuffer,
 int RecvCount,
 MPI_Datatype RecvYype,
 int Source, int RecvTag,
 MPI_Comm Comm,

Sends and receives a message.



MPI Send and Receive Routines #include "mpi.h" Description

 MPI_Status *Status);

int MPI_Sendrecv_replace
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,int SendTag,
 int Source,int RecvTag,
 MPI_Comm Comm,
 MPI_Status *Status);

Sends and receives using a single buffer.

These definitions allow the user of the ostream and the istream classes to use cout and cin objects 
without having to specify the data types involved in the operations. This overloading technique can be 
used to simplify MPI communications. We explored the idea of a PVM stream in Chapter 6. Here we 
employ the same approach to create an MPI stream. We can use the structure of an istream and ostream 
as a guide for creating an mpi_stream class. The stream classes consist of a state component, buffer 
component, and translation component. The state component is captured by the ios class. The buffer 
component  is  represented by the streambuf,  stringbuf,  or  filebuf  classes.  The translator  classes are 
istream,  ostream,  istringstream,  ostringstream,  ifstream,  and  ofstream.  The  state  component  is 
responsible for encapsulating the state of the stream. The format of the stream, whether the stream is in 
a good state or failed state, or whether the stream is at eof, and so on are captured by the ios component. 
The buffer components are used to hold the data that is being read or written. The translation classes 
translate types into streams of bytes and streams of bytes back into built-in types. Figure 9-3 shows the 
UML class diagram for the iostream family classes.

Figure 9-3. UML class diagram for iostream family classes.

9.3.1 Overloading the << and >> Operators for MPI Communication

The relationships and functionality of the classes in  Figure 9-3 are used as a guideline for designing 
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mpi_streams. Although going through the trouble of designing MPI stream classes is more work up 
front than using the MPI_Recv() and MPI_Send() routines directly,  it  will make MPI development 
considerably  simpler  in  the long run.  Where  parallel  programs can  be  made simpler,  they should. 
Reducing the complexity of programs is usually a noteworthy goal. We only present a skeleton on an 
mpi_stream class here. We present enough to demonstrate how the construction of an MPI stream class 
can be approached. Once an mpi_stream class is designed it can be used to simplify communications in 
most any MPI program. Example 9.6 contains an excerpt from the declaration of a mpi_stream class.

Example 9.6 Contains an excerpt from the declaration of a mpi_stream class.

class mpios{
protected:
   int Rank;
   int Tag;
   MPI_Comm Comm;
   MPI_Status Status;
   int BufferCount;
   //...
public:
   int tag(void);
   //...

}
class mpi_stream public mpios{
protected:
   mpi_buffer Buffer;
   //...

public:
   //...
   mpi_stream(void);
   mpi_stream(int R,int T,MPI_Comm C);
   void rank(int R);
   void tag(int T);
   void comm(MPI_Comm C);
   mpi_stream &operator<<(int X);
   mpi_stream &operator<<(float X);
   mpi_stream &operator<<(string X);
   mpi_stream &operator<<(vector<long> &X);
   mpi_stream &operator<<(vector<int> &X);
   mpi_stream &operator<<(vector<float> &X);
   mpi_stream &operator<<(vector<string> &X);
   mpi_stream &operator>>(int &X);
   mpi_stream &operator>>(float &X);
   mpi_stream &operator>>(string &X);
   mpi_stream &operator>>(vector<long> &X);
   mpi_stream &operator>>(vector<int> &X);
   mpi_stream &operator>>(vector<float> &X);
   mpi_stream &operator>>(vector<string> &X);
   //...
};

For  exposition  purposes  we  have  combined  the  impi_stream and  ompi_stream class  into  a  single 
mpi_stream class. In the same manner that the istream and ostream classes overload the << and >> 
operators, we overload those operators as well. Example 9.7 shows these overloaded operators can be 
defined:
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Example 9.7 Definition of << and >> operators.

//...
mpi_stream &operator<<(string X)
{
   MPI_Send(const_cast<char*>(X.data()),X.size(),MPI_CHAR,Rank,Tag,Comm);
   return(*this);
}
//  Over simplification of buffer
mpi_stream &operator<<(vector<long> &X)
{
   long *Buffer;
   Buffer = new long[X.size()];
   copy(X.begin(),X.end(),Buffer);
   MPI_Send(Buffer,X.size(),MPI_LONG,Rank,Tag,Comm);
   delete Buffer;
   return(*this);
}

// Over simplification of buffer

mpi_stream &operator>>(string &X)
{

   char Buffer[10000];
   MPI_Recv(Buffer,10000,MPI_CHAR,Rank,Tag,Comm,&Status);
   MPI_Get_count(&Status,MPI_CHAR,&BufferCount);
   X.append(Buffer);
   return(*this);

}

The mpios class in Example 9.7 serves a similar purpose to that of the ios class for the iostream. The 
purpose of the mpios class is to maintain the state of the mpi_stream classes. Each data type that will be 
used within your MPI applications should have the operators << and >> overloaded for them. Here, we 
show a few simple overloaded operators. In each case we present an over-simplification of the buffer 
management. In practice, exception handling and memory allocation issues are handled by template 
classes and allocator classes. Notice in Example 9.7 that the mpios class holds the communicator, status 
of  the  mpi_stream,  the  buffer  count,  and  the  value  for  rank  and  tag.  This  is  only  one  possible 
configuration for a mpi_stream class—there are many others. Once an mpi_stream class is defined it 
can be reused in any MPI program. Communication between MPI tasks can be written as:

//...
int X;
float Y;
vector<float> Z;
mpi_stream Stream(Rank,Tag,MPI_WORLD_COMM);
Stream << X << Z;
Stream << Y;
//...
Stream >> Z;

This notation allows the programmer to maintain the stream metaphor and simplifies the MPI code. Of 
course the appropriate error checking and exception handling must be included within the definitions of 
the << and >> operators.
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Summary

Implementations of the SPMD and MPMD models of concurrency have much to be gained by using 
templates and taking advantage of polymorphism. While the MPI does include bindings for C++ it does 
not  take  advantage  of  object-oriented  programming  techniques.  This  presents  an  opportunity  and 
challenge to developers using the MPI standard. Inheritance and polymorphism can be used to simplify 
MPMD programming. Parameterized or genericity programming that is supported using the template 
facilities of C++ can be used to simplify SPMD programming with the MPI. Dividing a program's work 
between objects is a natural way to discover and exploit the parallelism within an application. Families 
of  objects  can  be associated  with  communicators  to  facilitate  communication  in  the  MPI  between 
multiple groups that have different work responsibilities. Operator overloading can be used to maintain 
a stream metaphor with the MPI. Using object-oriented programming techniques and parameterized 
programming techniques within the same MPI application is a multiparadigm approach that simplifies 
and in most cases shortens the code. It leads to programs that are easier to debug, test, and maintain. 
MPI tasks implemented by template functions tend to be more reliable across different data types than 
separately defined functions that have to perform type casting.

Chapter  10.  Visualizing  Concurrent  and  Distributed  System 
Design
"Unnamed thinking which I would like to suggest may be common with us. Our brainwaves 
are very often wordless. We often quite suddenly perceive correct solutions to problems 
with which we have been striving for a long time before we have decided we will name 
them in one language or another. ... Very many ideas come to us in wordless form . . ."

—O. Koehler, The Ability of Birds to Count

In this Chapter

• Visualizing Structures  

• Visualizing Concurrent Behavior  

• Visualizing the Whole System  

• Summary  

A model of a system is the body of information gathered for the purpose of studying the system so it 
can be better understood by the developers and maintainers of the system. When a system is modeled, 
the boundaries and identification of the entities, attributes, and the activities performed by the system 
can be determined. Modeling is an important tool in the design process of any system. It is essential that 
developers  fully  understand the  system they  are  developing.  Modeling  can  reveal  the  concurrency 
embedded in the system and where distribution can be appropriately applied.

The UML (United Modeling Language) is a graphical notation used to design, visualize, model, and 
document the artifacts of a software system. It is the de facto standard for communicating and modeling 
object-oriented systems. The modeling language uses symbols and notations to represent the artifacts of 
a software system from different views and different focuses. The UML brings together the approaches 
of Grady Booch, James Rumbaugh, and Ivar Jacobson's object-oriented analysis and design methods 
developed in  the  1980s  and 1990s.  It  was  adopted  by  the  OMG (Object  Management  Group),  an 
international organization consisting of software developers and information system vendors with over 
800  members.  The  adoption  and  conformance  to  the  UML give  software  developers  a  consistent 
language and tool for object analysis, specification, visualization, and documentation.
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In this chapter, we show you how to visualize and model your concurrent and distributed system using 
the UML. Besides helping you in the design of your system, modeling will help you identify where 
concurrency  emerges,  when  synchronization  and  communication  are  needed,  and  how  and  where 
objects can be distributed. We discuss diagramming techniques used to visualize and model concurrent 
systems from the structural and behavioral perspectives. Please note the classes, objects, and systems 
used as examples in this chapter are used for exposition purposes and may or may not necessarily 
reflect actual classes, objects, or structures used in an actual system.

10.1 Visualizing Structures

The structural view of a system focuses on the static parts of that system. This view examines how the 
elements in the system are constructed. It examines its attributes, properties, and operations along with 
its  organization,  composition,  and  relationship  with  other  elements  in  the  system.  The  diagraming 
techniques discussed in this section are the ones used to model:

• class, objects, templates, processes, and threads

• organization of objects that work together

The elements documented can be conceptual or physical.

10.1.1 Classes and Objects

A class is a model of a construct with its attributes and behaviors. It is a description of a set of things or 
objects that share the same attributes. A class is the basic component of any object-oriented system. 
Classes can be used to represent real-world, conceptual, hardware, and software constructs. A class 
diagram is  used to represent the classes, the objects,  and the relationships that  exist  between them 
within your concurrent and/or distributed system. The class diagram is used to show the attributes and 
the services a class provides and the restrictions that apply to the manner in which these classes/objects 
are connected.

The UML provides a graphical representation of a class. The simplest representation of a class is a 
rectangular box that contains the name of the class. The name alone is the simple name. The class 
diagram can also show the attributes and services provided to the user of the class. To include attributes 
and services,  a  rectangle  is  drawn displaying three horizontal  compartments.  The top compartment 
displays the simple name of the class, the middle compartment displays the attributes, and the bottom 
compartment displays the services. The attributes and services compartments can be labeled "attributes" 
and "services," respectively, in order to identify each compartment. Besides the name of the class, if the 
attributes or services are to be shown, then the other compartment is displayed as empty. Figure 10-1 
shows the various ways a class can be represented.
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Figure 10-1. The various ways to represent a class.

In Figure 10-1, the class student_schedule is represented. Figure 10-1(a) shows the class in its simplest 
representation, (b) shows the class name and its attributes and services, and (c) shows the class name 
and its services. The compartment that contains the attributes is empty in order to communicate that the 
class has attributes but they are not shown.

An additional compartment can be used to describe the responsibility of the class. This compartment 
appears under the services compartment and can be omitted. The responsibility of the class is what the 
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class will perform. It is displayed as contractual statements. These responsibilities are transformed into 
services and attributes. Attributes are transformed into datatypes and data structures and services are 
transformed into methods. This compartment can be labeled "responsibilities". The responsibilities of 
the student_schedule class can be stated as: "returns the schedule for a student for any day of the week, 
the student number, the year, and term of the stored schedule." The responsibilities of the class are 
displayed  as  text  in  its  compartment  where  each  responsibility  is  listed  as  a  short  statement  or 
paragraph.

The class diagram can show an object, an instance of a class. Like a class, the simplest representation of 
an object is a rectangle that contains the name of the object underlined. This is called a named instance 
of a class. A named instance of a class can be shown with or without its class name:

mySchedule named instance

mySchedule:student_schedule named instance with class name

Since the actual name of the object may be known only to the program that declares it, you may want to 
represent anonymous instances of classes in your system documentation. You can label an object as 
anonymous in this way:

:student_schedule

This type of labeling may be convenient where there are several instances of a class in your system. 
Several instances of a class can be represented in two ways: as objects and as classes.

The number of instances a class may have is called multiplicity. The number of instances of a class can 
be noted in a class diagram. A class may have zero to an infinite number of instances. A class with zero 
instances is a pure abstract class. It cannot have any objects explicitly declared of its type. The number 
of instances may have an upper or lower bound, which may also be expressed in the diagram of a class. 
Figure 10-2 shows how several instances of a class can be represented in a class diagram as objects or 
with multiplicity notation.

Figure 10-2. Mutiple instances of a class represented graphically and using multiplicity notation.

In  Figure 10-2,  the multiplicity  of the student_schedule class is  1..7,  meaning the least  number of 
student schedules in our system is  1 and the most  that  can exist  is  7.  Here are more examples of 
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multiplicity notation and their meaning:

1 One instance

1..n One to a specified number n

1..* One to an infinite number

0..1 0 to 1

0..* 0 to an infinite number

* An infinite number

Of course, an infinite number of instances will be limited by internal memory or external storage.

10.1.1.1 Displaying Specifics about Attributes and Services

The class diagram can specify more details about the attributes and services of the class. The attributes 
compartment can specify the datatype and/or default value (if there is one) for classes and values of 
attributes for objects. For example, the datatypes for the attributes of the student_schedule class can be 
displayed:

StudentNumber : string
Term : string
StudentSchedule : map <string,vector<course> >
ScheduleIterator : map <string,vector<course> >::iterator

For the mySchedule object, these attributes can take on values:

StudentNumber : string = "102933"
Term : string = "Spring"

Methods can be shown with parameters and return type:

studentSchedule(&X : map <string,vector<course> >) : void
studentNumber() : string

The studentSchedule() function accepts the courses of the student. course is a class that models a single 
course. The courses for each day of the week are stored in a vector. The map container maps a string 
(day of the week) with the vector of courses for that particular day. The studentSchedule() function 
returns void where the studentNumber() function returns a string.

The properties of attributes and methods can be displayed in the class diagram. Properties help describe 
how an attribute or operation can be used. Property labels can be used to describe attributes that are 
constant or modifiable. There are three properties used to describe attributes: changeable, addOnly, and 
frozen.  Table 10-1 lists  these properties with a brief  description.  There are four properties used to 
define  methods:  isQuery,  sequential,  guarded,  and  concurrent.  They  are  also  listed  in  Table  10-1. 
sequential, guarded, and concurrent properties are concerned with the concurrency of a method. The 
sequential property describes a concurrent operation where synchronization is the responsibility of the 
callers of the operation. These operations do not guarantee the integrity of the object.  The guarded 
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property describes a concurrent operation where synchronization is already built in. guarded operations 
mean callers invoke the operation one at a time. The concurrent property describes an operation that 
permits simultaneous use. The guarded and concurrent operations guarantee the integrity of the object. 
Guaranteeing the integrity of an object is applicable to operations that change the state of the object.

Table 10-1. Properties for Attributes and Operations

Properties  for 
Attributes

Description

{changeable} No restrictions on modifying the values of this type of attribute.

{addOnly} For attributes with multiplicity > 1, additional values can be added. Once created 
a value cannot be removed or changed.

{frozen} Attribute's value cannot be changed once the object has been initialized.

Properties  for 
Methods

 

{isQuery} Execution of this type of method leaves the state of the object unchanged. This 
method returns values.

{sequential} Users of the object must use synchronization to ensure sequential access to this 
method. Multiple concurrent access to this method jeopardizes the integrity of the 
object.

{guarded} Synchronized sequential access to this method is built in the object; integrity of 
the object is guaranteed.

{concurrent} Multiple concurrent access is permitted; integrity of the object is guaranteed.

guarded and concurrent properties for methods can be used to reflect the PRAM (Parallel Random-
Access Machine) model. If a method is reading and/or writing memory that is accessible to another 
method that is also reading and/or writing that same memory, then that method can be described as a 
PRAM algorithm. The properties can be appropriately used. For example:

PRAM Algorithms Properties

CR (Concurrent Read) concurrent

CW (Concurrent Write) concurrent

CRCW (Concurrent Read Concurrent Write) concurrent



EW (Exclusive Write) guarded

ER (Exclusive Read) guarded

EREW (Exclusive Read Exclusive Write) guarded

The student_schedule class can further describe how its attributes and services can be used by using 
property labels:

attributes

StudentNumber : string {frozen}
Term : string {changeable}
StudentSchedule : map <string,vector<course> > {changeable}

operations

scheduleDayOfWeek(&X : vector<course>, Day : string) :
                 void {guarded}
studentNumber() : string {isQuery, concurrent}

StudentNumber  is  a  string  constant.  Once  an  object  assigns  a  value,  it  cannot  be  changed.  If  the 
student_schedule  object  is  used  for  the  same  student  but  for  different  terms,  then  Term  and 
StudentSchedule would be modifiable attributes. The scheduleDayOfWeek() operation accepts a vector 
of courses for a particular day of the week stored in the string Day. This operation is guarded. It inserts 
a student schedule for a particular day of the week into the map object StudentSchedule, changing the 
state of the object.  Synchronization is built into the object by using mutexes. The studentNumber() 
operation has two properties: isQuery and concurrent. It returns the constant StudentNumber and is safe 
for simultaneous access. Calling this method does not change the state of the object thus using the 
isQuery property.

Another important property that can be shown is the visibility of attributes and operations. A visibility 
property describes who can access the attribute or invoke the operation. This property uses a character 
or symbol to represent the level of visibility. Visibility maps to the access specifiers of C++:

Access Specifiers Visibility Symbols

public (+) Anyone has access.

protected (#) The class itself and its descendants have access.

private (-) Only the class itself has access.

The symbol is prepended to the service, method, or attribute name.

10.1.1.2 Ordering the Attributes and Services

It may be best when representing a class with many attributes and operations to organize them within 



their compartments. Order helps to identify and navigate through the attributes and operations. The 
organization  can  be  alphabetical,  by  access,  or  by  category.  Alphabetical  order  is  not  helpful  in 
identifying what attributes or operations can be called (if the documentation is targeted to users of the 
system) or  which of  them are not  defined (if  documentation  is  used  in  the  development  process). 
Ordering by access is very useful. It communicates to the user which attributes and operations are 
publicly accessible. Knowing which members are protected will assist users who need to extend or 
specialize the class through inheritance. This can be done by using the visibility symbols, +, -, and #, or 
by using the C++ access specifiers, protected, public, and private.

There are  several  ways to  categorize the attributes  and operations.  The minimal  standard interface 
defines  categories  for  operations  that  in  turn  define  attributes  that  support  these  operations.  The 
minimal standard interface is based on the concept that all classes should define certain operations and 
services in order for a class to be useful. These operations are:

• default constructor

• destructor

• copy constructor

• assignment operations

• equality operations

• input and output operations

• hash operations

• query operations

These can be used as categories to classify the operations of a class. Other categories can be used to 
help organize attributes and operations:

attributes

static
const

operations

virtual
pure virtual
friend

These categories should be used based upon what best describes the services offered by the class. The 
category name is embraced in left and right double angle brackets, (<<...>>). Figure 10-3 shows the two 
ways attributes and operations can be organized for the student_schedule class: (a) using the visibility 
symbols, access specifiers, and (b) using categorization based on the minimal standard interface.
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Figure 10-3. Two ways attributes and services can be organized in a class diagram.

10.1.1.3 Template Classes

A template class is a mechanism that allows a type to be a parameter in the definition of the class. The 
template defines services that manipulate whatever datatype that is passed to it. The parameterized class 
is created in C++ by using the template keyword:

template <class Type > classname {...};

Type parameter represents any type passed to the template. Type can be a built-in datatype or a user-
defined  class.  When  Type  is  declared,  the  template  is  bound  by  the  element  passed  to  it  as  the 
parameterized type. For example, the student_schedule class has a map container that contains vectors 



of course objects for each day of the week. Both the map and the vector are template classes:

map <string,vector<course> > StudentSchedule;

The map container has string as a key and vector as the value. The vector container contains a user-
defined  course object.  The map container  can map any datatype  to  any other  datatype and vector 
containers can contain any datatype:

map <int, vector <string> > Maps a number to a vector of strings

map <int, string> > Maps a number to a string

vector <student_schedule> A vector of student_schedule objects

vector <map <int,string> > A vector of maps that maps a number to a string

Template classes are also represented as rectangular boxes. The parameterized type is represented as a 
dashed box displayed in the upper right-hand corner. The template class can be unbound or bound. 
When representing an unbound template class, the dashed box displays a capital T to represent the 
unbound parameterized type. There are two ways to represent a bound template class. One approach is 
to use the class symbol containing the C++ syntax for declaring and binding a template class:

vector <string>

This is called implicit binding. Another approach uses a dependency stereotype, bind. The stereotype 
specifies the source instantiating the template class by using the actual parameterized type.  This is 
called  explicit  binding.  The  template  object  is  the  instantiation  of  the  template  class.  It  has  a 
dependency relationship with the template class. The stereotype specifies the name of the parameter 
types. Inside the dashed box, datatypes are displayed. The template object can also be considered as a 
refinement of the template class. Refinement is a general term to indicate a greater level of detail of 
something  that  already  exists.  The  stereotype  indicator  <<bind>>  refines  the  template  class  by 
instantiating the parameterized type. Figure 10-4 depicts the ways a template class can be represented, 
unbound and bound, for a map container.

Figure 10-4. The ways to represent a bound and unbound template class.

10.1.2 The Relationship between Classes and Objects

The UML defines three types of relationships between classes:

• dependencies
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• generalizations

• associations

Dependency defines a relationship between two classes. When one class depends on another class, this 
means a change to the independent class may affect the dependent class. Generalization is a relationship 
between a general construct and a more specific type of that construct. The general construct is the 
parent or superclass and the more specific construct is the child or subclass. The child inherits the 
properties, attributes, and operations of the parent and may define other attributes and operations of its 
own. The child is derived from the parent and can be used as a substitute for the parent class. A class 
that has no parent is called the root or base class. Association is a structural relationship that specifies 
that objects of one type are connected to objects of another type. Associations between objects are 
bidirectional. For example, if object 1 is associated with object 2, then object 2 is associated with object 
1. An association between two elements (classes, etc.) is called a binary association. An association 
between n elements is called n-ary association.

Table 10-2. Stereotypes That Can Be Applied to Dependencies

Dependency 

 

Description

stereotype << bind >> Stipulates that the source instantiates the template target using the actual 
parameters.

stereotype << friend >> Stipulates that the source is given visibility into the target.

stereotype << instanceOf >> Stipulates that  the source is  an instance of the target;  used to define 
relationships between classes and objects.

stereotype << instantiate >> Stipulates that the source creates instances of the target; used to define 
relationships beween classes and objects.

stereotype << refine >> Stipulates that the source is a greater level of detail than the target; used 
to define relationships between derived and base classes.

stereotype << use >> Stipulates that the source depends on the public interface of the target.

stereotype << become >> Stipulates that the target object is the same object as the source, but at a 
later  time  in  the  object's  lifetime;  target  may  have  different  values, 
states, etc.

stereotype << call >> Stipulates that the source object invokes the target's method.

stereotype << copy >> Stipulates  that  the target  object  is  an  exact  independent  copy of  the 
source object.



Dependency 

 

Description

stereotype << access >> Stipulates that the source package is the given the right to reference the 
elements of the target package.

stereotype << extend >> Stipulates that the target use case extends the behavior of the source use 
case.

stereotype << include >> Stipulates that the source use case can include the behavior of the target 
use case at a location named by the source use case.

Dependency,  generalization,  and  association  are  actually  classifications  of  relationships.  There  are 
many types  of  dependencies,  generalizations,  and associations  that  exist  and can be defined.  Each 
relationship classification has its own symbol of representation. That symbol is a solid or dashed line 
segment  between the elements and may be accompanied with some type of arrowhead.  To further 
define that relationship to a specific type, stereotypes or adornments are used in conjunction with the 
line segment. Stereotypes are labels used to further describe a UML element. It is rendered as a name 
enclosed by guillemets and placed above or next to the element. For example:

<<bind>>

was placed next to the arrow, which depicts dependency when describing the template object in Figure 
10-4. Adornments are textual or graphical items added to an element's basic representation and are used 
to document details about that element's specifications. For example, an association is depicted as a 
solid  line  between  elements.  Aggregation  is  a  type  of  association  that  expresses  a  "whole–part" 
relationship. To depict aggregation, a hollow diamond adorns the solid line at the whole end.

Dependency  is  rendered  as  a  dashed  directed  line  (has  a  arrow)  pointing  to  the  construct  being 
depended  on.  Use  a  dependency  relationship  when  one  construct  uses  another.  Generalization  is 
rendered as a solid directed line with a large open arrowhead pointing to the parent or superclass. Use a 
generalization  relationship  when  one  construct  is  derived  from  another  construct.  Association  is 
rendered as a solid line connecting the same or different constructs. Use an association relationship 
when one construct  is  structurally  related to  another.  Table  10-2 lists  some of the stereotypes  and 
constraints  that  can  be  applied  to  dependencies.  These  stereotypes  are  used  to  show dependencies 
between classes, interactive objects, states, and packages. Tables 10-3 and 10-4 list the stereotypes and 
constraints  that  can  be  applied  to  generalizations  and  associations.  If  any  of  the  stereotypes  use 
graphical adornments, they are shown.

Table 10-3. Stereotypes and Constraints That Can Be Applied to Generalizations

Generalization 

 

Description

stereotype << implementation 
>>

Stipulates that the child inherits the implementation of the parent but 
does not make public nor support the parent's interfaces.
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Generalization 

 

Description

constraint {complete} Stipulates that all children in the generalization have been named and 
no more additional children can be derived.

constraint {incomplete} Stipulates that not all children in the generalization have been named 
and additional children can be derived.

constraint {disjoint} Stipulates that the parent's objects may have no more than one of its 
children as a type.

constraint {overlapping} Stipulates  that  the parent's  objects  may have more than one of its 
children as a type.

Table 10-4. Stereotypes, Constraints, and Adornments That Can Be Applied to Associations

Association 

 

Description

type  navigation 

 

Describes a one-direction association where object 1 is associated 
with object 2 but object 2 is not associated with object 1.

type  aggregation 

 

Describes a containment (whole–part relationship) where the part is 
not associated with just one whole for its lifetime.

type  composition 

 

Describes  a  containment  (whole–part  relationship)  where  the  part 
can only be associated with one whole for its lifetime.

constraints {implicit} Stipulates that the relationship is conceptual.

constraints {ordered} Stipulates that the objects at one end of the association has an order.

property {changeable} Describes  what  can be added,  deleted,  and  changed between two 
objects.

property {addOnly} Decribes new links that can be added to an object on the opposite 
end of the association.



Association 

 

Description

property {frozen} Describes a link that once added to an object on the opposite end of 
the association, cannot be changed or deleted.

Associations have another level of detail that can be applied to a general association or stereotype listed 
in Table 10-4:

name An association can have a name that is used to describe the nature of the relationship. A 
direction triangle can be added to the name to ensure its meaning. The triangle points in 
the direction the name is intended to be read.

role A role is the face the class at the near end of the association presents to the class at the 
other end of the association.

multiplicity Multiplicity notation can be used to state how many objects may be connected across an 
association. Multiplicity can be shown at both ends of an association.

navigation Navigation across an association can be directed where object 1 is associated with object 
2 but object 2 is not associated with object 1.

10.1.2.1 Interface Classes

An interface class is used to modify the interface of another class or set of classes. The modification 
makes  the  class  easier  to  use,  more  functional,  safer,  or  semantically  correct.  An  example  of  an 
interface class are the container adaptors that are part of the Standard Template Library. The adaptors 
provide a new public interface for the deque, vector, and list containers. Example 10.1 shows the stack 
class. It is used as an interface class to modify a vector class.

Example 10.1 Using the stack class as an interface class.

template < class Container >
class stack{
//...
public:
   typedef Container::value_type value_type;
   typedef Container::size_type size_type;
protected:
   Container c;
public:
   bool empty(void) const {return c.empty();}
   size_type size(void) const {return c.size(); }
   value_type& top(void) {return c.back(); }
   const value_type& top const {return c.back(); }
   void push(const value_type& x) {c.push.back(x); }
   void pop(void) {c.pop.back(); }
};

The stack is declared by specifying the Container type:
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stack < vector< T> > Stack;

In this case, the Container is a vector but any container that defines these operations:

empty()
size()
back()
push.back()
pop.back()

can be used as  the implementation class  for  the stack interface class.  The stack class  supplies  the 
semantically correct interface traditionally accepted for stacks.

There are multiple ways to depict an interface. A circle with the name of the interface class outside the 
circle is one way to represent an interface class. This is depicted in Figure 10-5(a), showing the stack as 
an interface class. The class symbol can also be used to show the operations of the stack class, Figure 
10-5(b). Here the stereotype indicator <<interface>> is displayed above the name of the class to denote 
that this is an interface class. The letter I can be prepended to the name of the interface class and all of 
its operations to further distinguish it from other classes.

Figure 10-5. Ways to represent an interface class.

Realization can be used to show the relationship between the stack and the vector class. Realization is a 
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semantic relationship between classes in which one specifies a contract (interface class) and the other 
class carries it out (implementation class). In our example, the stack class specifies the contract and the 
vector class carries it out. A realization relationship is depicted as a dashed line between the two classes 
with a large open arrowhead pointing to the interface class or the class that specifies the contract, which 
is depicted in Figure 10-5(c). It is read "The stack class is realized by the vector class." The relationship 
between the interface class and its implementer can also be depicted with the interface lollipop notation, 
as shown in Figure 10-5(d). The stack class can be the interface to or realized by a vector, list, or deque.

10.1.3 The Organization of Interactive Objects

As you can see, classes and interfaces can be used as building blocks to create more complex classes 
and interfaces. In a distributed or parallel system, there may be many large and complex structures 
collaborating with other structures, thus creating a society of classes and interfaces working together to 
accomplish the goals of the system. In the UML, this is called a collaboration. These building blocks 
can include both the structural and behavioral elements of the system. A particular task requested by a 
user may involve many objects working together to accomplish that task. Those same objects working 
with other elements are used to accomplish other tasks. This collection of elements, together with their 
interactions, form a collaboration. The collaboration has two parts: a structural part, which focuses on 
the way the collaborating elements are organized and constructed, and a behavioral part, which focuses 
on the interaction between the elements. This will be discussed in the next section.

A collaboration is depicted as an ellipse with dashed lines containing the name of the collaboration. A 
collaboration name is unique. It is a noun or short noun phrase based on the vocabulary of the system 
being modeled. Zooming inside the collaboration ellipse is the structural and behavioral parts of the 
collaboration.  Figure 10-6 shows an example of the structural part of the course adviser system. The 
structural part of the collaboration consists of any combination of classes and interfaces, components 
and nodes. In Figure 10-6, a system may contain many collaborations. A single collaboration is unique 
in the system but the elements of a collaboration are not. The elements of one collaboration may be 
used in another collaboration using a different organization.

Figure 10-6. A collaboration diagram for a course adviser system.
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10.2 Visualizing Concurrent Behavior

The behavioral view of a system focuses on the dynamic aspects of that system. This view examines 
how the elements in the system behave as it interacts with other elements of the system. Here is where 
concurrency  will  emerge  as  elements  interact  with  other  elements.  The  diagramming  techniques 
discussed in this section are the ones used to model:

• the lifetime of the behavior of an object

• the behavior of objects that work together for a particular purpose

• flows of control focusing on action or sequence of actions

• synchronization and communication between elements

This section also covers diagraming techniques used to model distributed objects.

10.2.1 Collaborating Objects

Collaborating objects are objects involved with each other to perform some specific task. They do not 
form a permanent relationship. The same objects can be involved with other objects working together to 
perform other tasks. Collaborating objects can be represented in a collaboration diagram. Collaboration 
diagrams have a structural part and an interactive part. The structural part has already been discussed. 
The interaction part  is  a  graph where all  of  the participating objects  are  vertices.  The connections 
between the objects are the arcs. The arcs can be adorned with messages passed between the objects, 
method  invocations,  and  stereotype  indicators  that  express  more  details  about  the  nature  of  the 
connection.

The connection between two objects is a link. A link is a type of association. When two objects are 
linked, actions can be performed between them. The action may result in a change of the state of one or 
both objects. These are examples of the types of actions that can take place:

create An object can be created.

destroy An object can be destroyed.

call An operation of an object can be invoked by another object or itself.

return A value is returned to an object.

send A signal may be sent to an object.

When any method is invoked, the parameters and the return value can be expressed. Other actions can 
take place if specified.

These actions can take place if the receiving object is visible to the calling object. Stereotypes can be 
used to specify why the object is visible:

association The object is visible because an association exists (very general).

parameter The object is visible because it is a parameter to the calling object.



local The object is visible because it has local scope to the calling object.

global The object is visible because it has global scope to the calling object.

self The object calls its own method.

Other stereotypes and adornments appropriate for associations can be expressed.

When a method is invoked, this may cause a number of other methods to be invoked by other objects. 
The  sequence  in  which  the  operations  are  performed  can  be  shown by using  a  sequence  number 
combination  and  a  colon  separator  prepended  to  the  method.  The  sequence  number  combination 
expresses  what  sequence  the  method  is  associated  with  and  the  time  order  number  in  which  the 
operation takes place. For example, Figure 10-7 shows a collaboration diagram that uses the sequence 
numbers.

Figure 10-7. A collaboration diagram using sequence numbers.

In Figure 10-7, MainObject performs two operations in sequence:

1: <<create>>
2: Value := performAction(ObjectF)

In operation 1, MainObject creates ObjectA. ObjectA is local to the MainObject by containment. This 
initiates the first  sequence of operations in a nested flow of control.  All operations apart from this 
sequence use the number 1 followed by the time order number in which the operation takes place. The 
first operation of sequence 1 is:

1.1: initialize()

ObjectA invokes its own operation. This is expressed by linking the object to itself and by using the 
{self} stereotype indicator.  The ObjectA::initialize() operation also causes the beginning of another 
sequence of actions:

1.1.1: initializeB()
1.1.2: initializeC()

in which two other objects local to ObjectA initialize methods are called. The operation:

2: performAction(ObjectD)

is the beginning of another nested sequence. ObjectD is passed to ObjectA. ObjectA invokes ObjectD's 
operation:
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2.1: doAction()

ObjectA can invoke this operation because ObjectD is a parameter (passed by MainObject),  as the 
stereotype {parameter} indicates. A value is returned to ObjectA and a value is returned to MainObject. 
Besides sequence number combinations, these nested flows of control are further enhanced by using a 
line with a solid arrowhead pointing in the direction of the flow of the sequence.

10.2.1.1 Processes and Threads

A process is  a unit  of  work created by the operating system. It  has one or more flows of control 
executing within its address space. Each process has at least one thread, the main thread, but can have 
many threads executing within its address space. Each thread represents a process's flow of control. 
Multiple processes can execute concurrently. Threads within the address space of a process can execute 
concurrently with threads of other processes.

When using the UML, each independent flow of control is considered an active object. An active object 
is an object that owns a process or thread. Each active object can initiate control activity. An active 
class is a class whose objects are active. Active classes can be used to model a group of processes or 
threads that share the same data members and methods. The objects of your system may not have a one-
to-one correlation with active objects. As discussed in Chapters 3 and 4, when dividing your program 
up into processes and threads along object lines, an object's methods may execute in a separate process 
or execute on separate threads. Therefore, when modeling such an object, it may be represented by 
several active objects. This relationship between static and active objects can be represented by using 
an interaction diagram. Your system may have several PVM or MPI tasks or processes. Each of them 
can be represented directly as an active object.

The UML represents an active object or class the same way a static object is represented, except it has a 
heavier line tracing the perimeter of the rectangle. Two stereotypes can also be used:

process
thread

These stereotype indicators can be displayed to show the distinction between the two types of active 
objects. Figure 10-8 shows a PVM task as an active class and an active object. A collaboration diagram 
can consist of active objects.

Figure 10-8. An active object and class.

10.2.1.2 Showing the Multiple Flows of Control and Communication

In a concurrent and distributed system, there will be multiple flows of control. Each flow of control is 
based on a process or a thread controlling the activity. These processes and threads may be executing 
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on a  single  computer  system with  multiple  processors  or  the  processes  may be distributed  among 
several different computers. An active object or class is used to represent each flow of control. When 
the active  object  is  created,  an  independent  flow of  control  is  initiated.  When the active  object  is 
destroyed, the flow of control is terminated. Modeling the multiple flows of control in your system will 
help in the management, synchronization, and communication between them.

In a collaboration diagram, sequence numbers and solid arrows are used to identify flows of control. In 
a collaboration diagram that consists of active objects in a concurrent system, the name of the active 
object is preprended to the sequence numbers of the operations peformed by the active object. Active 
objects can invoke methods in other objects and suspend execution until the function returns or can 
continue to execute. Arrows are used not to just show the direction of the flow of control but the nature 
of it. A solid arrowhead is used to represent a synchronous call and a half-stick arrowhead is used to 
represent an asynchronous call. Since more than one active object can invoke the operation of a single 
object, the method properties:

sequential
guarded
concurrent

can be used to describe the synchronization property of that method.

Figure 10-9 shows a collaboration of several active objects. In this diagram, these objects are working 
together to produce a student schedule. The blackboard object is used to record and coordinate the 
preliminary work and resultant schedule produced by the active object problem solvers, in this case 
called agents:

Figure 10-9. A collaboration diagram of static and active objects in the course adviser system.

MajorAgent Produces a list of major courses available.
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MinorAgent Produces a list of minor courses available.

FilterAgent Filters the list of courses and produces a list of possible courses.

ScheduleAgent Produces several schedules based on the list of possible courses.

The schedule_of_courses object contains all the courses available.

The blackboard and schedule_of_courses objects  are accessed concurrently by several  agents. Both 
objects are visible to all the agents in this collaboration. The MajorAgent, MinorAgent, FilterAgent, 
and ScheduleAgent  invoke methods of the blackboard object.  MajorAgent  and MinorAgent invoke 
methods of the schedule_of_courses object. MajorAgent and MinorAgent have a similar sequence of 
calls to the blackboard and schedule_of_courses objects:

MajorAgent1:currentDegreePlan()
MajorAgent2:coursesTaken()
MajorAgent3:scheduleOfCourses()
MajorAgent4:suggestionsForMajor()

MinorAgent1:currentDegreePlan()
MinorAgent2:coursesTaken()
MinorAgent3:scheduleOfCourses()
MinorAgent4:suggestionsForMinor()

As you can  see,  the name of  the  active object  that  invokes  these operations  are  prepended to  the 
sequence  number.  Both  objects  are  concurrently  invoking  blackboard  and  schedule_of_courses 
operations. All these operations have concurrent synchronization and are safe to call simultaneously. 
masterList() and possibleCourses() have a guarded property. The objects supplying these courses may 
be writing them as these objects  are  attempting to read them. They are  guarded by only allowing 
sequential access (EREW).

10.2.2 Message Sequences between Objects

Where a collaboration diagram focuses on the structural organization and interaction of objects working 
together to perform a task, operation, or realize a use case, a sequence diagram focuses on the time 
ordering of method invocation or procedures involved in a particular task, operation, or use case. In a 
sequence diagram, the name of each object or construct involved is displayed in its own rectangular 
box. The boxes are placed at the top along the x-axis of the diagram. You should only include the major 
players involved and the most important function calls because the diagram can quickly become too 
complicated.  The  objects  are  ordered  from left  to  right  starting  from the  object  or  procedure  that 
initiates the action to the most subordinate objects or procedures. The calls are placed along the y-axis 
from top to bottom in time order. Vertical lines are placed under each box representing the lifeline of 
the object. Solid arrowhead lines are drawn from the lifeline of one object to the lifeline of another 
representing a function call or method invocation from the caller to the receiver. Stick arrowhead lines 
are drawn from the receiver back to the caller representing a return from a function or method. Each 
function call is labeled at the minimum with the function or method name. The arguments and control 
information, like the condition in which the method is invoked, can also be displayed. For example:

[list != empty]
getResults()

The function or method will  not be performed unless the condition is true.  Methods that are to be 
invoked several times on an object, like reading values from a structure, are preceded by an iteration 
marker (*).

Figure 10-10 shows a sequence diagram of some of the objects involved in the course adviser system. 
Only some of the objects are shown to avoid a complicated diagram. When using the sequence diagram 
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for concurrent objects or procedures, activation symbols are used. An activation symbol is a rectangle 
that appears on the object's lifeline. This indicates the object or procedure is active. These are used 
when an object makes a call to another object or procedure and does not block. This shows that the 
object or procedure is continuing to execute or be active. In  Figure 10-10, the blackboard object is 
always  active.  It  spawns  a  schedule_agent  object  and  does  not  block.  The  schedule_agent  calls 
blackboard.masterList() and waits for the method to return the list of courses. A return arrow is used to 
indicate  the  method  has  returned.  The  schedule_agent  then  calls  one  of  its  own  methods 
createSchedules(). To indicate an object has called one of its own methods, a self-delegation symbol is 
used.  This  is  a  combination  of  an  activation  symbol  and  a  call  arrow.  An  activation  symbol  is 
overlapped on the existing activation symbol. A line proceeds from the original activation symbol with 
an arrow pointing to the added activation symbol.  Once schedule_agent posts  its  results by calling 
blackboard.possible-Schedule(), the blackboard object kills it. This is indicated with the large X at the 
end of its lifeline. A call arrow from the blackboard object points to this X, indicating it has killed the 
object. The blackboard object spawns a filter_agent object and does not block. The filter_agent calls 
blackboard.possibleSchedules() and waits for the method to return the schedules. The filter_agent then 
calls one of its own methods filterCourses(). Once filter_agent posts its results, it deletes itself. The 
blackboard object calls its own organizeSolution() and updateRecords() then deletes itself.

Figure 10-10. A sequence diagram of some of the objects involved in the course adviser system.
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10.2.3 The Activities of Objects

The UML can be used to model the activities performed by objects involved in a specific operation or 
use case. This is called an activity diagram. It is a flowchart showing the sequential and concurrent 
actions or activities involved in a specific task, step-by-step. The arrows trace the flow of control for the 
activities represented in the diagram. Collaboration diagrams emphasize the flow of control from object 
to object,  sequence diagrams emphasize the flow of control in time order, and the activity diagram 
emphasizes the flow of control from one action or activity to another. The actions or activities change 
the state of the object or returns a value. The containment of the action or activity is called an action or 
activity state. They represent the state of the object at a particular instant in the flow of control.

Actions and activities differ. Actions cannot logically be decomposed or interrupted by other actions or 
events. Examples of actions are creating or destroying an object, invoking an object's method, or calling 
a function in a procedure. An activity can be decomposed into other activities or even another activity 
diagram.  An  example  of  an  activity  is  a  program,  a  use  case,  or  a  procedure.  Activities  can  be 
interrupted by an event or other activities or actions.

An activity diagram is a graph in which the nodes are actions or activities and the arcs are triggerless 
transitions.  Triggerless  transitions  require  no  event  to  cause  the  transition  to  occur.  The  transition 
occurs when the previous action or activity has completed. The diagram comprises decision branches, 
starts, stops, and synchronization bars that join or fork several actions or activities. Both action and 
activity states are represented the same way. To represent an action or activity state, the UML uses the 
standard flowchart symbol used to show the enter and exit point of the flowchart. This symbol is used 
regardless of the type of action or activity occurring. We prefer to use the standard flowchart symbols 
that  distinguish  input/output  actions  (parallelogram)  from  processing  or  transformation  actions 
(rectangle). The description of the action or activity as a function call, expression, phrase, use case, or 
program name is displayed in the action symbol used. An activity state may in addition show the entry 
and/or exit action. The entry action is the action that takes place when the activity state is entered. The 
exit action is the action that takes place just before exiting the activity state. They are the first and last 
actions to be executed in the activity state, respectively.

Once an action has completed, a transition occurs in which the next action takes place immediately. The 
transition is represented as a directed line from one state with a stick arrow pointing to the next state. A 
transition pointing to a state is inbound and a transition leading from a state is outbound. Before the 
outbound transition occurs, the exit action, if it exists, executes. After an inbound transition, the entry 
action for the state, if it exists, executes. The start of the flow of control is represented as a large solid 
dot. The first transition leads from the solid dot to the first state in the diagram. The stopping point or 
stop state of the activity diagram is represented as a large solid dot inside a circle.

Activity diagrams, like flowcharts, have a decision symbol. The decision symbol is a diamond with one 
inbound  transition  and  two  or  more  outbound  transitions.  The  outbound  transitions  are  guarded 
conditions that determine the path of the flow of control. The guarded condition is a simple boolean 
expression. All  of the outbound transitions should cover all  of the possible paths from the branch. 
Figure 10-11 shows the decision symbol used in determining whether a knowledge source should be 
constructed.

Figure 10-11. The decision symbol used in determining whether a knowledge source should be constructed.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig11


You may find that there exists more than one flow of a sequence of actions or activities occurring 
concurrently after an action or activity has completed. Unlike a flowchart, the UML defines a symbol 
that  can  be  used  to  represent  the  instant  where  multiple  flows  of  control  occur  concurrently.  A 
synchronization bar is used to show where a single path branches off or forks into parallel paths and 
where  parallel  paths  join.  It  is  a  thick  horizontal  line  in  which  there  can  be  multiple  outbound 
transitions (forking)  or multiple inbound transitions (joining).  Each transition represents a different 
path. Outbound transitions from a synchronization bar signify an action or activity state has caused 
multiple flows of control to occur. Inbound transitions into a synchronization bar signify the multiple 
flows of control need to be synchronized. A synchronization bar is used to show the paths are waiting 
for all paths to meet and join into a single flow or path. Figure 10-12 shows an example of forking and 
joining.

Figure 10-12. An example of forking and joining from or to the synchronization bar.

In Figure 10-12, creating MajorAgent invokes its constructor, which forks three flows of control. After 
these three actions have completed, they are joined again into a single flow of control in which the 
action "produce list of major courses" is executed.

The diagram can be divided into separate sections called swimlanes. In each swimlane, the actions or 
activities  of  a  particular  object,  component,  or  use  case  occurs.  Swimlanes  are  vertical  lines  that 
partition the diagram into sections. A swimlane for a particular object, component, or use case specifies 
the focus  of  activities.  An action or  activity  can only occur  in  a single  swimlane.  Transitions  and 
synchronization  bars  can  cross  one  or  more  swimlanes.  Actions  or  activities  in  the  same  lane  or 
different  lanes but  at  the same level  are concurrent.  Figure 10-13 shows the activity diagram with 
swimlanes.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig13
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig12
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig12


Figure 10-13. An activity diagram with swimlanes showing a sequence of actions in the course advisor system.

The purpose of this activity diagram is to model the sequence of actions involved in a blackboard object 
producing the master list for our course adviser system. In  Figure 10-13, the blackboard object first 
makes the decision whether the MajorAgent object should be constructed. If so, the constructor for 
MajorAgent is invoked. This causes a fork of three flows of control. Two of the actions are executed by 
the blackboard object, "get current degree plan" and "get courses taken," and one action is executed by 
the ScheduleofCourses object,  "get schedule of courses." These are all input actions, as the symbol 
represents. The multiple paths are joined again and MajorAgent performs an action "produce list of 
major courses." The blackboard performs an action "receive list  of major courses" followed by the 
deletion of the MajorAgent object. The blackboard object "produces master list of courses," then the 
activities stop.
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10.2.4 State Machines

State machines depict the behavior of a single construct specifying the sequence of transformations 
during its lifetime as it responds to internal and external events. The single construct can be a system, a 
use case, or an object. State machines are used to model the behavior of a single entity. An entity can 
respond to events such as procedures, functions, operations, and signals. An entity can also respond to 
elapses in time. Whenever an event takes place, the entity responds by performing some activity or 
taking some action resulting in a change of the state of the entity or the production of some artifact. The 
action or activity performed will depend upon the current state of the entity. A state is a condition the 
entity is in during its lifetime as a result of performing some action or responding to some event.

A state machine can be represented in a table or directed graph called a state diagram.  Figure 10-14 
shows a UML state diagram for the state machine of a process.  Figure 10-14 shows the states some 
process progresses go through while it is active in the system. The process can have four states: ready, 
running, sleeping, and stopped. There are eight events that cause the four states of the process. Three of 
the events only occur if a condition is met. The block event occurs only if the process requests I/O or it 
is waiting for an event to occur. If the block event occurs, it triggers the process to transform from a 
running state to a sleeping state. The wakeup event occurs only if the event takes place or the I/O has 
been completed. If the wakeup event occurs, it triggers the process to transform from a sleeping state 
(source state) to a ready state (target state). The exit event occurs only if the process has executed all its 
instructions. If  the exit  event occurs, it  triggers the process to transform from a running state to a 
sleeping state. The remaining events are external events and not under the control of the process. They 
occur for some external reason triggering the process to transform from a source to a target state.

Figure 10-14. State diagram for processes.

The state  diagrams are  used to  model  the dynamic aspects  of an object,  use case,  or  system. The 
sequence, activity, and interactive collaboration diagrams and now the state diagram are used to model 
the behavior of the system or object when it is active. Structural collaboration and class diagrams are 
used to model the structural organization of an object or system. State diagrams are good to use to 
describe the behavior of an object regardless of the use case. They should not be used to describe the 
behavior of several interacting or collaborating objects. They should be used to describe the behavior of 
an object, system, or use case that goes through a number of transformations and more than one event 
may cause a single transformation to occur. These are constructs that are very reactive to internal and 
external events.
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In the state diagram, the nodes are states and the arcs are transitions. The states are represented as 
rounded-corner  rectangles  in  which  the  name  of  the  state  is  displayed.  The  transitions  are  lines 
connecting the source and target states with a stick arrow pointing to the target state. There are initial 
and final states. The initial state is the default starting point for the state machine. It is represented as a 
solid black dot with a transition to the first state of the state machine. The final state is the ending state 
of the state machine, indicating it has completed or the system, use case, or object has reached the end 
of its lifeline. It is represented as a solid dot embedded in a circle.

Table 10-5. Parts of a State

Parts  of  a 
State

Description

Name The unique name of the state that distinguishes it from other states; a state may have 
no name.

Entry  /  exit 
actions

Actions executed when entering the state (entry state) or executed when exiting the 
state (exit action).

Substates A nested state; the substates are the disjointed states that can be activated sequentially 
or concurrently. The composite or superstate is the state that contains the substates.

Internal 
transitions

Transitions that occur within the state that are handled without causing a change in 
the state.

Self-
transitions

Transitions that occur within the state that are handled without causing a change in 
the state but causes the exit then the entry actions to execute.

Deferred 
events

A list of events that occurs while the object is in that state but is queued and handled 
when the object is in another state.

A state has several parts.  Table 10-5 lists the parts of a state. A state can be represented simply by 
displaying the name of the state at the center of the state symbol. If other actions are to be shown inside 
the state symbol, the name of the state should appear at the top in a separate compartment. The actions 
and activities are listed below this compartment and are displayed in this format:

label [Guard] / action or activity

For example:

do / validate(data)

The  do  is  the  label  used  for  an  activity  to  be  performed  while  the  object  is  in  this  state.  The 
validate(data) function is called with data as the argument. If an action or activity is a call to a function 
or method, the arguments can be displayed.

The Guard is an expression that evaluates to true or false. If a condition evaluates to true, the action or 
activity takes place. For example:
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exit [data valid] / send(data)

The exit action send(data) is guarded. The expression data valid is evaluated to be true or false. Upon 
exiting the state, if the expression is true, then the send(data) function is called. The Guard is always 
optional.

Transitions occur when an event takes place. This causes the object, system, or use case to transform 
from one state to another. There are two transitions that can occur that does not cause a change in the 
state of the object, system, or use case: self-transition and internal transition.

With a self-transition, when a particular event occurs, this triggers the object to leave the current state. 
When exiting, it performs the exit action (if any), then performs whatever action is associated with the 
self-transition (if any). The object reenters the state and the entry action (if any) is performed. With an 
internal  transition,  the  object  does  not  leave  the  state  and  therefore  no  entry  or  exit  actions  are 
performed. Figure 10-15 shows the general structure of a state with exit and entry actions, do activity 
along with internal and self-transitions. A self-transition is represented as a directed line that points 
back to the same state.

Figure 10-15.  The general  structure of  a  state  with an exit  action,  entry action,  do activity,  and internal– self-
transitions.

A transition between different states indicates that there is a relationship or path that exists between 
them.  From one  state  an  event  can  occur  or  a  condition  can  be  met  that  causes  the  object  to  be 
transformed from one state (source state) to another state (target state). The event triggers the transition 
of the object. A transition may have several concurrently existing source states. If so, they are joined 
before the transition occurs. A transition may have several concurrently existing target states in which a 
fork has occurred.  Table 10-6 lists the parts of a transition. A transition is rendered as a directed line 
from the source state pointing to the target state. The name of the event trigger is displayed next to the 
transition. Like actions and activities, events for transitions can also be guarded. A transition can be 
triggerless, meaning no special event occurs that causes the transition to take place. Exiting the source 
state, the object immediately makes the transition and enters the target state.

Table 10-6. Parts of a Transition

Parts  of  a 
Transition

Description

Source state The original state of the object; when a transition occurs the object leaves the source 
state.

Target state The state the objects enter after a transition occurs.

Event trigger The event that causes the transition to occur.  A transition may be triggerless, in 
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Parts  of  a 
Transition

Description

which the transition occurs as soon as the object has completed all activities in the 
source state.

Guard condition A boolean expression associated with an event trigger that when evaluated to True, 
the transition occurs.

Action An action executed by the object that  takes place during a transition; it  may be 
associated with an event trigger and/or guard condition.

10.2.4.1 Concurrent Substates

A substate  can be used to further  simplify the depiction of modeling the behavior of a  concurrent 
system. A substate is a state contained inside another state called a superstate or composite state. This 
representation means a state can be further broken down into one or more substates. These substates can 
be sequential or concurrent. With concurrent substates, each state machine represented exists in parallel 
as  different  but  concurrently  existing  flows  of  control.  This  means  the  object  is  engaged  in  two 
independent sets of behavior. This is true for our blackboard object. As it is processing each possible 
schedule, it has to also update its appropriate structures and perform other maintenance. Each substate 
is contained in a separate compartment. The substates are synchronized and joined before exiting the 
composite state. When one substate has reached its final state, it waits for the other state to reach its 
final state, then the substates are joined back into one flow. Figure 10-16 shows a state diagram for the 
blackboard object that produces a student schedule.
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Figure 10-16. State diagram for the blackboard object.

In Figure 10-16, the schedule production is a composite state. It has concurrent substates called filtering 
and maintenance.  Each substate  is  separated  by a  dashed line  and is  represented  by  its  own state 
machine, each having an initial and final state. In the filtering substate, the object goes through the time 
conflict filtering, balancing, and then personalizing states. In the maintenance substate, the object goes 
through  one  state:  updating.  When  both  substates  have  reached  their  final  states,  filtering  and 
maintenance are joined before exiting the composite state schedule production.

10.2.5 Distributed Objects

Distributed objects are objects executing on different processors on different machines. A deployment 
diagram is used to model the view of the system that shows the physical relationships between the 
software  and  hardware  components  in  the  delivered  system.  They  are  used  to  show  how  the 
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components and objects are routed in the distributed system. Components can be executable programs, 
libraries, or databases. You may want to specify where a particular component or object resides in the 
system. Determining how to distribute the concurrent components of your system will  be difficult. 
Modeling how the components are distributed will help in managing the configuration, functionality, 
and throughput of the system.

A deployment diagram consists of nodes and the objects or components that reside on the nodes. A 
node is a computational unit or a piece of hardware that has some memory and processing capability, 
whether it be a device, a computer, a mainframe, or a cluster of computers. The nodes are related by 
dependency. These dependencies represent how the components communicate with each other. The 
direction of the dependency indicates which component is aware of the other component. Even if there 
is  communication  in  both  directions,  one  component  may  not  be  aware  of  whom  they  are 
communicating with.

There are two ways to model the location of components or objects in a UML deployment diagram: 
nesting or tagged value.

They reflect  the  approach of  listing  the  components  that  reside  on a  node  in  the  node  symbol  or 
displaying the location of the components in the component symbol. Nodes are a part of a deployment 
diagram. The node symbol is a cube. The cube can have two separate compartments: one contains the 
stereotype indicator describing the type of node and the other contains the list of components that reside 
on that node. The approach uses the component symbol and displays a location tag assigning the name 
of the node where the component resides. A location tag has this format:

{location = name of node}

The location tag can be a part of any diagram in which the location of the component is appropriate 
(e.g., collaboration, object, or activity diagram). Figure 10-17 shows the two approaches of showing the 
location components in a distributed system. In  Figure 10-17, (a) shows the node symbol listing the 
components that reside on it and (b) shows the active object symbol using the location tag.

Figure 10-17. Approaches to show the location of a component in a distributed system.
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10.3 Visualizing the Whole System

A system is  composed  of  many  elements,  including  subsystems  organized  into  a  collaboration  to 
accomplish some purpose. It is an aggregation of constructs joined in some regular interaction. The 
diagraming techniques discussed in this chapter allow the developer to model a single system from 
different viewpoints, from different levels, and from different flows of control to assist in the design 
and development of the system. In this section, we discuss modeling and documenting the system as a 
whole. This means at the highest level the major components or functional elements can be depicted. 
The diagraming techniques discussed in this section are the ones used to model the delivered system 
and the architecture  of  the system. Although this  is  the last  section  in  this  chapter,  modeling  and 
documenting the whole system would be the first level of designing and developing a system.

10.3.1 Visualizing Deployment of Systems

The deployment of a system is the last step in system development. Deployment is the delivery of the 
system. When a system is to be deployed, you may want to model the actual physical components of 
the  runtime  version  of  your  system.  A  deployment  diagram  depicts  the  configuration  of  runtime 
processing elements and the software components that execute on them. The software components are 
actual  executable  modules  such  as  active  objects  (processes),  libraries,  databases,  and  so  on.  A 
deployment diagram consists of nodes and components. The components used in a deployment diagram 
are runtime entities. Runtime entities are the physical implementations of logical elements. A class is a 
logical element that may be implemented as one or several components. A class may be divided into 
processes  or  threads.  Each  process  or  thread  can  be  a  component  in  a  deployment  diagram.  The 
components of a class may be executed on different nodes on a single machine (threads/processes) or 
different machines (processes).

A node is represented by a cube. Nodes are connected by dependencies or associations. Components 
and  nodes  can  be  connected  by  dependencies  as  well.  As  discussed  earlier,  a  node  can  list  its 
components or a component can be depicted separate from a node showing the relationship between 
them. A component  can be represented as a rectangle with tags on the left  side.  The name of the 
component is contained inside the symbol.

Components can be grouped together to create larger chunks such as packages or subsystems.  Figure 
10-18 shows a deployment diagram. In Figure 10-18, the users connect to the system via intranet. The 
nodes are the part of a cluster of PCs. They are grouped into a package. The user connects to the cluster 
as a whole. Each node lists the components that reside on them. The communication between nodes is 
by means of a network node.
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Figure 10-18. A deployment diagram using packages.

10.3.2 The Architecture of a System

When modeling and documenting the architecture of a system, the view of the system is at the highest 
level. Booch, Rumbaugh, and Jacobson define architecture as:

The set of significant decisions about the organization of a software system, the selection of 
the structural elements and their interfaces by which the system is composed, together with 
their behavior as specified in the collaboration among those elements, the composition of 
these  structural  and  behavioral  elements  into  progressively  larger  subsystems,  and  the 
architectural style that guides this organization—these elements and their interfaces, their 
collaborations, and their composition.

Modeling and documenting the architecture will capture the system's logical and physical  elements 
along with the structure and behavior of the system at the highest level.

The architecture of the system is a description of the system from a distinct view that focuses on the 
structure and organization of the system from that aspect. The views are as follows:

use case Describes the behavior of the system presented to end users.

process Describes the processes and threads used in the system's mechanisms of concurrency 
and synchronization.



design Describes the services and functions provided to the end user.

implementation Describes the components used to create the physical system.

deployment Describes the software components and the nodes on which they are executing in the 
delivered system.

As you can see, these views overlap and interact with each other. Use cases can be used in the design 
view. Processes can show up as components in the implementation view. Software components are 
used in both implementation and deployment views. When designing the architecture of the system, 
diagrams that reflect each of these views should be constructed.

A system can be decomposed into subsystems and modules. The subsystems or modules will be further 
broken down into components,  nodes,  classes,  objects,  and interfaces.  In  the UML, subsystems or 
modules used at the architectural level of documentation are called packages. A package can be used to 
organize elements into a group that describes the general  purpose of those elements. A package is 
represented as a rectangle with a tab on the upper left corner. The package symbol contains the name of 
the package.  The packages in the system can be connected by means of composition,  aggregation, 
dependency, and associations relationships. Stereotype indicators can be used to distinguish one type of 
package from another.  Figure 10-19 shows the packages involved in the course adviser system. The 
system package uses a <<system>> indicator to distinguish it from the User Interface Client and Logic 
Server subsystems, which use the <<subsystem>> indicator. Because they are subsystems, they are 
related to the system by aggregation relationship.

Figure 10-19. Packages used in the course adviser system.

Packages  can contain  other  packages.  If  a  package  contains  other  packages,  then  the  name of  the 
package is placed in the tab. Figure 10-19 also shows the content of each subsystem.
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Summary

A model of a system is the body of information gathered for the purpose of studying the system. 
Documentation is a tool used in modeling a system. The UML, Unified Modeling Language, is a 
graphical notation used to design, visualize, model, and document the artifacts of a software system 
created by Grady Booch, James Rumbaugh, and Ivar Jacobson. It is the de facto standard for 
communicating and modeling object-oriented systems. The UML can be used to model concurrent and 
distributed systems from the structural and behavioral perspectives.

UML diagrams can be used to model to most basic units, the object, to the whole system. An object is 
the basic unit used in many UML diagrams. Dependency, inheritance, aggregation, and composition are 
some of the relationships that can exist between objects. Interaction diagrams are used to show the 
behavior of an object and identify concurrency in the system. Objects can interact with other objects by 
communicating and invoking methods. Collaboration diagrams depict the interactions between objects 
working together to perform some particular task. Sequence diagrams are used to represent the 
interactions between objects in time sequence. Statecharts are used to depict the actions of a single 
object over its lifetime. Objects that are distributed can be tagged with the location of the node on 
which it resides.

Deployment diagrams are used to model the delivered system. The basic units of a deployment diagram 
are nodes and components. A node represents hardware and components are software. Nodes can be 
depicted to show what objects or components reside on them. When modeling the whole system, the 
basic unit is a package. A package can be used to represent systems and subsystems. Packages can have 
relationships with other packages such as composition or some type of association.



Chapter 11. Designing Components That Support Concurrency
"As  we  cross  the  divide  to  instantiate  ourselfs  into  our  computational  technology,  our 
indentity will be based on our evolving mind file. We will be software, not hardware."

—Ray Kurzweil, The Age of Spiritual Machines

In this Chapter

• Taking Advantage of Interface Classes  

• A Closer Look at Object-Oriented Mutual Exclusion and Interface Classes  

• Maintaining the Stream Metaphor  

• User-Defined Classes Designed to Work with PVM Streams  

• Object-Oriented Pipes and fifos as Low-Level Building Blocks  

• Framework Classes Components for Concurrency  

• Summary  

As a rule of thumb the requirement for parallelism and concurrency within a piece of software should 
be  discovered  and  not  introduced.  Sometimes  the  goal  of  speeding  up  a  program  is  not  enough 
justification to force parallellism into logic that is naturally sequential. The parallelism within a design 
should be a natural consequence of the requirements of a system. Once concurrency is identified in the 
system requirements, then architectures and algorithms that support parallelism should be considered. 
In  other  cases  the  need  for  parallelism will  emerge  within  an  existing  system that  was  originally 
designed with only sequential processing in mind. This is often the case for systems that started as 
single-user systems and grew into multiuser  systems or systems that  have evolved functionally far 
beyond the original specifications. In these systems the requirement for parallelism is after the fact and 
the system architecture must be augmented to support concurrency. In this book we are concerned with 
describing techniques for implementing natural parallelism. That is, once we know we need parallelism, 
how do we do it using C++?

We present an architectural approach to managing parallelism within a program. We take advantage of 
the  C++  support  for  object-oriented  programming  and  genericity.  Particularly  C++'s  support  for 
inheritance, polymorphism, and templates is used to cleanly implement architectures and components 
that support concurrency. Object-oriented programming techniques supply support for 10 class types 
shown in Table 11-1.
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Table 11-1. Types of Object-Oriented Classes

Types  of 
Classes

Description

Template 
classes

A parameterized type containing generic code that can use or manipulate any type; an 
actual type is the parameter for the code body.

Container 
class

A class used to hold objects in memory or external storage.

Virtual  base 
class

A base class where during multiple inheritance, the class is the indirect and/or direct 
base of a derived class; only one copy of the class is shared by all the derived classes.

Abstract class A class that supplies the interface for derived classes that can only be used as a base 
class; used as the layout for the construction of other classes.

Interface class A class used to adjust the interface of other classes.

Node class A class that has added new services or functionality beyond the services inherited 
from its base class.

Domain class A class created to simulate some entity within a specific domain; the meaning of the 
class is relative to the domain.

Aggregate 
class

A class that contains other classes; has a "whole–part" relationship with other classes.

Concrete 
class

A complete class whose implementation is defined and instances of the class can be 
declared;  not  intended  to  be  a  base  class  and  no  attempt  to  create  operations  of 
commonality.

Framework 
class

A  class  or  collection  of  classes  that  has  a  predefined  structure  and  represents  a 
generalized pattern of work.

These class types prove to be especially useful for designs that require concurrency. This is because 
these class types aid with the building-block approach. We start with primitive components, using them 
to  build  synchronization  classes.  We  use  the  synchronization  classes  to  build  concurrency-safe 
container classes and framework classes. The framework classes are the building blocks for higher level 
parallel architectures such as multiagent systems and blackboards. At each level the complexity of the 
parallel and distributed programming is reduced with the help of the various class types in Table 11-1.

We start our discussion with the interface class. An interface or adapter class is used to modify or 
enhance the interface of another class or set of classes. The interface class may also act as a wrapper 
around one or more functions that are not members of any particular class. This use of the interface 
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class allows us to provide an object-oriented interface to software that is not necessarily object-oriented. 
Furthermore, interface classes allow us to simplify the interfaces of function libraries such as POSIX 
threads,  PVM  and  MPI.  We  can  either  wrap  a  non-object-oriented  function  in  an  object-oriented 
interface;  or we might  want to wrap a piece of data,  encapsulate  it,  and give it  an object-oriented 
interface. In addition to simplifying the complexity of some function libraries, the interface classes are 
used to present a consistent API (Application Programmer Interface) to the developers. For example, 
C++ programmers that have grown accustomed to the advantages of the iostreams classes tend to think 
of input and output in terms of object-oriented streams. The learning curve is minimized when new 
input and output techniques can be presented within the iostream metaphor. For instance, we might 
present the MPI message passing library as a collection of streams:

mpi_stream Stream1;
mpi_stream Stream2;

Stream1 << Message1 << Message2 << Message3;
Stream2 >> Message4;
//...

In this way, the programmer can focus on the logic of the program without getting bogged down in the 
syntax requirements of the MPI library.

11.1 Taking Advantage of Interface Classes

It is often advantageous to use encapsulation to hide the details of function libraries and to provide self-
contained components that can be reused. Let's take for example the mutex that we discussed in Chapter 
7. Recall  that  a mutex is a special  kind of variable used for synchronization.  Mutexes are used to 
provide safe access to a critical section of data or code within a program. There are six basic functions 
that can be performed on a pthread_mutex_t (POSIX Threads Mutex) variable.

Synopsis
[View full width]

#include <pthread.h>

pthread_mutex_destroy(pthread_mutex_t *mutex);
pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t
 *attr);

pthread_mutex_lock(pthread_mutex_t *mutex);
pthread_mutex_timedlock(pthread_mutex_t *mutex);
pthread_mutex_trylock(pthread_mutex_t *mutex);
pthread_mutex_unlock(pthread_mutex_t *mutex);

Each of these functions take at least a pointer to a pthread_mutex_t variable. An interface class can be 
used to encapsulate access to the pthread_mutex_t variable and to simplify the function calls that access 
the pthread_mutex_t variable. In Example 11.1, we can declare a class called mutex.
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Example 11.1 Declaration of the mutex class.

class mutex{
protected:
   pthread_mutex_t *Mutex;
   pthread_mutexattr_t *Attr;
public:
   mutex(void)
   int lock(void);
   int unlock(void);
   int trylock(void);
   int timedlock(void);
};

Once this mutex class is declared, we can use it to define mutex variables. We can declare arrays of 
these  mutexes.  We  use  these  variables  as  members  of  user-defined  classes.  By  encapsulating  the 
pthread_mutex_t variable and its functions, we can take advantage of the object-oriented programming 
techniques. These mutex variables can now be used as parameter arguments and function return values. 
And since the functions are now bound to the pthread_mutex_t variable, wherever we pass the mutex 
variable the functions are also available.

The member functions for the class mutex are defined by wrapping the calls  to the corresponding 
Pthread routines, for instance:

Example 11.2 Member functions for the mutex class.

mutex::mutex(void)
{

   try{
         int Value;
         Value = pthread_mutexattr_int(Attr);
         //...
         Value = pthread_mutex_init(Mutex,Attr);
         //...
   }
}

int mutex::lock(void)
{
   int RetValue;
   RetValue = pthread_mutex_lock(Mutex);
   //...
   return(ReturnValue);
}

We also protect the pthread_mutex_t * and the pthread_mutexattr_t * through encapsulation. In other 
words, when we invoke the lock(), unlock(), trylock(), and so on methods, we don't have to worry about 
which mutex variable or which attribute variables these functions will be applied to. The availability of 
information hiding through encapsulation allows the programmer to write safer code. With the free 
floating versions of Pthread mutex functions, any pthread_mutex_t variable may be passed to these 
functions. Simply passing the wrong mutex to one of these functions can lead to deadlock or indefinite 
postponement. Encapsulating the pthread_mutex_t variable and the pthread_mutexattr_t variable within 
the mutex class gives the programmer complete control over which functions have access to those 
particular variables.



Now we can use an embedded interface class like mutex within other userdefined classes to provide 
thread-safe classes. Let's say that we wanted to make a thread-safe queue and a thread-safe pvm_stream 
class. The queue is used to store incoming events for multiple threads within a program. Some of the 
threads have the responsibility of sending messages to various PVM tasks. The PVM tasks and the 
threads are executing concurrently. The multiple threads share a single PVM stream and a single event 
queue. Figure 11-1 shows the relationship between threads, PVM tasks, event queue, and pvm_stream.

Figure 11-1. The relationship between threads, PVM tasks, event queue, and the pvm_stream class within a PVM 
program.

The queue in Figure 11-1 is a critical section because it is shared between multiple executing threads. 
The pvm_stream in Figure 11-1 is also a critical section because it is shared between multiple executing 
threads. If these critical sections are not synchronized and protected, then we can end up with corrupted 
data in the queue and pvm_stream. The fact that multiple threads can update either the queue or the 
pvm_stream introduces an environment for race conditions. To help manage the race conditions we 
design our  queue  and pvm_stream class  with built-in  lock and unlock functionality.  The  lock  and 
unlock functionality is supplied by our mutex class. Figure 11-2 shows the class diagram for our user-
defined x_queue and pvm_stream classes.

Figure 11-2. The class diagram for our userdefined x_queue class and pvm_stream class.

Notice  that  the  x_queue  class  contains  a  mutex  class.  This  is  a  has-a  or  aggregation  relationship 
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between x_queue and mutex, that is, x_queue has a mutex class. Any operation that changes the state of 
our x_queue class  can cause a  race condition if  that  operation is  not  synchronized.  Therefore,  the 
operations that add an object to the queue or that remove an object from the queue are candidates for 
synchronization. Example 11.3 contains the declaration of our x_queue class as a template class.

Example 11.3 Declaration of the x_queue class.

template <class T> x_queue class{
protected:
   queue<T> EventQ;
   mutex Mutex;
   //...
public:

   bool enqueue(T Object);
   T dequeue(void);
   //...
};

The enqueue() method is used to add items to the queue and the dequeue() method is used to remove 
items from the queue. Each of these methods will use the Mutex object. The enqueue() and dequeue() 
methods are defined in Example 11.4.

Example 11.4 Defintion of enqueue() method.

template<class T> bool x_queue<T>::enqueue(T Object)
{
   Mutex.lock();
   EventQ.push(Object);
   Mutex.unlock();
}

template<class T> T x_queue<T>::dequeue(void)
{

   T Object;
   //...
   Mutex.lock();
   Object = EventQ.front()
   EventQ.pop();
   Mutex.unlock();
   //...
   return(Object);
}

Now items can be added to and removed from our queue in a multithreaded environment. Thread B in 
Figure 11-1 adds items to the queue and Thread A in Figure 11-1 removes items. The mutex class is an 
interface class. It wraps the pthread_mutex_lock(), pthread_mutex_unlock(), pthread_mutex_init(), and 
pthread_mutex_trylock() functions. The x_queue class is also an interface class because it adapts the 
interface for the built-in queue<T> class. First, it changes the push() and pop() method interfaces to 
enqueue()  and  dequeue().  Furthermore,  it  wraps  the  insertion  and  removal  of  items  with  the 
Mutex.lock() and Mutex.unlock() methods. So in the first case we use the interface class to encapsulate 
pthread_mutex_t*  and  pthread_mutexattr_t*  variables.  We  also  wrap  several  functions  from  the 
Pthread library. In the second case, we use the interface class to adapt the interface of the queue<T> 
class. Another advantage of the mutex class is that it can be easily reused in other classes that contain 
critical sections or critical regions.
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In  Figure 11-1 the PVM stream is also a critical section because both Thread A and Thread B have 
access to the stream. A possible race condition exists because Thread A and Thread B may both try to 
access the stream at the same time. Therefore, we use the mutex class in our user-defined pvm_stream 
class to provide synchronization.

Example 11.5 Declaration of pvm_stream class.

class pvm_stream{
protected:
   mutex Mutex;
   int TaskId;
   int MessageId;
   //...
public:
   pvm_stream & operator <<(string X);
   pvm_stream & operator <<(int X);
   pvm_stream &operator <<(float X);
   pvm_stream &operator>>(string X);
   //...
};

As with the x_queue class, the Mutex object is used with the functions that can change the state of a 
pvm_stream object. For example, we might define one of the << operators as:

Example 11.6 Definition of the << operator for the pvm_stream class.

pvm_stream &pvm_stream::operator<<(string X)
{

   //...
   pvm_pkbyte(const_cast<char *>(X.data()),X.size(),1);
   Mutex.lock();
   pvm_send(TaskId,MessageId);
   Mutex.unlock();
   //...
   return(*this);
}

The pvm_stream class uses Mutex objects  to  synchronize access to its  critical  section in  the same 
manner as was done with the x_queue class. It's important to note that in both cases the pthread_mutex 
functions are hidden. The programmer does not have to be concerned about their syntax. A simpler 
lock() and unlock() interface is used. Furthermore, there is no confusion about which pthread_mutex_t 
* is being used with the pthread_mutex functions. In addition to these advantages, the programmer may 
declare multiple instances of the mutex class without having to call Pthread mutex functions over again. 
We made reference to the Pthread functions once within the method definitions of the mutex class. Now 
only the methods of the mutex class need be called.
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11.2 A Closer Look at Object-Oriented Mutual Exclusion and Interface Classes

To confront some of the complexity with writing and maintaining programs that require concurrency, 
we try to streamline and simplify the API to the parallel libraries. Some systems may require the use of 
the Pthreads library, the MPI library, the standard semaphore, and shared memory functions as part of a 
single solution. Each of these libraries and functions have their own protocols and syntax. However, 
often they have similar functionality. We can use interface classes, inheritance, and polymorphism to 
present a simplified and consistent interface to the programmer. We can also hide the details of library-
specific implementation from our applications. If the application only relies on the methods used in our 
interface classes, then our application is shielded from implementation changes, library updates, and 
other under-the-hood restructuring. Ultimately the work that you do in providing interface classes to 
concurrency  components  and  function  libraries  and  function  data  will  allow  you  to  reduce  the 
complexity of parallel programming. Let's take a closer look at how we can approach the design of 
interface classes that support concurrency.

11.2.1 Semi-Fat Interfaces that Support Concurrency

The basic POSIX semaphore is used to synchronize access to a critical section between two or more 
processes. The basic POSIX thread is used to synchronize access to a critical section between two or 
more threads. In both cases, there are synchronization variables involved and a number of functions 
available on the synchronization variables. The MPI library and the PVM library both contain message-
passing primitives. Both have the capabilities of spawning tasks. However, the interfaces of these two 
libraries are different. The application programmer wants to focus on the logic and structure of the 
program. This is difficult  when the semantics of a program are obscured by multiple libraries that 
happen to perform similar functions but whose syntax and protocols are very different. What is needed 
is a generalized interface that can be used across libraries.

There are at least a couple of approaches to designing an interface for a family of classes or a collection 
of classes. The object-oriented approach starts with the general and moves to the specific by means of 
inheritance. That is, we take the minimal core set of characteristics and attributes that every member of 
the family of classes should have and, through lineage of inheritance, we specialize those characteristics 
for each class. In this approach, the interface grows more narrow as you move down the class hierarchy. 
The second approach is often used in template collections. Template-based approaches start with the 
specific and move to the general through fat interfaces. The fat interface includes a generalization of all 
of the characteristics and attributes under discussion (see Stroustrup, 1997). If we were to apply narrow 
and fat interfaces to our concurrency libraries, the narrow interface approach would take intersection 
between each library, generalize it, and put it in a base class. The fat interface approach would take the 
union of the functionality within each library, generalize it, and put in a base class. The set intersection 
would produce a smaller, less useful class. The set union would produce a large, possibly unwieldy 
class. For our discussion we are interested in a position somewhere in the middle. We want semi-fat 
interfaces. We start with a narrow approach and generalize as much as we can within a single class 
hierarchy. We then use the narrow interface as a basis for a collection of classes that are not related by 
inheritance but that are related by function. The narrow interface acts as a sort of policy to constrain 
how fat a semi-fat interface can become. In other words, we don't want a union of every characteristic 
and attribute under discussion; we only want a union of the things that are logically related to our 
narrow interface. Let's illustrate this point with a simple design of interface classes for the Pthread 
mutex, Pthread read-write lock variable, and the POSIX semaphore.

Regardless of the implementation details, the operations of lock, unlock, and trylock are characteristic 
of synchronization variables. So we make a base class that will act as a pattern for a family of classes. 
The synchronization_variable class is declared in Example 11.7.
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Example 11.7 Declaration of the synchronization_variable class.

class synchronization_variable{
protected:
   runtime_error Exception;
   //...
public:
   int virtual lock(void) = 0;
   int virtual unlock(void) = 0;
   int virtual trylock(void) = 0;
   //...
};

Notice that the methods of the synchronization_variable class are declared virtual and are initialized to 
0. This means these methods are pure virtual methods, making the synchronization_variable class an 
abstract class. An object cannot be directly created from any class that has one or more pure virtual 
functions. In order to use this class a new class must be derived from it and the new class must provide 
definitions for each of the pure virtual functions. The abstract class acts as a kind of policy that says 
what functions a derived class must define. It provides an interface blueprint for derived classes. It 
doesn't dictate how the methods should be implemented, only that the methods must be present and 
cannot be pure virtuals. We can get hints of the proposed behavior from the names of the methods. The 
blueprint interface class provides an interface without any implementation. This type of class is used to 
provide a foundation for future classes. The blueprint class guarantees that the interface will have a 
certain look (Caroll & Ellis, 1995). The synchronization_variable class provides a blueprint interface 
policy for our family of synchronization variables. We use inheritance to provide implementations for 
the interface. The Pthread mutex is a good candidate for an interface class, so we define a mutex class 
derived from synchronization_variable:

Example 11.8 Declaration of a mutex class that inherits the synchronization_variable class.

class mutex : public synchronization_variable{
protected:
   pthread_mutex_t *Mutex;
   pthread_mutexattr_t *MutexAttr;
   //...
public:
   int lock(void);
   int unlock(void);
   int trylock(void);
   //...
};

The mutex class will provide implementations for each of the pure virtual functions. Once the functions 
are  defined,  the policy suggested by the abstract  base class  has been met.  The mutex class  is  not 
considered an abstract class, therefore mutex and any of its descendants can be instantiated as objects. 
Each of the methods of mutex wraps the corresponding Pthread function. For instance:

int mutex::trylock(void)
{
   //...
   return(pthread_mutex_trylock(Mutex);
   //...
}

provides  an  interface  to  the  pthread_mutex_trylock()  function.  The  lock(),  unlock(),  and  trylock() 
interface simplifies  the Pthread  function  calls.  Our  goal  is  to  use encapsulation  and inheritance to 



eventually  define  a  complete  family  of  mutex  classes.  The  inheritance  process  is  a  specialization 
process. The derived class provides additional attributes or characteristics that distinguish it from its 
ancestors. Each attribute or characteristic added to the derived class specializes it. Now we can design a 
specialization of the mutex class through inheritance by adding the notion of a read/write mutex class. 
Our generic mutex class is designed to protect a critical section from access. Once a thread has locked 
the mutex, it has access to the critical section the mutex protects. Sometimes this is too extreme. There 
are times when it is okay to allow multiple threads to access the same data at the same time, so long as 
none of the threads modify or change the data in any way. That is, there are times that we may want to 
relax the lock on the critical section and only lock out access to actions that want to modify or change 
the data and allow access to actions that only read or copy the data. This is called a read lock. The read 
lock allows concurrent read access to a critical section. The critical section may already be locked by 
one thread and another thread may also obtain a lock so long as it does not want to modify the data. The 
critical section may be locked for writing by some thread, and another thread may request a lock for 
reading the critical section.

The blackboard architecture is a good example of a structure that can take advantage of read mutexes 
and the stronger, more generic mutex.  The blackboard is a common region shared by concurrently 
executing routines. The blackboard is used to hold solutions to some problem that the group of routines 
is collaboratively solving. As each routine makes progress toward the solution to the problem, it writes 
its progress to the blackboard. Each routine also reads the blackboard to see if there are any results 
generated by the other routines that might be useful. The blackboard structure is a critical section. We 
really only want one routine at a time to update the blackboard. On the other hand, we can allow any 
number of routines to simultaneously read the blackboard. Also, if we have multiple routines reading 
the blackboard, we don't want the blackboard updated until all the routines that are reading are done. 
The read mutex is an appropriate mutex for this situation because it can lock access to the blackboard 
and  only  allow  blackboard  readers  while  denying  access  to  blackboard  writers.  However,  the 
blackboard will  need to be updated if  a solution to the problem is ever to be achieved.  When the 
blackboard is being updated, we do not want any readers to have access to the blackboard. We want to 
block the readers until the routine that is updating the blackboard is done. Therefore, we need a write 
mutex. Only one routine may hold a write mutex at a time. So we distinguish between a mutex that is 
locked for reading and no writing and a mutex that is locked for writing and no reading. With a read 
mutex we can have multiple concurrent reads, and with a write mutex we may only have one writer. 
This is part of the CREW (Concurrent Read Exclusive Write) approach to parallel programming.

Synopsis
#include <ptrhead.h>

int pthread_rwlock_init(pthread_rwlock_t *,
                        const pthread_rwlockattr_t *);
int pthread_rwlock_destroy(pthread_rwlock_t *);
int pthread_rwlock_rdlock(pthread_rwlock_t *);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
int pthread_rwlock_wrlock(pthread_rwlock_t *);
int pthread_rwlock_trywrlock(pthread_rwlock_t *);
int pthread_rwlock_unlock(pthread_rwlock_t *);
int pthread_rwlockattr_init(pthread_rwlockattr_t *);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *,
                                  int *);
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *, int);



To design our specialization of the mutex class, we need to add the ability to perform read locks and 
write locks. The pthreads library has a read/write mutex variable and attribute variable:

pthread_rwlock_t and pthread_rwlockattr_t

These variables are used in conjunction with the 11 pthread_rwlock() functions. We use our interface 
class rw_mutex to encapsulate the pthread_rwlock_t and pthread_rwlockattr_t variables and to wrap the 
Pthread read/write mutex functions.

Example 11.9 Declaration of rw_mutex class that contains pthread_rwlock_t and pthread_rwlockattr_t objects.

class rw_mutex : public mutex{
protected:
   struct pthread_rwlock_t *RwLock;
   struct pthread_rwlockattr_t *RwLockAttr;
public:
   //...
   int read_lock(void);
   int write_lock(void);
   int try_readlock(void);
   int try_writelock(void);
   //...
};

The rw_mutex class inherits the mutex class.  Figure 11-3 shows the class relationships between our 
rw_mutex class, mutex class, synchronization_variable class and our runtime_error class.

Figure 11-3. The class relationships between rw_mutex, mutex, synchronization_variable, and runtime_error classes.
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So far we have a somewhat narrow interface. We are only interested in providing the core minimum set 
of  attributes  and  characteristics  needed  to  generalize  our  mutex  class  using  the  mutex  types  and 
functions from the Pthread library. However, once we are done with this narrow interface for this mutex 
class we use that interface as a basis for our semi-fat interface. The narrow interface typically is used 
with classes that are all related through inheritance in some way. The fat interfaces tend to be used with 
classes  that  are  related  by functionality  and not  by  inheritance.  We can  use  the  interface  class  to 
simplify  the  interface  on  classes  or  functions  that  belong  to  different  libraries  but  have  similar 
functionality. The interface class will provide the programmer with a consistent look and feel. We take 
each of the libraries or classes that have similar functionality, collect all of the common functions and 
variables, then generalize that functionality into a large class that contains all of the required functions 
and attributes. This will define a class with a fat interface. However, if we just include the functions and 
data we are interested in, we (e.g., rw_mutex class) then have a semi-fat interface. It has some of the 
advantages of the fat interface by allowing us to access objects that are only related by functionality and 
it restricts the set of methods the programmer has to deal with to the methods contained in the narrow 
interface class. This can be very important when integrating large function libraries like MPI and PVM 
with the POSIX facilities for concurrency. The combination of the MPI, PVM, and POSIX facilities 
represents hundreds of functions that all have very similar goals. Taking the time to streamline this 
functionality  into  interface  classes  will  allow  the  programmer  to  reduce  some  of  the  complexity 
involved with  parallel  and  distributed  programming.  Also,  these  interface  classes  become reusable 
components that support concurrency.

To  see  how  we  approach  our  semi-fat  interface,  lets  provide  an  interface  class  for  the  POSIX 
semaphore.  Although the semaphore is  not part  of the Pthread library,  it  certainly has similar uses 
within  a  multithreaded  environment.  However,  it  can  be  used  in  an  environment  that  includes 
concurrently  executing  processes  as  well  as  threads.  So  in  some  cases  it  is  a  more  general 
synchronization variable than our mutex class.

We might define our semaphore class in Example 11.10 as:

Example 11.10 Declaration of semaphore class.

class semaphore : public synchronization_variable{
protected:
   sem_t  *Semaphore;
public:
   //...
   int lock(void);
   int unlock(void);
   int trylock(void);
   //...
};

Synopsis
<semaphore.h>

int   sem_init(sem_t *, int, unsigned int);
int   sem_destroy(sem_t *);

sem_t *sem_open(const char *, int, ...);
int   sem_close(sem_t *);
int   sem_unlink(const char *);
int   sem_wait(sem_t *);
int   sem_trywait(sem_t *);
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int   sem_post(sem_t *);
int   sem_getvalue(sem_t *, int *);

Notice that it has the same interface as our mutex class. What's the difference? First there are several 
important POSIX semaphore functions. Although the interfaces of mutex and semaphore are the same, 
the implementation of the lock(), unlock(), trylock(), and so on functions will be calls to the POSIX 
semaphore functions. For instance:

Example 11.11 Definitions of lock(), unlock(), and trylock() methods for the semaphore class.

int semaphore::lock(void)
{
   //...
   return(sem_wait(Semaphore));
}
int semaphore::unlock(void)
{
    //...
    return(sem_post(Semaphore));
}

So the lock(), unlock(), trylock(), and so on, functions will wrap POSIX semaphore functions instead of 
Pthread functions. It is very important to note that a semaphore and a mutex are not the same thing. 
However, they can be used in similar situations. Often from the point of view of instructions that are 
implementing parallelism, the lock() and the unlock() mechanisms serve the same purpose. Table 11-2 
shows some of the fundamental differences between a mutex and a semaphore.

While the differences in semantics in Table 11-2 are important, they are often not enough to justify a 
completely different interface to semaphore and mutexes. Therefore, we keep our lock(), unlock(), and 
trylock() semi-fat interface with the caveat that the programmer must know the differences between a 
mutex and a semaphore. This is similar to the situation that arises with the fat interfaces of the container 
classes such as deque, queue, set, multiset, and so on. The container classes are related by interface but 
their semantics are different in certain areas. Using the notion of an interface class, synchronization 
components can be designed for mutexes, condition variables, read/write mutexes, and semaphores. 
Once we have these components, we can design concurrency-safe container classes, domain classes, 
and framework classes. We can also use the interface classes to provide a single interface to different 
versions of the same function library, where both versions need to be used within the same application 
for some reason.  Sometimes the interface class can be used to bridge the gap between deprecated, 
obsolete functions and new functionality. We often want to insulate the application programmer from 
the difference between operating systems. When the System V semaphores or POSIX semaphores are 
used, the programmer can be provided with a consistent API using an interface class.
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Table 11-2. Fundamental Differences between Mutexes and Semaphores

Characteristics of Mutexes Characteristics of Semaphores

Mutexes  and  condition  variables  are 
shared between threads.

Semaphores  are  typically  shared  between  processes,  but 
may also be shared between threads.

A mutex is unlocked by the same threads 
that locked it.

A  semaphore  post  can  be  performed  by  other  than  the 
original thread or process that held it.

A mutex is either locked or unlocked. A semaphore is managed by its reference count state.

 The POSIX standard includes named semaphores.

11.3 Maintaining the Stream Metaphor

Besides using interface classes to simplify and to create new fat interfaces for the parallel and message-
passing libraries,  we may also want  to  extend existing interfaces.  For  instance,  the object-oriented 
stream metaphor can be extended to pipes, fifos, and the message passing libraries like PVM and MPI. 
These  components  are  used  to  accomplish  IPC (Inter-Process  Communication),  ITC (Inter-Thread 
Communication), and in some cases OTOC (Object-to-Object Communicaton). When communication 
occurs between concurrently executing threads or processes, then the communication channel may be a 
critical section. That is, if two or more routines are attempting to update the same pipe, fifo, or message 
buffer at the same time, then a race condition is present. If we are going to extend the object-oriented 
stream interface to include components from the PVM or MPI library, then we need to make sure that 
the streams we design are concurrency safe. Here is where our synchronization components that were 
designed as interface classes come in handy. Let's look at a simple pvm_stream class.

Example 11.12 Declaration of pvm_stream class that inherits mios class.

class pvm_stream : public mios{
protected:
   int TaskId;
   int MessageId;
   mutex Mutex;
   //...
public:
   void taskId(int Tid);
   void messageId(int Mid);
   pvm_stream(int Coding = PvmDataDefault);
   void reset(int Coding = PvmDataDefault);
   pvm_stream &operator<<(string &Data);
   pvm_stream &operator>>(string &Data);
   pvm_stream &operator>>(int &Data);
   pvm_stream &operator<<(int &Data);
   //...
};



This stream class will be used to encapsulate the state of the active buffer in a PVM task. The inserter 
operator << and the extractor operator >> will be used to send and retrieve messages between PVM 
processes. Here we only show operators for string and int types. The interface for this class is far from 
complete. Since this class could possibly be used with any datatype, we have to expand the inserter and 
extractor definitions. Since we plan to use the pvm_stream class within a multithreaded program, we 
want to make sure that the pvm_stream object is thread safe. Therefore, we include a mutex class as a 
member of our pvm_stream class. The pvm_stream class also encapsulates the active buffer for the 
PVM task. The stream can direct the message to a particular PVM task. The goal is to use the ostream 
and istream classes as a guide for the type of functionality that the pvm_stream class should have. 
Recall  that  istream and ostream classes are translator classes.  They translate datatypes into generic 
streams of bytes for output and from generic streams of bytes to specific datatypes on input. Using the 
istream and ostream classes, the programmer does not have to get bogged down in details of what 
datatype is being inserted or extracted from a stream. We want the pvm_stream to behave in the same 
manner. The PVM has a different function for every type that needs to be packed into or unpacked from 
a send or receive buffer. For instance:

pvm_pkdouble()
pvm_pkint()
pvm_pkfloat()

are used to pack doubles, ints, and floats. There are similar functions for the other datatypes that C++ 
uses. We would like to retain our stream metaphor where input and output is seen as a generic stream of 
bytes moving into or out of the program. Therefore, we define the << inserter operator and the >> 
extractor operator for every type we wish to exchange between PVM tasks. Furthermore, we also model 
the  stream  state  after  istream  and  ostream  classes.  The  istream  and  ostream  classes  have  an  ios 
component that is used to hold the state of the stream. The stream may be in an error state, or the stream 
may be in one of several different numeric states such as octal, decimal, and hexadecimal. The stream 
may be in a good state, a locked state, an end-of-file state, and so on. The pvm_stream class should 
have a component that maintains the state of the stream and should have methods that set, reset, and 
report the PVM stream state. Our pvm_stream class contains a mios component for this purpose. The 
mios component maintains the state of the stream and the active send and receive buffer. Figure 11-4 
contains a class diagram showing the relationships between the major classes in the iostream class 
library and how the pvm_stream class compares.
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Figure 11-4. The class diagram showing the relationship between the major classes in the iostream class library and 
the class diagram for the pvm_stream class.

Notice that the istream and ostream classes inherit an ios class. The ios class maintains the stream state 
and  buffer  state  of  the  istream  and  ostream  class.  Our  mios  class  plays  the  same  role  for  the 
pvm_stream class.  The istream and ostream classes  contain the definitions  for  the inserter  << and 
extractor  >>  operators.  The  operators  are  defined  by  our  pvm_stream  class.  So  although  our 
pvm_stream class is not related to the iostream classes by inheritance, it is related by interface. We use 
the interface of the iostream classes to dictate a semi-fat interface for the pvm_stream and mios classes. 
Notice in Figure 11-4 that the mios class is inherited by the pvm_stream class. We want to maintain the 
stream metaphor with the pvm_stream class. The notion of an interface class is used to accomplish this.

11.3.1 Overloading the <<, >> Operators for PVM Streams

Let's  take  a  look at  how the  << inserter  operators  and  >> extractor  operators  are  defined  for  the 
pvm_stream class. The << inserter operator is used to wrap the pvm_send and pvm_pk routines. A 
method definition that looks something like:
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Example 11.13 Definition of <<operator for the pvm_stream class.

pvm_stream &pvm_stream::operator<<(int Data)
{
   //...
   reset();
   pvm_pkint(&Data,1,1);
   pvm_send(TaskId,MessageId);
   //...
   return(*this);
}

is provided for each type that will be used with the pvm_stream class. The reset() method is inherited 
from the mios class. This method is used to clear or initialize the send buffer. TaskId and MessageId are 
data members of the pvm_stream class and are set with the taskId() and messageId() methods. The 
inserter method allows us to send data to a PVM task with the standard stream notation:

int  Value = 2004;
pvm_stream   MyStream;
//...
MyStream   << Value;
//...

The >> extractor operators are used in a similar manner to receive messages from PVM tasks. The >> 
operator is used to wrap the pvm_recv() and pvmupk routines. Extractor operators can be defined as:

Example 11.14 Definition of operator >> for the pvm_stream class.

pvm_stream &pvm_stream::operator>>(int &Data)
{
   int BufId;
   //...
   BufId = pvm_recv(TaskId,MessageId);
   StreamState = pvm_upkint(&Data,1,1);
   //...
   return(*this);
}

This type of definition will allow us to receive messages from PVM tasks using the extractor operator.

int Value;
pvm_stream MyStream;

MyStream >> Value;

Because the operator returns a reference to the pvm_stream, the insertion and extraction operators may 
be strung together:

Mystream << Value1 << Value2;
Mystream >> Value3 >> Value4;

Using this syntax, the programmer is isolated from the more cumbersome syntax of the pvm_send, 
pvm_pk, pvm_upk, and pvm_recv routines and the more familiar object-oriented stream metaphor can 
be  used.  In  this  case,  the  stream represents  a  message  buffer  and  the  items  that  are  inserted  and 
extracted  from the  streams represent  messages  that  are  being  exchanged between PVM processes. 
Recall that each PVM process has a separate address space. So not only do the << insertion and >> 
extraction operators disguise the pvm_send and pvm_recv calls, they also mask the underlying socket 



activity. Since the pvm_stream class might be used in a multithreaded environment, the insertion and 
extraction operators need to be thread safe.

The class diagram in Figure 11-4 shows that the pvm_stream class contains a mutex class. The mutex 
class  can  be  used  to  protect  the  critical  sections  that  are  present  in  the  pvm_stream  class.  The 
pvm_stream class encapsulates access to the send buffer and the receive buffer. Figure 11-5 shows how 
threads and the pvm_stream class interact with the pvm_send and pvm_receive buffers.

Figure 11-5. The interaction between the threads, the pvm_stream class, and the pvm_send and pvm_receive buffers.

Not only are the send and receive buffers critical sections, the mios class used to store the state of the 
pvm_stream class is also a critical section. The mutex class can be used to protect this component as 
well.

The Mutex object can be used in the call to the insertion and extraction operators.

Example 11.15 Definition of operator << and operator >> for the pvm_stream class.

pvm_stream &pvm_stream::operator<<(int Data)

{
   //...
   Mutex.lock();
   reset();
   pvm_pkint(&Data,1,1);
   pvm_send(TaskId,MessageId);
   Mutex.unlock();
   //...
   return(*this);

}

pvm_stream &pvm_stream::operator>>(int &Data)
{
   int BufId;
   //...
   Mutex.lock();
   BufId = pvm_recv(TaskId,MessageId);
   StreamState = pvm_upkint(&Data,1,1);
   Mutex.unlock();
   //...
   return(*this);
}
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This  kind  of  scheme can  be  used  to  make the  pvm_stream class  thread  safe.  We don't  show the 
exception  handling  code  or  the  extra  processing  that  would  be  included  to  prevent  indefinite 
postponement or deadlock. The idea here is to focus on the components and architectures that can be 
used to support concurrency. The mutex interface class and the pvm_stream class can be reused and 
both support concurrency programming. For our purposes, the pvm_stream objects are assumed to be 
used by the receiving and the sending PVM task. However, this is not a strict requirement. In order for 
the user to use the pvm_stream class concept with user-defined classes, the insertion operator (<<) and 
the extraction operator (>>) must be defined for the user-defined class.

11.4 User-Defined Classes Designed to Work with PVM Streams

To see how the user-defined class can be used with the pvm_stream class, we will improve on the PVM 
palette producing routines introduced in Chapter 6. The palette class represents a simple collection of 
colors. For convenience, we store the colors in a vector<string> named Colors.

We begin by declaring a spectral_palette class that contains friend declarations for the << inserter and 
>> extractor operators.

Example 11.16 Declaration of spectral_palette class.

class spectral_palette : public pvm_object{
protected:
   //...
   vector<string> Colors;
public:
   spectral_palette(void);
   //...
   friend pvm_stream &operator>>(pvm_stream &In,
                                 spectral_palette &Obj);
   friend pvm_stream &operator<<(pvm_stream &Out,
                                 spectral_palette &Obj);
   //...
};

Notice this spectral_palette class in Example 11.16 inherits a pvm_object class. The pvm_object class 
provides the spectral_palette class with member access to a task id and message id. Recall that the task 
id and message id are used in many PVM routines. With the definition of the << operator and >> 
operator,  spectral_palette  objects  can  be  sent  between  concurrently  executing  PVM  tasks.  The 
technique used with the spectral_palette class is a simplified approach that can be used with any user-
defined  class.  Since  the  pvm_stream  class  will  have  operators  for  the  built-in  datatypes  and  for 
containers that hold built-in datatypes, a user-defined class need only define the << operator and >> 
operator to translate its representation to either a built-in datatype or a standard container that holds 
built-in datatypes. For instance, the << operator for the spectral_palette class is defined in  Example 
11.17.
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Example 11.17 Definition of operator<< for the spectral_palette class.

pvm_stream &operator<<(pvm_stream &Out, spectral_palette &Obj)
{
   int N;
   string Source;
   for(N = 0;N < Obj.Colors.size();N++)
   {
      Source.append(Obj.Colors[N]);
      if(N <Obj.Colors.size() - 1){
         Source.append(" ");
      }
   }
   Out.reset();
   Out.taskId(Obj.TaskId);
   Out.messageId(Obj.MessageId);
   Out << Source;
   return(Out);
}

Let's closely examine the definition of this insertion operation in Example 11.17. Since the pvm_stream 
class only works with built-in types, the goal of the user-defined << operator is to translate the user-
defined object into a sequence of user-defined datatypes. This translation process is one of the primary 
responsibilities of the stream classes. Here, the spectral_palette class will be translated into a string of 
colors separated by a blank.  The list of colors is stored in a string named Source. This translation 
process allows the class to be used with the pvm_stream << operator that has been defined for the string 
datatype. Once these operators are defined, the programmer's API is considerably more consistent than 
it would be if the native versions of the Pthread library, POSIX semaphore library, and MPI library 
routines were called. A spectral_palette object can be sent to another PVM task using an << insertion 
operator as:

Example 11.18 Using the pvm_stream and spectral_palette objects.

pvm_stream TaskStream;
spectral_palette MyColors;

//...
TaskStream.taskId(20001);
TaskStream.messageId(1);
//...
TaskStream << MyColors;
//...

The MyColors object is sent to the appropriate PVM task. Figure 11-6 contains the components used to 
support  the TaskStream and MyColors objects. Each component in  Figure 11-6 can be refined and 
optimized individually. Each layer provides an additional level of insulation from the complexity of 
these components. At the highest level the programmer is only concerned about the application domain. 
This high level of abstraction allows the programmer to naturally represent the parallelism that the 
application  domain  requires  without  getting  bogged down in  syntax  and complicated  function  call 
sequences. The components in Figure 11-6 represent the beginnings of a class library that can be used 
for  PVM  programs  and  multithreaded  PVM  programs.  These  same  techniques  can  be  used  to 
communicate  between  concurrently  executing  tasks  that  are  not  part  of  a  PVM.  There  are  many 
applications  that  require  concurrency  but  that  do  not  need  the  complete  machinery  of  the  PVM 
environment.  For  these  applications  the  exec(),  fork(),  or  pvm_spawn()  functions  are  sufficient. 
Applications that only require a few concurrently executing processes and client-server applications are 
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good  examples.  Interprocess  communication  is  also  required  for  these  non-PVM  or  non-MPI 
applications. We would also like to maintain the stream metaphor for concurrently executing processes 
created with the fork-exec sequence or pvm_spawn. The notion of the object-oriented stream can be 
extended to cover pipes and fifos.

Figure 11-6. The components used to support the TaskStream and MyColors objects.

11.5 Object-Oriented Pipes and fifos as Low-Level Building Blocks

To arrive at a design for object-oriented pipes, we start with basic characteristics and behavior that all 
pipes have in common. A pipe is a channel of communication between two or more processes. In order 
for the processes  to  communicate,  they will  transmit  some sort  of information between them. The 
information may represent data or commands to be performed. Typically, the information is translated 
into a sequence of data and inserted into the pipe and retrieved by a process on the other side of the 
pipe.  The  data  is  reassembled  into  meaningful  data  by  the  retrieving  process.  Whatever  the  data 
represents, there must be somewhere to store the data while it is in transit from one process to another. 
We call  the storage  area for  the  information a  data  buffer.  Insertion and extraction operations  are 
needed to place data into and extract data from the buffer. Before any insertion into the data buffer or 
extraction from a data buffer can begin, the data buffer must first exist. Object-oriented piping facilities 
must support an operation that creates and initializes a data buffer. Once the communications between 
processes  have  been  completed,  the  data  buffer  used  to  hold  the  information  will  no  longer  be 
necessary. This means that our object-oriented pipe must be able to remove the data buffer after it is no 
longer needed. This suggests there are at least five basic components that any object-oriented piping 
facility should have:

• Buffer

• Insertion operation

• Extraction operation

• Creation/initialization operation

• Destruction operation

In addition to these five basic components, a pipe will have two ends. One end of the pipe will be for 
inserting data. The other end of the pipe will be for extracting data. These two ends can be accessed 
from different processes. To complete our notion of a pipe we must include an input port and an output 
port, which could be connected to separate processes. This gives seven basic components needed to 
describe our object-oriented pipe:

• Input port

• Output port

• Buffer



• Insertion operation

• Extraction operation

• Creation/initialization operation

• Buffer destruction operation

These components represent minimal core requirements for our description of a pipe. Once we have the 
basic components, we can identify how existing system APIs or data structures can be used to help us 
design an object-oriented pipe. In the same way that we use encapsulation and operator overloading to 
design a pvm_stream, we use the same techniques to wrap the pipe and fifo functions.

Notice that five of the seven basic components are common to many basic I/O data structures and 
container types. Most UNIX/Linux file services support:

• Buffers

• Buffer insertion operations

• Buffer extraction operations

• Buffer creation operations

• Buffer destruction operations

We use the notion of C++ interface classes to encapsulate the functionality provided by UNIX/Linux 
system services. We build object-oriented versions of the input/output services. Whereas we had to start 
from scratch with the pvm_stream class for the PVM library, here we can take advantage of the existing 
C++ standard library and the iostreams. Recall  that  the iostreams class  library supports  an object-
oriented model of input and output streams. Furthermore, this object-oriented library has support for the 
data buffer notion and all the operations upon the data buffer. Figure 11-7 shows a simple class diagram 
of the iostream class.

Figure 11-7. Class diagram for the major components of the iostream class.

The major  components  of  the  iostream class  can  be described  by three  kinds  of  classes:  a  buffer 
component, a translation component, and a state component (see Hughes & Hughes, 1999). The buffer 
component  is  used  as  a  holding  area  for  bytes  that  are  in  transit.  The  translation  component  is 
responsible  for  translating  anonymous  sequences  of  bytes  into  the  appropriate  datatypes  and  data 
structures, and for translating data structures and data-types in anonymous sequences of bytes. The 
translation component is responsible for providing the programmer with a stream of bytes metaphor 
where all I/O regardless of source or destination is treated as a stream of bytes. The state component 
encapsulates  the  state  of  the  object-oriented  stream.  The  state  component  maintains  what  type  of 
formatting is applicable to the data bytes that are in the buffer component. The state component also 
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maintains  whether  a  stream  has  been  opened  in  the  append  mode,  create  mode,  exclusive  read, 
exclusive write,  or whether numbers will be interpreted as hexadecimal,  octal,  or binary.  The state 
component also can be used to determine the error state of I/O operations on the buffer component. By 
querying the state component the programmer can determine if the buffer component is in a good or 
bad state. These three components are objects and can be used together to form a complete object-
oriented stream, or separately as support objects in other tasks.

Five of the basic requirements for our pipe are already implemented in the iostreams class library. All 
we need to add is the notion of the input port and output port. To do this, we can examine the system 
services that support the use of pipes. The UNIX/Linux system calls create a pipe.

Example 11.19 Using system call to create a pipe.

int main(int argc, char *argv[])
{
   //...
   int Fd[2];
   pipe(Fd);
   //...
}

The pipe function call is used to create a pipe data structure, which can be used between parent and 
child processes to communicate. If the call to pipe is successful, it will return two file descriptors. File 
descriptors are integers used to identify successfully opened files. In this case, the descriptors are stored 
in the array Fd. Fd[0] will be open for reading, and Fd[1] will be open for writing. Once these two file 
descriptors  are  created,  they  can be used with  regular  read(  )  and write(  )  functions.  The write(  ) 
function will cause data to be inserted into the pipe via Fd[1], and the read( ) function will cause data to 
be extracted from the pipe via Fd[0]. Because the pipe() function returns file descriptors, access to a 
pipe can be accomplished using system file services. The sysconf(_SC_OPEN_MAX) system call can 
be  used  to  determine  the  maximum  allowable  file  descriptors  open  by  a  process.  The 
pathconf(_PC_PIPE_BUF) call can be used to find the size of the pipe.

These two file descriptors represent our logical input port and output port, respectively. We also use 
these two file descriptors to provide links to the iostream class library. Specifically, they provide a link 
to the buffer class. The buffer component of the iostream classes has three families of classes. Table 11-
3 lists the three types of buffer classes and their descriptions.

Table 11-3. Three Types of Buffer Classes

Types  of  Buffer 
Classes

Description

basic_streambuf Describes the behavior of various stream buffers in order to control input and 
output sequences of characters.

basic_stringbuf Associates input and output sequences with a sequence of arbitrary characters that 
can be initialized from or made available as a string object.

basic_filebuf Associates input and output sequences of characters with a file.

We are interested in the filebuf class. Whereas the basic_streambuf class is used as an object-oriented 
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buffer in I/O from standard in and standard out, and the basic_stringbuf class is used for object-oriented 
memory buffers, the filebuf class is used as object-oriented buffers for files. By examining the interface 
for the filebuf class and the interface for its translator classes, ifstream, ofstream, and fstream, we can 
find a way to connect the file descriptors returned from the pipe() system call to the iostream objects. 
Figure 11-8 shows the class diagrams for the fstream family of classes.

Figure 11-8. The class diagrams for the fstream family of classes.

Notice that the ifstream, ofstream, and fstream classes all contain the filebuf class. Therefore, we can 
use any class from the fstream family of classes to help us in creating object-oriented pipe facilities. We 
can  connect  the  file  descriptors  returned  by  the  pipe()  system call  either  through  constructors,  or 
through the attach() member function.

Synopsis
#include <fstream>

// UNIX systems
ifstream(int fd)
fstream(int fd)
ofstream(int fd)

// gnu C++
void attach(int fd);

11.5.1 Connecting Pipes to iostream Objects Using File Descriptors

There are three iostream classes that we can use to connect to a pipe. They are ifstream, ofstream, and 
fstream. An ifstream object is used for input and an ofstream object is used for output. An fstream 
object  can be  used  for  both input  and output.  Although direct  support  for  file  descriptors  and  the 
iostreams  is  not  yet  part  of  the  ISO standard,  most  UNIX and  Linux  C++ environments  support 
iostream access to file descriptors. The GNU C++ iostreams library supports a file descriptor in one of 
the ifstream, of-stream, and fstream constructors  and with the attach()  method of the ifstream and 
ofstream classes. UNIX compilers such as Sun's C++ compiler supports file descriptors through one of 
the ifstream, ofstream, and fstream constructors. So the sequence of code:

//...
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int Fd[2];
Pipe(Fd);
ifstream IPipe(Fd[0]);
ofstream OPipe(Fd[1]);

will create to object-oriented pipes. IPipe will be an input stream and OPipe will be an output stream. 
Once  these streams are  created  they  can  be  used  to  communicate  between concurrently  executing 
processes using the stream metaphor  and the inserter  << and >> extractor  operators.  For the C++ 
environments  that  support  the  attach()  method,  the  file  descriptor  can  be  attached  to  an  ifstream, 
ofstream, or fstream object using the syntax:

Example 11.20 Creating a pipe and using the attach() function.

int Fd[2];
ofstream OPipe;
//...
pipe(Fd);
//...
OPipe.attach(Fd[1]);
//...
OPipe << Value << endl;

This usage of object-oriented pipes assumes the existence of some child process that can read the pipe. 
Program 11.1 uses the fork command to create two processes. The parent process sends a value to the 
child process using an iostreams-based pipe.

Program 11.1 

 1 #include <unistd.h>
 2 #include <iostream.h>
 3 #include <fstream.h>
 4 #include <math.h>
 5 #include <sys/wait.h>
 6
 7
 8
 9
10 int main(int argc, char *argv[])
11 {
12
13 int Fd[2];
14 int Pid;
15 float Value;
16 int Status;
17 if(pipe(Fd) != 0){
18    cerr << "Error Creating Pipe " << endl;
19    exit(1);
20 }
21 Pid = fork();
22 if(Pid == 0){
23    ifstream IPipe(Fd[0]);
24    IPipe >> Value;
25    cout << "Value Received From Parent " << Value << endl;
26    IPipe.close();
27 }
28 else{
29        ofstream OPipe(Fd[1]);
30        OPipe << M_PI << endl;
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31        wait(&Status);
32        OPipe.close();
33
34 }
35
36  }

Recall that when a fork() call is made, the return value of 0 belongs to the child process. In Program 
11.1 the pipe is created on line 17. On line 29 the parent process opens the pipe for writing. The file 
descriptor Fd[1] is the write end of the pipe. This end of the pipe is attached to an ofstream object 
through the constructor on line 29. The read end of the pipe is attached to an ifstream object on line 23. 
The child process opens the pipe for reading. The child process has access to the file descriptor because 
along with the parent's environment, file descriptors are also inherited. Therefore, any files that are 
open in the parent will be opened in the child unless explicit instructions are given to the operating 
system using the fcntl system call. Besides open files being inherited, the position markers within the 
files remain where they are during the spawning of the child process so that the child process also has 
access to the position marker. When the position is moved in the parent, the marker in the child process 
is  also moved.  In  this  case,  we were able  to  accomplish the  stream metaphor  without  creating  an 
interface class. Simply by attaching the pipe's file descriptors to the ofstream and ifstream objects we 
are able to use the << inserter and >> extractor operators. Likewise, any class that has the >> extraction 
or << insertion operators defined can be extracted from or inserted into the pipe without requiring any 
further work from the programmer. The parent inserts the value M_PI into the pipe on line 30. The 
child extracts the value from the pipe using the >> operator on line 24. The details for executing and 
compiling this program are contained in Program Profile 11.1.

Program Profile 11.1
Program Name

program11-1.cc

Description

Program 11.1 demonstrates the use of an object-oriented stream metaphor with anonymous system 
pipes. The program uses the fork() program to create two processes that will communicate using the 
<< inserter and >> extractor operators.

Headers Required

<wait.h>, <unistd.h>, <iostream.h>, <fstream.h>, <math.h>

Compile and Link Instructions

c++ -o program11-1 program11-1.cc

Test Environment

Solaris 8, SuSE Linux 7.1

Execution Instructions
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./program11-1

The gnu C++ compiler also supports the attach() method. We could use this method to connect the file 
descriptors to the ifstream and ofstream objects. For instance:

Example 11.21 Connecting file descriptors to an ofstream object.

int main (int argc, char *argv[])
{
   int Fd[2];
   ofstream Out;
   pipe(Fd);
   Out.attach(Fd[1]);
   //...
   // Interprocess Communication
   //...
   Out.close( );
}

The Out.attach(Fd[1]) call attaches an ofstream object to a pipe file descriptor. Now any information 
that is inserted into the Out object is actually being written to a pipe. Using extractors and insertors to 
perform automatic format translation is a major advantage of using the fstream family of classes in 
conjunction  with  the  pipe  communication.  The  ability  to  use  userdefined  extractors  and  insertors 
removes some of the difficulty encountered with pipe programming. So instead of requiring the explicit 
enumeration of data sizes of everything written and read from the pipe we use the number of elements 
to control read/write access,  which makes  the entire process simpler.  In addition,  this  cost  savings 
makes the parallel programming efforts easier. The technique we recommend is to use architecture to 
support a divide-and-conquer approach to parallelization. Once the correct components are in place, the 
programming becomes easier. For instance, since the pipe is tied to ofstream and ifstream objects, we 
are able to use the information retained by the ios component to determine the state of the pipe. The 
translation components of the iostreams can be used to perform automatic conversions as the data is 
inserted into one end of the pipe and extracted out of the other end. Using the pipes with the iostreams 
also allows the programmer to integrate the standard containers and algorithms with pipe inter-process 
communication. Figure 11-9 shows the relationship between the ifstream, ofstream, extractor, insertor, 
pipe, and the inserter and extractor when iostreams are used for interprocess communication.

Figure 11-9. The relationships between ifstream and ofstream objects, pipe, and the inserter and extractor when the 
iostreams are used for interprocess communication.

The fstream family of classes can also use the read( ) and write( ) member functions to read data to a 
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pipe, and write data from a pipe.

11.5.2 Accessing Anonymous Pipes Using the ostream_iterator

We can also use the pipe with the ostream_iterator and istream_iterator. These iterators are generic 
object-oriented pointers. The ostream_iterator will allow you to transfer entire containers (i.e.,  lists, 
vectors,  sets,  queues,  etc.)  across  the  pipe.  Without  the  use  of  iostreams  and  ostream_iterator, 
transferring containers of objects would be a very tedious and error-prone process. Table 11-4 lists the 
set of operations that are available on the ostream_iterator and istream_iterator class.

Table 11-4. Set of Operations Available on the ostream_iterator and istream_iterator

Iterators Operations Description

istream_iterator a == b Equivalence relation

 a != b Nonequivalence relation

 *a Dereference

 ++ r Preincrementation

 r ++ Postincrementation

ostream_iterator ++ r Preincrementation

 r ++ Postincrementation

Typically,  these  iterators  are  used  with  the  iostreams  classes  and  the  standard  algorithms.  The 
ostream_iterator is a sequential write-only iterator. Once an item has been accessed, the programmer 
cannot go back to it without starting the iteration over. The pipe is treated like a sequence container 
when used with these iterators. This means that when the pipe is connected to the iostreams through 
ostream_iterator and the file descriptors, we can apply standard algorithm type processing to the input 
from a pipe or the input to a pipe. The reason these iterators can be used in conjunction with pipes is the 
connection between the iterators and the iostream classes.  The diagram in  Figure 11-10 shows the 
relationship between the I/O iterators and the iostream classes.

Figure 11-10. The relationship between the I/O iterators and the iostream classes.

Figure 11-10 also shows how these classes interact with the notion of our object-oriented pipe. Let's 
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take a close look at how the ostream_iterator is used with an ostream object. If a pointer is incremented, 
we expect it  to point at the next location in memory.  When the ostream_iterator is incremented, it 
moves or points to the next position in the output stream. When we assign a value to a dereferenced 
pointer, we are placing that value at the location that the pointer points to. When we assign a value to an 
ostream_iterator, we are placing that value in the output stream. If that output stream is connected to 
cout, then the value will be displayed on the standard out. If we declare an ostream_iterator object such 
as:

ostream_iterator<int> X(cout,"\n");

Then X is an object of type ostream_iterator. The increment operation:

X++;

causes X to move to the next position in the output stream. The statement:

*X = Y;

causes  Y  to  be  displayed  on  standard  out.  This  is  because  the  assignment  operator  =  has  been 
overloaded to use an ostream object. The declaration:

ostream_iterator<int> X(cout, "\n");

caused X to be constructed with a cout as the stream. The other argument in the constructor is the 
delimiter  that  will  automatically  be  placed  after  every  int  that  is  inserted  into  the  stream.  The 
declaration for the ostream_iterator looks like this:

Example 11.22 Declaration of the ostream_iterator class.

template <class _Tp>
class ostream_iterator {
protected:
   ostream* _M_stream;
   const char* _M_string;

public:
   typedef output_iterator_tag iterator_category;
   typedef void                value_type;
   typedef void                difference_type;
   typedef void                pointer;
   typedef void                reference;

ostream_iterator(ostream& __s) : _M_stream(&__s), _M_string(0) {}
ostream_iterator(ostream& __s, const char* __c)
 : _M_stream(&__s), _M_string(__c) {}
 ostream_iterator<_Tp>& operator=(const _Tp& __value) {
 *_M_stream << __value;
if (_M_string) *_M_stream << _M_string;
   return *this;
}
ostream_iterator<_Tp>& operator*() { return *this; }
ostream_iterator<_Tp>& operator++() { return *this; }
ostream_iterator<_Tp>& operator++(int) { return *this; }
};

The constructor for the ostream_iterator accepts a reference to an ostream object. The ostream_iterator 
class has an aggregate relationship with the ostream class. The istream_iterator has just the opposite use 



of the ostream_iterator. It is used with istream objects instead of ostream objects. If istream_iterator and 
ostream_iterator  objects  are  connected  to  iostream objects  that  in  turn  are  connected  to  pipe  file 
descriptors, then every time the istream_iterator is incremented, the pipe is being read, and every time 
the ostream_iterator is incremented, the pipe is being written. To demonstrate how these components 
work  together,  we  have  two  programs:  Programs  11.2 and  11.2b that  use  anonymous  pipes  to 
communicate. Program 11.2 is the parent and Program 11.2b is the child. The parent uses the fork() and 
execl() system calls to create the child process. Although file descriptors are inherited by the child, their 
values are immediately available to Program 11.2b because an execl() call has been made.

Program 11.2 

10 int main(int argc, char *argv[])
11 {
12
13   int Size,Pid,Status,Fd1[2],Fd2[2];
14   pipe(Fd1); pipe(Fd2);
15   strstream Buffer;
16   char Value[50];
17   float Data;
18   vector<float> X(5,2.1221), Y;
19   Buffer << Fd1[0] << ends;
20   Buffer >> Value;
21   setenv("Fdin",Value,1);
22   Buffer.clear();
23   Buffer << Fd2[1] << ends;
24   Buffer >> Value;
25   setenv("Fdout",Value,1);
26   Pid = fork();
27   if(Pid != 0){
28      ofstream OPipe;
29      OPipe.attach(Fd1[1]);
30      ostream_iterator<float> OPtr(OPipe,"\n");
31      OPipe << X.size() << endl;
32      copy(X.begin(),X.end(),OPtr);
33      OPipe << flush;
34      ifstream IPipe;
35      IPipe.attach(Fd2[0]);
36      IPipe >> Size;
37      for(int N = 0; N < Size;N++)
38      {
39         IPipe >> Data;
40         Y.push_back(Data);
41      }
42      wait(&Status);
43      ostream_iterator<float> OPtr2(cout,"\n");
44      copy(Y.begin(),Y.end(),OPtr2);
45      OPipe.close();
46      IPipe.close();
47   }
48   else{
49          execl("./program11-2b","program11-2b",NULL);
50   }
51
52   return(0);
53 }

In lines 21 and 25, the setenv() system call is used to pass the values of file descriptors to the child. This 
is  possible  because  the  child  process  inherits  the  environment  of  the  parent  process.  We  can  set 
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environment variables within a program using the setenv() system calls. So, in this case, we set:

Fdin=filedesc;
Fdout=filedesc;

The child process then uses the getenv() system call to retrieve the values of Fdin and Fdout. The value 
in Fdin will be the read end of the pipe for the child and the value of Fdout will be the write end. Using 
the setenv() and getenv() system calls provide a simple form of IPC between parent and child processes. 
The pipes are created on line 14. On line 29 the parent attaches to one end of the pipe for writing using 
the attach() method. Once the attach is performed, any data inserted into the OPipe ofstream object will 
be written to the pipe. An ostream_iterator is connected to the OPipe object on line 30 using:

ostream_iterator<float> OPtr(OPipe,"\n");

This causes the iterator OPtr to refer to OPipe. The "\n" will be inserted as a delimiter after every 
insertion. Using OPtr we may insert any number of float values to the pipe. We can attach more than 
one iterator with different types to pipe. However, this does require that on the receiving end data is 
extracted using the appropriate types. In Program 11.2 the number of elements is first inserted into the 
pipe using:

OPipe << X.size() << endl;

The actual elements are sent using one of the C++ standard algorithms.

copy(X.begin(),X.end(),OPtr);

The copy() algorithm copies the contents of its container into the container associated with the target 
iterator. Here the target iterator is OPtr. OPtr is connected to the OPipe so copy() causes the entire 
contents of the container to be written to the pipe in one line of code.  This demonstrates how the 
standard algorithms can be used to help with the communication in parallel programming or distributed 
programming environments. Here the copy is sending information from one process to another process 
in  a  different  address  space.  These  processes  are  executing  concurrently  and the  copy()  algorithm 
makes  the communication between the processes considerably easier.  We emphasize this  approach 
because everything that can be done to make the logic for a parallel or distributed program simpler 
should  be  done.  Interprocess  communication  is  one  of  the  issues  that  complicates  parallel  and 
distributed programming. The C++ algorithms, the iostreams, and the ostream_iterator help to reduce 
that complexity. The flush manipulator on line 33 ensures that the data is moved along the pipe.

Program Profile 11.2
Program Name

program11-2.cc

Description

Program uses the iostreams and the ostream_iterator to send the contents of a vector container over an 
anonymous pipe.

Headers Required

[View full width]
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<algorithm>, <fstream>, <vector>, <iterator>, <stdlib.h>, <string
.h>,<unistd.h>

Compile and Link Instructions

c++ -o program11-2 program11-2.cc

Test Environment

SuSE Linux 7.1, 6.2

Execution Instructions

./program11-2

In Program 11.2b on line 36 the child will get the number of elements to be retrieved from the pipe first 
and then it uses the istream object IPipe to retrieve the objects from the pipe.

Program 11.2b 

11 class multiplier{
12   float X;
13 public:
14   multiplier(float Value) { X = Value;}
15   float &operator()(float Y) { X = (X * Y);return(X);}
16 };
17
18
19 int main(int argc,char *argv[])
20 {
21   char Value[50];
22   int Fd[2];
23   float Data;
24   vector<float> X;
25   int NumElements;
26   multiplier N(12.2);
27   strcpy(Value,getenv("Fdin"));
28   Fd[0] = atoi(Value);
29   strcpy(Value,getenv("Fdout"));
30   Fd[1] = atoi(Value);
31   ifstream IPipe;
32   ofstream OPipe;
33   IPipe.attach(Fd[0]);
34   OPipe.attach(Fd[1]);
35   ostream_iterator<float> OPtr(OPipe,"\n");
36   IPipe >> NumElements;
37   for(int N = 0;N < NumElements;N++)
38   {
39     IPipe >> Data;
40     X.push_back(Data);
41   }
42   OPipe << X.size() << endl;
43   transform(X.begin(),X.end(),OPtr,N);
44   OPipe << flush;
45   return(0);
46
47 }
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The child process retrieves the items from the pipe, inserts them into a vector class, and then performs a 
mathematical transformation on each element of the vector as it is sending it back to the parent. The 
mathematical transformation occurs on line 43 using the standard C++ transform algorithm and a user-
defined multiplier class. The transform algorithm applies an operation to each element in a container 
and  then  inserts  the  results  into  the  target  container.  Here,  the  target  container  is  Optr,  which  is 
connected to an OPipe object. The required headers for Program 11.2b are shown in Program Profile 
11.2b.

Program Profile 11.2b
Program Name

program11-2b.cc

Description

Child process that is launched by Program 11.2. This program uses an if-stream object to receive the 
contents of a container that are sent from Program 11.2. The program uses a ostream_iterator object 
and the standard transform algorithm to send information back through the pipe to the parent.

Headers Required

[View full width]

<iostream>, <algorithm>, <fstream>, <vector>, <iterator>, <stdlib
.h>, <string.h>, <unistd.h>

Compile and Link Instructions

c++ -o program11-2b program11-2b.cc

Execution Instructions

This program is spawned by Program 11.2.

Although the iostreams classes, istream_iterator, and ostream_iterator make pipe programming easy, 
they do not  change the behavior  of the system pipe construct.  The blocking issues and the issues 
concerning  the  correct  order  to  open  and  close  the  pipes  discussed  in  Chapter  5 still  apply.  The 
underlying mechanisms of the same object-oriented programming techniques reduce the complexity of 
parallel and distributed programming.

11.5.3 fifos (Named Pipes), iostreams, and the ostream_iterator Classes

The techniques we used to implement object-oriented anonymous pipes had two setbacks. First, any 
processes involved in interprocess communication need access to the file descriptors returned from the 
pipe() system call. So there is the issue of getting these file descriptors to all of the processes involved. 
This was straightforward because the processes that were created in  Programs 11.1,  11.2a, and 11.2b 
had parent–child relationships, which leads us to the second problem. The processes using unnamed 
pipes  need  to  be  related,  although  this  requirement  could  be  subverted  with  a  descriptor-passing 
scheme.  The  fifo  (First  In-First  Out)  structure  is  the  solution  to  the  problem.  Its  most  important 
advantage is  it  can be accessed by unrelated processes.  The processes do need to  be on the same 
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machine  but  otherwise  don't  require  any  relationship.  The  processes  may  be  running  programs 
implemented in different languages using different programming paradigms (e.g., generic and object-
oriented).  Crowd  computations  and  other  peer-to-peer  configurations  can  take  advantage  of  fifo 
(sometimes called the named pipe) because in the UNIX and Linux environment the fifo has a user-
defined file-name in the system and is somewhat of a permanent structure (in contrast to anonymous 
pipes). The fifo is a one-way structure, that is, the user of a named pipe in the UNIX environment 
should  open  it  for  either  reading  or  writing,  but  not  both.  Named  pipes  created  in  the  UNIX 
environment remain in the file system until they are explicitly removed using unlink( ) from within a 
program, or some form of deletion at the command prompt such as the rm command. Named pipes are 
given the equivalent of a file-name when they are created. Any process that knows the name of a pipe 
and has the necessary access permissions can open, read, and write the pipe.

To connect the anonymous pipes to the ifstream and ofstream objects, we used the nonstandard file 
descriptor connection. File descriptors and the iostreams are not yet tightly coupled by the ISO C++ 
standard. We are a lot safer using the fifo. The special file type fifo is accessed through a filename in 
the file system. The connection with the C++ ifstream and ofstream classes is supported. So in the same 
way that we simplified IPC using iostream classes with the anonymous pipe, we make fifo access easy. 
So  the  fifo  that  has  the  same  basic  functionality  as  the  anonymous  pipe  allows  us  to  extend  the 
communication between unrelated classes. However, each program involved will still have to know the 
names of  the  fifos.  It  seems like the same restriction as  we encountered with the  file  descriptors. 
However, the fifo is a definite improvement. First, only the system determines what the available file 
descriptors are when the anonymous pipe is opened. This is out of the programmer's control. Second, 
there is a limit to the number of file descriptors the system has. Third, since fifos are user-defined 
names, there is no limit to the names that may be used. The file descriptors must belong to previously 
and  successfully  opened  files.  fifo  names  are  just  names.  The  fifo  name  is  user-specified;  file 
descriptors are system-specified. Filenames are associated with ifstream, fstream, and ofstream objects 
using either the constructor or the open() method. Program 11.3a uses the constructor to associate the 
ofstream and ifstream objects with the fifo.

Program 11.3 

14 using namespace std;
15
16 const int FMode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
17
18 int main(int argc, char *argv[])
19 {
20
21   int Pid,Status,Size;
22   double Value;
25   mkfifo("/tmp/channel.1",FMode);
26   mkfifo("/tmp/channel.2",FMode);
28   vector<double> X(100,13.0);
29   vector<double> Y;
30   ofstream OPipe("/tmp/channel.1",ios::app);
31   ifstream IPipe("/tmp/channel.2");
32   OPipe << X.size() << endl;
33   ostream_iterator<double> Optr(OPipe,"\n");
34   copy(X.begin(),X.end(),Optr);
35   OPipe << flush;
36   IPipe >> Size;
37   for (int N = 0;N < Size; N++)
38   {
39      IPipe >> Value;
40      Y.push_back(Value);
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41   }
42
43   IPipe.close();
44   OPipe.close();
45   unlink("/tmp/channel.1");
46   unlink("/tmp/channel.2");
47   cout << accumulate(Y.begin(),Y.end(),-13.0) << endl;
48
49   return(0);
50 }

There are two fifos in Program 11.3a. Recall that fifos are one-way communication components. So if 
processes are to exchange data, at least two fifos are necessary. In Program 11.3a the fifos are called 
channel.1 and channel2. Notice on line 16 the permissions flags that will be set for the fifos. These are 
the most generic settings for UNIX/Linux setting. These permissions indicate that the owner of the fifo 
has read and write access and all others have read-only access to the fifo. On line 30 channel.1 is open 
for output only. We could have also accomplished this by:

OPipe.open("/tmp/channel.1", ios::app);

This says that the fifo will be opened in append mode.  Program 11.3a uses the copy() algorithm to 
insert the objects into the OPipe fstream object and indirectly into the fifo. We could also use a fstream 
object here if we declare it as:

fstream OPipe("/tmp/channel.1", ios::out | ios::app);

This restricts the communication to output only in append mode. If we don't use the ios::app flag, the 
ofstream object on line 30 will make a failed attempt at creating the fifo. Unfortunately, this will not 
work. Creation of fifos is the province of the mkfifo() routine. Lines 40 and 41 Program 11.3a deletes 
the fifos from the file system. At this point in the processing any processes that happen to still have the 
fifo open will continue to be able to access it. However, the name will be removed. So those processes 
will not be able to call open() or construct any new ofstream or ifstream objects based on the filename 
that has been unlinked. On lines 32-34, ostream_iterator and ofstream objects are used to insert items 
into the fifo. Notice that Program 11.3a does not do any forking and does not have any child processes 
to communicate with. Program 11.3 depends on some other program to read from channel.1 or at least 
to write to channel.2. If there is no program executing at the time to access the fifo, then Program 11.3a 
will block. The implementation specifics are contained in Program Profile 11.3a.

Program Profile 11.3a
Program Name

program11-3.cc

Description

Uses  an ostream_iterator  object  and an ofstream object  to  send a container  object  through a fifo. 
Extracts information from a fifo using an ifstream object.

Headers Required

<unistd.h>, <iomanip>, <algorithm>, <fstream.h>, <vector>,
<iterator>
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<strstream.h>, <stdlib.h>, <sys/wait.h>, <sys/types.h>,
<sys/stat.h>
<fcntl.h>, <numeric>

Compile and Link Instructions

c++ -o program11-3 program11-3.cc

Test Environment

SuSE Linux 7.1, gcc 2.95.2, Solaris 8, Sun Workshop 6

Execution Instructions

./program11-3 & program11-3b

Notes

Start  Program  11.3a first.  Program  11.3b has  a  sleep  statement  to  account  for  the  lack  of  real 
synchronization.

Program 11.3b reads from channel.1 and writes to channel.2.

Program 11.3b Reads from channel1 and write to channel2.

10 using namespace std;
11
12 class multiplier{
13   double X;
14 public:
15   multiplier(double Value) { X = Value;}
16   double &operator()(double Y) { X = (X * Y);return(X);}
17 };
18
19
20 int main(int argc,char *argv[])
21 {
22
23   double Size;
24   double Data;
25   vector<double> X;
26   multiplier R(1.5);
27   sleep(15);
28   fstream IPipe("/tmp/channel.1");
29   ofstream OPipe("/tmp/channel.2",ios::app);
30   if(IPipe.is_open()){
31   IPipe >> Size;
32   }
33   else{
34          exit(1);
35   }
36   cout << "Number of Elements " << Size << endl;
37   for(int N = 0;N < Size;N++)
38   {
39      IPipe >> Data;
40      X.push_back(Data);
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41   }
42   OPipe << X.size() << endl;
43   ostream_iterator<double> Optr(OPipe,"\n");
44   transform(X.begin(),X.end(),Optr,R);
45   OPipe << flush;
46   OPipe.close();
47   IPipe.close();
48   return(0);
49
50 }

Notice that  Program 11.3a opens channel.1 for output and  Program 11.3b opens channel.1 for input. 
Keep in mind that fifos are one-way communication mechanisms. Don't try to send data both ways! 
Another advantage of using iostreams in conjunction with fifos is that you have access to the iostream 
methods as they would be applied to the fifo.  For instance,  on line 30 we use the basic_filebuf () 
method is_open() to determine whether the fifo is open. If it isn't Program 11.3b doesn't continue any 
further. The implementation specifics for Programs 11.3a and 11.3b are provided in Program Profiles 
11.3a and 11.3b.

Program Profile 11.3b
Program Name

program11-3b.cc

Description

This program reads objects from the fifo using a ifstream object. It uses the ostream_iterator and the 
standard transform algorithm to send information through the fifo.

Headers Required

<unistd.h>, <iomanip>, <algorithm>, <fstream.h>, <vector>
<iterator>, <strstream.h>,<stdlib.h>, <sys/wait.h>,
<sys/types.h>, <sys/stat.h>, <fcntl.h>, <numeric>

Compile and Link Instructions

c++ -o program11-3b program11-3b.cc

Test Environment

SuSE Linux 7.1, gcc 2.95.2, Solaris 8, Sun Workshop 6.0

Execution Instructions

program11.3 & program11-3b

Notes

Start  Program  11.3a first.  Program  11.3b has  a  sleep  statement  to  account  for  the  lack  of  real 
synchronization.
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11.5.3.1 fifo Interface Classes

In addition to simplifying the IPC using iostreams, istream_iterator, and ostream_iterator, we can also 
simplify matters by encapsulating the fifo into a fifo class.

Example 11.23 Declaration of the fifo class.

class fifo{
   mutex Mutex;
   //...
protected:
   string Name;
public:
   fifo &operator<<(fifo &In, int X);
   fifo &operator<<(fifo &In, char X);
   fifo &operator>>(fifo &Out, float X);
   //...
};

Using  this  technique,  we  can  easily  create  fifos  in  the  constructor.  We  can  pass  them  easily  as 
parameters and return values. We can use them in conjunction with the standard container classes. The 
construction of such a component greatly reduces the amount of code needed to use fifos. It provides 
opportunities for type safety and generally allows the programmer to work at a higher level.

11.6 Framework Classes Components for Concurrency

A  framework  is  a  class  or  collection  of  classes  that  has  a  predefined  structure  and  represents  a 
generalized pattern of work. In the same manner that programs provide general solutions to specific 
problems,  frameworks  provide  specific  solutions  to  classes  of  problems.  That  is,  an  application 
framework  captures  the  general  flow of  control  for  an  entire  range  of  programs that  all  solve  or 
represent problems in a similar fashion. Put another way, an application framework represents a single 
solution  to  a  family  of  problems.  Frameworks  are  generic  mini  self-contained  applications.  The 
framework serves as a blueprint  for the mini-application.  It  embodies the fundamental  structure or 
skeleton that the application will have without providing the application details. The framework class 
specifies the relationships, responsibilities, patterns of work, and protocols between software parts in an 
object-oriented architecture without providing the implementation details. For instance, we can design a 
language processor class that captures the general pattern of work for an entire range of applications. 
The specific pattern of work that the language processor captures is the work involved in taking some 
input language and translating that language to some output form. This framework consists of a few 
common software parts:

• Validation components

• Tokenizer components

• Parser components

• Syntax analysis components

• Lexical analysis components

These software parts can be combined to form a very familiar pattern of work:



Example 11.24 Declarations for the language_processor class and definition for the process_input method.

class language_processor {
   //...
protected:
   virtual bool getString(void) = 0;
   virtual bool validateString(void) = 0;
   virtual bool parseString(void) = 0;
   //...
public:
   bool process_input(void);
};

bool language_processor::process_input(void)
{
   getString();
   validateString();
   parseString();
   //...
   compareTokens();
   //...
}

First, the language_processor class is an abstract base class because it contains pure virtual functions:

virtual bool getString(void) = 0;
virtual bool validateString(void) = 0;
virtual bool parseString(void) = 0;

This means it is not meant to be used directly. It serves as a blueprint for derived classes. The other 
important thing to note is the process_input() method. This method captures the general pattern of work 
that  the  language_processor  class  is  meant  to  generalize.  In  many ways this  is  what  distinguishes 
framework classes from other types of classes. The framework not only contains generalized structure 
and relationships between components, it also captures predefined patterns of work and sequences of 
action. It provides the skeleton for the pattern of work without providing the implementation details. In 
this case, the pattern of work is specified by a set of pure virtual functions. So the framework class does 
not specify how these things are to be done—it only specifies that they should be done and they should 
be done in a certain order. The derived class has to provide the implementations for the pure virtual 
functions. The framework class emphasizes the responsibilities of the derived class. Framework classes 
by definition are contract classes. They require two parties in order to work properly. The framework 
class does its part but the derived class must provide the implementation details for the pure virtual 
functions.  The  commonly found sequence  of  actions  performed by the process_input()  method are 
found in:

Compilers Command interpreters

Natural language processors Encryption/decryption routines

Compression/decompression File transfer protocols

Graphical user interfaces Device control, etc.



So by properly designing the language_processsor class, the pattern of work for an entire range of 
applications is captured. If the sequence can be properly recorded and tested and debugged, then a wide 
range of applications can be developed faster by reusing the language_processor framework class.

The  notion  of  a  framework  class  is  also  useful  in  developing  applications  that  have  concurrency 
requirements. Specifically, the use of agent frameworks and blackboard frameworks captures the basic 
structure  of  concurrency  and  patterns  of  work  within  those  structures.  Michael  Wooldridge,  in 
Reasoning About Rational Agents, gives us a generalized agent control loop:

Algorithm: Agent control Loop

B = B0
while true do
  get next percept p
  B = brf(B,p)
  I = deliberate(B)
    = plan(B,I)
  execute()

end while

This pattern of work is performed by a wide range of rational agents. If you are developing a program 
that uses rational agents, then the chances are good that this sequence of actions will be found in your 
program. This is exactly the type of sequence of action that frameworks are good at capturing. For the 
agent  control  loop,  the  brf(),  deliberate(),  plan()  functions  will  be  pure abstract  virtual.  The  agent 
control loop specifies what order these functions should be called and how they should be called, and 
the fact that they should be called. However, what the functions actually do will be determined by a 
derived class. Once this agent control loop is properly defined, then an entire class of problems has 
been solved. It turns out that systems consisting of multiple agents executing concurrently are becoming 
a  standard  for  implementing  parallel  programming  applications.  These  systems  are  often  called 
multiagent systems. We discuss agent-oriented architectures in Chapter 12. It is important to note that 
agent  framework  classes  help  to  reduce  the  complexity  of  developing  multiagent  systems  and 
multiagent systems are becoming the preferred architecture for implementing medium- to large-scale 
applications that require concurrency or massive parallelism.

In addition to providing the pattern of work that will be useful for parallel or distributed systems, the 
framework class can capture the structure with respect to synchronization components such as object-
oriented mutexes, semaphores, and message streams. The blackboard stucture is a useful medium for 
multiple agents to communicate through. The blackboard will be a critical region because multiple 
agents  will  be  able  to  read  and write  to  it  simultaneously.  Therefore,  the  framework class  should 
provide the basic structure for the relationships between the agents, the synchronization components, 
and the blackboard. For instance, Example 11.25 contains two methods that the framework could use to 
access the blackboard.

Example 11.25 Definition of recordMessge() and getMessage() methods for the agent_framework class.

 int agent_framework::recordMessage(void)
{

   Mutex.lock();
   BlackBoardStream << Agent[N].message();
   Mutex.unlock();
}
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int agent_framework::getMessage(void)
{

   Mutex.lock();
   BlackBoardStream >> Values;
   Agent[N].perceive(Values);
   Mutex.unlock();
}

Here the framework class will protect the access to the blackboard by using synchronization objects. So 
when agents read messages from or write messages to the blackboard, the synchronization is already 
provided by the framework. The programmer does not have to worry about synchronizing blackboard 
access.  Figure  11-11 contains  the basic  structure  of  our  agent  framework and how the framework 
relates to a blackboard.

Figure 11-11. The basic structure of the agent_framework class and how it relates to the blackboard.

Notice that the framework encapsulates the object-oriented mutexes and condition variables. The agent 
framework in Figure 11-11 will use either MPI or PVM message streams to communicate in a MPI- or 
PVM-based system. Recall these message streams were designed as interface classes and allow the 
programmer to use the iostream metaphor to access the PVM or MPI class. If MPI or PVM are not 
used, the agents can communicate using sockets, pipes, or even shared memory. In either case, we 
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recommend that the synchronization primitives be implemented using interface classes since that will 
make them simpler to use. The blackboard in Figure 11-11 is object-oriented and takes advantage of the 
genericity provided by template classes. This also simplifies the concurrency requirements. The agents 
executing concurrently provide an effective model for parallel and distributed programming.

Summary

The challenges to parallel programming introduced in  Chapter 2 can be reasonably approached using 
the  building  blocks  that  we  introduced  in  this  chapter.  The  importance  of  the  interface  class  in 
simplifying the use of function libraries cannot be overstated. The interface class introduces consistency 
of API by wrapping the function calls of libraries such as MPI or PVM. Type safety and reuse is 
introduced through interface classes. The interface class allows the programmer to work with a familiar 
metaphor, as in the case of PVM streams or MPI streams. IPC is simplified by connecting pipe or 
message streams to iostreams and overriding the << inserter and >> extractor operators for user-defined 
classes. The ostream_iterator class proves to be very useful in sending entire container objects and their 
contents between processes. The ostream_iterator and istream_iterator also provide the glue between 
the  standard  algorithms  and IPC components  and techniques.  Since  a  large  number  of  parallel  or 
distributed applications use the message-passing model, any technique that simplifies passing various 
datatypes  between  processes  will  simplify  the  programming  required  for  the  application.  Using 
iostreams, the ostream_iterator and istream_iterator does this simplification. The framework class is 
introduced here as the basic building block of concurrency applications. We consider classes like the 
mutex classes, condition variable classes, and the stream classes to low-level components that should be 
hidden from the programmer within the framework class (where possible!). When building medium- to 
large-scale applications that require concurrency, the programmer should not have to focus on these 
low-level components. Ideally, the framework will be the base-level building block for concurrency 
approaches, which we introduce in the remainder of this book. The framework will provide us with 
patterns  for  peer-to-peer  and client-server  interaction.  We can  have  numeric  frameworks,  database 
frameworks, agent frameworks, blackboard frameworks, GUI frameworks, and so on. The approach 
that we advocate for implementing concurrency requirements builds applications from a collection of 
frameworks  that  already  have  the  proper  synchronization  components  wired  into  the  proper 
relationships. In Chapters 12 and 13, we take a closer look at frameworks that support concurrency. We 
also introduce the use of standard C++ algorithms, containers,  and function objects  to manage the 
creation and spawning of multiple tasks or threads in applications that require concurrency.
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Chapter 12. Implementing Agent-Oriented Architectures
Much  remains  to  be  done  before  we  understand  how  people  construct  their  problem 
representations and the role those representations play in problem solving. But we know 
enough  already  to  suggest  that  the  representations  people  use—both  propositional  and 
pictorial—can be simulated by computers.

—Herbert A. Simon, Machine as Mind (Android Epistemology)

In this Chapter

• What are Agents?  

• What is Agent-Oriented Programming?  

• Basic Agent Components  

• Implementing Agents in C++  

• Multiagent Systems  

• Summary  

If  sequential  (procedure-based) programming solutions were practical  in  every situation,  then there 
would be no need for parallel or distributed programming techniques. In many situations, sequential 
programming  techniques  are  simply  inadequate  for  the  demands  and  the  sophistication  of  today's 
computer users. As developers scramble for new approaches to meet the growing challenges that user 
requirements present, alternative software models are created. Better ways to organize and think about 
how software  should  be  constructed  are  discovered.  Structured  programming  was  presented  as  an 
improvement  over  procedureless  goto/jump-filled  programming.  Object-oriented  programming  was 
presented as an improvement over structured programming. In many ways agents and agent-oriented 
programming is an improvement over object-oriented programming. Agents present yet another (more 
sophisticated) method for organizing and thinking about distributed/parallel programs.

12.1 What are Agents?

There was a lot of controversy over what constituted an object when object programming was initially 
introduced. There is a similar controversy over exactly what constitutes an agent. Many proponents 
define agents as autonomous, continuously executing programs that act on behalf of a user. However, 
this definition can be applied to some UNIX daemons, or even some device drivers. Others add the 
requirements that the agent must have special knowledge of the user, must execute in an environment 
inhabited by other agents, and must function only within the specified environment. These requirements 
would exclude other programs considered to be agents by some. For instance, many e-mail agents act 
alone and may function in multiple environments. In addition to agent requirements, various groups in 
the agent community have introduced terms like softbot, knowbot, software broker, and smart object to 
describe agents. We define the term agent iteratively in this chapter. We start with some simple, agreed-
upon partial definitions and construct a definition that is practical for C++ programmers.

One  commonly  found  definition  defines  an  agent  as  an  entity  that  functions  continuously  and 
autonomously in an environment in which other processes take place and other agents exist. Although it 
is tempting to accept this definition and move on, we cannot because it too easily describes other kinds 
of software constructions. Many object-oriented components function continuously and autonomously 
in an environment in which other processes take place and other objects exist. In fact, many CORBA-
based client-server systems fit this description! So if we exchange the word object for agent in this 
definition it accurately describes many object-oriented systems. A look at a more formal source, the 
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Foundation for Intelligent Physical Agents (FIPA) specification defines the term agent accordingly:

An Agent is the fundamental actor in a domain. It combines one or more service capabilities 
into a unified and integrated execution model which can include access to external software, 
human users and communication facilities.

While this definition has a more structured feel, it also needs further clarification because many servers 
(some object-oriented and some not) fit this definition. This definition as is would include too many 
types of programs and software constructs to be useful. Although we rely on the FIPA specification 
where we discuss agents, this basic definition requires further work.

12.1.1 Agents: A First-Cut Definition

One of the reasons that the word object can in so many instances replace the word agent in so many 
definitions and descriptions of agent is because agents are inherently based on objects. In fact,  our 
initial requirement on the definition for an agent is that it first fit the definition of an object,[1] that is, 
we designate an agent as a certain kind of object. This chapter is largely about what makes an agent 
different from other classes of objects. In the same sense that C++ has support for interface classes, 
container classes, and framework classes, we can also designate agent classes. This brings us to our 
second  requirement  on  the  definition  of  agents  within  a  C++  environment.  In  C++  an  agent  is 
implemented using the notion of a class. The different types of classes are distinguished by how they 
function or how they are structured. For instance, a container class describes an object used to hold or 
contain other objects. An interface class is used to describe an object that transforms or adapts the 
interface of another object. A framework class describes an object that contains a pattern of work that is 
common to a family of other objects. An agent class will be used to define objects that have what 
Yohav Shoham (1997) describes as a mental state: "The mental state will contain such components as 
beliefs, capabilities, choices, and commitments." This mental state is often partially summarized by the 
Belief Desires and Intentions (BDI) model. We extend the BDI model to include actions. So in our first-
cut  definition  of  agents,  we  define  an  agent  as  a  piece  of  software  meeting  the  following  three 
requirements:

[1] When we use the term object in the definition of agent we include its AI cousins: actor 
and frame.

1. A certain type of object (not all objects are agents)

2. Implemented  using the notion of  a  class  (encapsulation,  inheritance,  and polymorphism are 
important for agents!)

3. Contains a set  of behaviors and attributes that  must include beliefs,  desires,  intentions,  and 
actions

For  our  purposes,  agents  are  by  definition  rational  software  components.  Before  we define  agents 
further, lets look at the types of agents that are commonly implemented.

12.1.2 Types of Agents

Several categories of agents have emerged. Although not every agent fits into one of these categories, 
the categories are generally descriptive of the majority of agents in practical use. Table 12-1 contains 
five major categories of agents. Obviously there are hybrid agents that fit into more than one category 
at the same time. There are no hard and fast rules that determine which agents fit into any particular 
category. These categories are presented for convenience and as a starting point when trying to classify 
agents that you may have to develop or work with.
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Table 12-1. Five Major Categories of Agents

Agent Categories Description

Interface agents Represent  the  next  generation  of  human–computer  interaction.  These  agents 
provide new user interfaces to the computer.

Search agents Perform various types of information retrieval.

Monitor/control 
agents

Patrol,  observe, audit,  manage, and monitor devices and conditions, data, and 
processes.

Acquisition agents Authorized to acquire some good or service on behalf of the user.

Decision  support 
agents

Provide  analysis,  information  synthesis,  condition  and  data  interpretation, 
planning, and evaluation.

Table 12-1 represents a functional breakdown of the agent categories. It does not specify any particular 
components that the agents must have. It only specifies the types of activities that the agents engage in. 
In fact, these categories are not the exclusive domain of agents. Other classes of software such as expert 
systems and object-oriented systems have categorizations very similar to these. In some cases, the only 
difference is that we are talking about agents as opposed to objects or expert systems.

12.1.3 What is the Difference between Objects and Agents?

One  of  the  fundamental  requirements  for  an  agent  is  that  it  first  meets  the  conditions  of  object 
orientation. So agents and objects have more things in common than many of the agent proponents 
would like to admit. It is the function and construction of the object that places it into the agent column. 
Objects are by definition self-contained and exhibit a certain amount of autonomy. Once the degree of 
autonomy crosses a certain threshold and the object is given cognitive data structures such as those 
found in the BDI model, then the object is an agent. An autonomous rational object is an agent.[2] An 
object is considered rational when it has:

[2] We intentionally avoid the term intelligent. It is not currently known whether we will 
ever produce intelligent software. However, we can undoubtedly produce rational software 
based on well understood, logical formalisms.

• Methods that implement some form of deduction, induction, or abduction

• Data members that are implementations of cognitive data structures

Keep in mind that in object-oriented programming, the routines defined for a class are called methods 
and in C++ they are called member functions. The variables or data components defined for a class are 
called attributes and in C++ they are called data members. If some of the member functions are used to 
perform deduction, induction, or abduction on the data members that are implementations of cognitive 
data  structures,  then the object is  rational.  If  the rational object also crosses a certain  threshold of 
autonomy, then it is an agent.

Cognitive data  structures  are  structures  used to  represent  mental  constructs  like beliefs,  intentions, 
commitments, decisions, moods, and knowledge. For instance, we could designate a believe structure 
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using a C++ set:

set<statements> Beliefs;

struct   statement {
//...
   float ArrivalTime;
   float DepartureTime;
   string Destination;
   //...

};

where the statements are  about schedule some form of public  transportation.  A collection of these 
statements is stored within set<statements> and represents the agent's beliefs. This is what we mean by 
data members that are implementations of cognitive data structures. The agent would declare the data 
member accordingly:

S 12.1. Deduction, Induction, and Abduction
Deduction, induction, and abduction are processes used to draw conclusions from a set of statements 
or a collection of data. The process of deduction allows the reasoner to deduce a conclusion from a set 
of statements. If the statements are true and the reasoner follows the proper rules of inference, then the 
conclusion is said to be necessarily true or that it follows by necessity. For instance:

All three-sided figures are triangles.

This is a three-sided figure.

This is a triangle. Conclusion arrived at by deduction

The rules of inference are guidelines and restrictions that determine how the reasoner may move from 
one statement to another. The rules of inference determine when statements are logically equivalent 
and the conditions under which one statement may be transformed into another. Sidebar Figure 12-1 
contains the eight most basic rules of inference.

. Sidebar Figure 12-1 Rules of inference taken from the back inside cover of COPI symbolic reasoning.
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The process of induction allows the reasoner to induce the conclusion from a set of statements taken to 
be facts. For instance:

It rained yesterday.

It rained the day before.

It rained all last week.

It will rain tomorrow. Conclusion arrived at by induction

Whereas  the  conclusions  in  the  deductive  process  are  said  to  be  necessarily  true  (if  the  rules  of 
inference were applied correctly), the conclusions in an inductive process have only a probability of 
being  true.  How close  that  probability  is  to  100% will  depend  on  the  nature  and context  of  the 
statements and data they are drawn from. The process of abduction allows the reasoner to draw the 
most plausible conclusion based on a set of statements or data. For instance:

Articles of the defendant's clothing were found at the scene of the crime.

The defendant and the deceased recently had a violent argument.

The defendant's DNA was found at the scene of the crime.



The defendant is the perpetrator of the crime Conclusion arrived at by abduction

Deduction, induction, and abduction are the three fundamental processes found in logic. They provide 
for logic what calculation and arithmetic provide for mathematics. The ability to correctly move from 
premises (statements, data, and facts) to conclusions is the process that we call reasoning.

class agent {
   //...
   set<statements> Beliefs;
   //...
};

The  agent  class  uses  deduction,  induction,  or  abduction  to  process  its  Beliefs  in  order  to  form 
intentions, commitments, or plans. A closer look at our definition of agents states that if it is a rational 
autonomous object, it is an agent. If it is not rational, then its not an agent, it's just an object. The degree 
of autonomy is another area of debate and we will examine it closely later in this chapter.

12.2 What is Agent-Oriented Programming?

Agent-oriented programming is the process of assigning the work a program has to one or more agents. 
The WBS (Work Breakdown Structure) consists only of agents. If all the work that a program does can 
be assigned to one or more agents, then it is a pure agent-oriented program and all of the design and 
development involved only requires agent-oriented programming. In many situations, agents will be 
involved with other kinds of objects and systems that are not agent-oriented and therefore the entire 
programming effort is not called agent-oriented programming, which is often the case when agents are 
involved with database servers, application servers, and other types of object-oriented systems. Whether 
producing software systems that are completely agent-oriented or only partially agent-oriented, agent-
oriented programming produces rational object-oriented software components.

12.2.1 Why Agents Work for Distributed Programming

Practical distributed programs rise out of necessity. Typically, there is some resource located on another 
computer or network separated from the program that needs it. These resources often take the form of 
databases, Web servers, e-mail  servers, application servers, printers, and large storage devices. The 
resources are usually managed by a piece of software called a server. The software that needs access to 
the resources is referred to a client. The fact that the resources are located on different computers than 
the client leads to distributed architectures. In most cases, it does not make sense to attempt to combine 
these programs into one large program that runs on a single computer and in a single address space. 
Furthermore, there are many programs developed at different times, by different developers, and for 
different purposes that end up taking advantage of each other's services. The application that uses these 
programs evolved over  time and the  result  was  a  distrusted  application.  Since  these  programs are 
separate, they will each have their own address space and resources. When these programs are used 
together to form a single application or collectively solve a program they form a distributed program. It 
turns out that the distributed program architecture provides very flexible architectures that can be used 
for large-scale applications.  In so many practical  applications,  the requirements for distribution are 
discovered after the fact. However, good software engineering and design techniques can be used to 
identify when applications should be distributed. Once you know that you need to develop a distributed 
application, the next question is how it should be distributed. What model should be used? Although 
there are very many different client-server and peer-to-peer models available in this book, we focus on 
only two: blackboard architectures and multiagent architectures.

Both of these architectures can take advantage of agents because agents are inherently self-contained, 



autonomous, and rational software structures. Because agents are rational it  means they know their 
purpose. Regular objects have a purpose and agents know what that purpose is. Identifying the purpose 
of each aspect of a piece of software is a natural process. It is straightforward to recognize the purpose 
of a piece of software during the design phase. Assigning that purpose to an agent is an easy form of 
software decomposition. The WBS becomes a matter of which class of agent to delegate the work to. 
Since the agent is the unit of modularity in an AOP (agent-oriented program), the work of distribution 
is reduced to finding means for multiple agents to communicate. The process of designing the original 
agent class hides the effort required for identifying the WBS of a distributed program. Once we get over 
the  hurdles  that  agents  are  really  rational  objects,  we  can  then  take  advantage  of  the  CORBA 
specification  to  design  truly  distributed  multiagent  systems.  CORBA  hides  the  complexity  of 
distributed  programming  and  communication  over  networks,  intranets,  and  the  Internet.  Chapter  8 
contains a simple overview of distributed programming using CORBA. Since agents are objects, the 
entire discussion of CORBA is applicable.  Chapter 6 introduces the PVM (Parallel Virtual Machine). 
PVM can also be used to greatly simplify the communication between agents executing on different 
processes or on different computers. Agents can be implemented as CORBA objects, or they can be 
assigned to separate PVM processes. In both cases, the communication is simple and straightforward. 
When two or more agents are involved within a single application they are multiagent systems. The 
agents may still use CORBA, PVM, or the MPI (Message Passing Interface) to communicate if they are 
on the same computer. Agents within different processes may also use traditional methods of IPC such 
as  fifos,  shared  memory,  and  pipes  to  communicate.  There  are  three  fundamental  challenges  in 
distributed programming:

1. Identifying the WBS of the distributed solution

2. Implementing effective and efficient communication between the distributed components

3. Dealing with exceptions, errors, and partial failures

While there is nothing inherent within the notion of an agent class to deal with item 2, items 1 and 3 are 
almost implicit in the agent design itself. Each agent's rationality defines its purpose and thereby the 
part that it is to play in the software solution. Since agents are self-contained and autonomous, a good 
agent class design will include the necessary fault tolerance.

12.2.2 Agents and Parallel Programming

Agents deployed in an environment where multiple processors or concurrently executing threads offer 
the same advantages as they do in distributed programming, with the addition that cooperation between 
agents is much easier to program. The PVM and MPI environments can also be used for message 
passing between agents that are collectively solving some kind of problem. Again, the rationality of the 
agents  makes  it  easier  to  understand  to  design  the  WBS  for  parallelism.  The  common  obstacles 
encountered in parallel programming are:

1. Dividing the work effectively and efficiently between two or more software components

2. Coordinating the concurrently executing software components

3. Designing appropriate communication (where needed) between the components

4. Dealing with exceptions, errors, and partial failures (if the agents are on separate computers)

Multiagent  parallel  architectures  tend  to  be  loosely  coupled,  that  is,  the  communication  and  the 
interdependency is minimal. Each agent knows its purpose and has methods to accomplish its purpose. 
Whereas obstacle 3 is not inherently dealt with by the agent class, obstacles 1, 2, and 4 are easily 
managed by the implicit  capabilities of the agent classes. For example,  the impact of obstacle 2 is 
reduced because each agent is rational, has a purpose, and has the ways and means to accomplish its 
purpose. So the responsibility is shifted away from some coordination and control algorithm to the 
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actions of each agent. The impact of obstacle 4 is reduced because agents are self-contained, rational, 
and autonomous and a good class design will include the necessary fault tolerance. Since the agent's 
state  is  encapsulated,  the  responsibility  to  protect  critical  sections  within  the  agent  object  is  the 
responsibility of the agent class. The agent will enforce its own data access policies. Table 12-2 shows 
the state access polices from which agents can choose.

Table 12-2. State Access Policies

Read-Write Algorithm Types Meaning

EREW Exclusive Read Exclusive Write

CREW Concurrent Read Exclusive Write

ERCW Exclusive Read Concurrent Write

CRCW Concurrent Read Concurrent Write

Each agent's class will determine which access policy is acceptable in a multiagent environment. In 
some cases, combinations of the access policies in Table 12-2 are implemented. This makes the parallel 
programming easier. The developer can work at a higher level without having to worry about mutexes, 
semaphores, and so on. Multiagent solutions allow the developer to work at a higher level without 
getting bogged down with the minutia of coordinating every function call and data access. Each agent 
has  a  purpose.  Each  agent  is  rational  and  therefore  has  a  logic  for  achieving  its  purpose.  The 
programming process looks alot more like task delegation as opposed to the typical task coordination 
paradigms for traditional parallel programming. Since agent-oriented programming is a specific kind of 
object-oriented programming, agents use a more declarative mode of parallel programming than the 
traditional procedural-based programming that is often implemented in languages such as Fortran or C. 
The developer specifies what needs to be done and which agents should do it and the parallelism almost 
takes care of itself. There is always some amount of coordination and communication programming 
required,  but  agent-oriented  programming  keeps  it  to  a  minimum.  However,  all  these  advantages 
depend on the existence of agent classes. Someone has to design and code the agent classes. Let's now 
look at what an agent class will contain.
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12.3 Basic Agent Components

An agent is declared using the class keyword. The components of an agent will consist of C++ data 
members and member functions. Figure 12-1 shows the logical layout of an agent class.

Figure 12-1. Logical layout of an agent class.

The class  attributes  and methods  in  Figure  12-1 refer  to  the  typical  initialization,  read,  and  write 
methods that any object would have. The attributes would include state variables that define the object. 
The methods would include constructors, destructors, assignment operators, exception handlers, and so 
on.  If  we stopped with these attributes and methods we would have only a traditional object.  The 
cognitive data structures and the inference methods make up the rational component. It is the rational 
component that transforms an object into an agent.

12.3.1 Cognitive Data Structures

A data structure is a set of rules for logically organizing data and the rules for accessing that logical 
organization. It is a method of organization that specifies both how the data should be conceptually 
structured and how access operations are allowed to be applied to that structure. Whereas datatypes and 
ADTs (abstract  datatypes)  focus  on  what,  data  structures  focus  on  how.  For  example,  the  integer 
datatype specifies an entity that  has a data component and a number of arithmetic operations (i.e., 
addition,  subtraction,  multiplication,  division,  modulo,  etc.).  That  data  component  does  not  have  a 
fractional part. The data component consists of negative and positive numbers, and so on. The datatype 
specification does not mention how the integers should be used or accessed. On the other hand, a data 
structure specification such as a stack specifies a list of elements stored in a LIFO (last-in-first-out) 
order. The stack data structure also specifies that elements may only be taken out one at a time from the 
top of the stack, that is, the last element inserted must be removed before any other elements can be 
accessed. So not only does the stack data structure specify how the elements are organized, it  also 
specifies  how the  elements  are  accessed  (i.e.,  visited,  read,  changed,  deleted,  etc.).  Cognitive  data 
structures restrict the rules for organizing and accessing data to those found in the fields of logic and 
epistemology.  The  rules  of  inference,  the  methods  of  inference  (i.e.,  deduction,  induction,  and 
abduction),  the  notions  of  epistemic  data,  knowledge,  justification,  belief,  premises,  propositions, 
fallacies, and conclusions are the defining features of cognitive data structures.[3] Whereas algorithms 
for sorting, searching, and iterating are commonplace for traditional data structures, inference methods 
are more commonplace for cognitive data structures. The ADTs used with cognitive data structures 
often include:

[3] Mentalistic concepts such as imagination, paranoia, anxiety, happiness, sadness, and so 
on are intentionally excluded from our definition of cognitive data structures. Our focus is 
on rational epistemic software, not intelligent software.
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Questions Events

Facts Time

Propositions Fallacies

Beliefs Purpose

Statements Justification

Conclusions  

Of course, other datatypes can be used with a cognitive data structure but these are characteristic of 
programs that use rational software components such as agents. These ADTs are normally implemented 
as datatypes using the struct or class keywords. For instance:

struct question{
   //...
   string RequiredInformation;
   target_object  QuestionDomain;
   string Tense;
   string Mood;
   //...
};

class justification{
     //...
     time  EventTime;
     bool  Observed;
     bool  Present;
     //...
};

The C++ template  and container  classes can be used to  organize cognitive data  structures  such as 
knowledge. For instance:

class preliminary_knowledge{
   //...
   map<question,belief> Opinion;
   map<conclusion,justification> SimpleKnowledge;
   set<propositions> Argument;
   //...
};

12.3.1.2 Inference Methods

The inference methods in Figure 12-1 refer to deduction, induction, and abduction. (See Sidebar 12.1 
for an explanation of these methods.) While inference methods are called for in an agent architecture, 
there is no specific mention on how the inference methods are implmented. Deduction, induction, and 
abduction are high-level  processes.  The details  of how to implement  these processes are up to  the 
software developer. Inference is the process of deriving logical conclusions from premises known or 
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assumed to be true. There is no one right way to implement an inferencing process, sometimes called an 
inference engine.  However,  there  are  several  commonly used methods for  implementing inference. 
Forward-chaining or backward-chaining techniques can be used. Means–end analysis techniques can be 
used. Graph traversal algorithms such as DFS (Depth First Search) and BFS (Breadth First Search) can 
also be used. There is a host of theorem-proving techniques that can be used to implement inference 
methods and inference engines. The important point to note here is that an agent class will have one or 
more  inference  methods.  Table  12-3 contains  descriptions  for  the  most  basic  techniques  used  to 
implement the inference methods.

Table 12-3. Tables for Descriptions of the Most Basic Inference Implementation Techniques

Inference Implementation 
Techniques

Description

Backward Chaining Purpose-  or  goal-driven  approach  in  which  a  process  starts  from  a 
proposition,  statement,  or  hypothesis  and  searches  for  supporting 
evidence.

Forward Chaining Data-driven approach that starts from available data or facts and moves 
toward conclusions.

Means-end Analysis Uses a set of operators to solve one subproblem at a time until the entire 
problem is solved (opportunistic).

These techniques are well understood and widely available in many libraries, frameworks, and some 
programming languages. These techniques are the building blocks for the basic inference methods. To 
see how this inferencing works lets use one of the rules of inference Modus Ponens and build a simple 
inference method to support it. Take the following statement: If there is a bus trip from Detroit to New 
York then John will go on vacation. If we establish that there is a bus trip from Detroit to New York, 
then we know that John will go on vacation. The Modus Ponens form of this is:

P  Q

P

_______

Q

where:

P = If there is a bus trip from Detroit to New York

Q = John will go on vacation

We could design a simple decision support agent to tell us whether John will go on vacation or not. 
That agent would need to know something about possible bus trips. Let's say we have a list of bus trips:

Toledo to Cleveland Detroit to Chicago Youngstown to New York

Cleveland to Columbus Cincinnati to Detroit Detroit to Toledo
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Columbus to New York Cincinnati to Youngstown  

Each of these trips represents commitments by the ABC Bus Company. If our agent has access to the 
ABC Bus Company's schedule, then this list of trips can be used to represent part of our agent's beliefs. 
The question is, how do we get from a list of trips to beliefs? First, lets design a simple statement 
structure.

struct existing_trip{
   //...
   string From;
   time  Departure;
   string To;
   time  Arrival;
   //...
};

Next let's use a container class that will represent our agent's beliefs about bus trips.

set<existing_trips> BusTripKnowledge;

If the bus trip is contained in the set BusTripKnowledge, then our agent believes that the bus trip will 
take place from a certain origin to a certain destination at a certain time. So we might construct a trip 
accordingly:

//...
existing_trip  Trip;
Trip.From.append("Toledo");
Trip.To.append("Cleveland");
Trip.Departure("4:30");
Trip.Arrival("5:45");
BusTripKnowledge.insert(Trip);
//...

If  we place each trip into the BusTripKnowledge set,  then our agent's  beliefs  about  the ABC Bus 
Company's trips are complete. Notice that there is no single trip from Detroit to New York. However, 
John can get to New York from Detroit if he takes the following bus trips:

Detroit to Toledo

Toledo to Cleveland

Cleveland to Columbus

Columbus to New York

So while the ABC Bus Company does not provide a one-stop trip, it does provide a multistop trip. The 
problem is how does our agent know this? The agent needs some way to conclude based on what it 
knows about bus trips that there is a trip from Detroit to New York. We use a simple chaining process. 
We search our  BusTripKnowledge for  the first  trip  leaving  from Detroit.  We find one:  Detroit  to 
Chicago. We check the To attribute of this trip. If it is equal to "New York", we stop because we have 
found a trip. If it is not, we save this trip on a stack. We then search through the trips to see if there is 
another trip whose From attribute = "Chicago". We find that there are no buses leaving from Chicago. 
Therefore, we pop the Detroit to Chicago trip from the stack. We note that we have used this trip, and 
we search for the next trip leaving from Detroit to anywhere. We find a trip: Detroit to Toledo. We 
check to see if the To attribute = "New York", and since it does not, we save this trip on a stack. We 
then search through the trips to see if there is another trip whose From attribute = "Toledo". Here we 
find one: Toledo to Cleveland. We then place this trip on the stack. We then search through the trips to 



see if there is another trip whose From attribute = "Cleveland". At each trip we check the To attribute. 
If the To attribute = "New York", then the trips on the stack represent a bus trip from Detroit to New 
York, with the starting trip at the bottom of the stack and the ending trip on the top of the stack. If we 
go through the entire list and none of the To attributes = "New York", or we run out of To attributes for 
the trip on top of the stack, then we pop the top element of the stack and search for the next item whose 
From attribute is equal to the To attribute of the element on the top of the stack. This process is repeated 
until either the stack is empty or we've found a trip. This process uses a simplified DFS technique to 
determine if there is a trip from point A to point B.

Our simple agent would use this DFS technique to establish the existence of the trip from Detroit to 
New York. Once this fact was established, then the agent would update its beliefs about John. The 
agent will now believe that John is going on vacation. Let's say we added another precondition to John's 
vacation:

If John adds 15 or more new clients, then his profits > 150000.

If John's profits are > 150000 and there is a bus trip from Detroit to New York, then John 
will go on vacation.

Here the agent must establish whether John's profits are > 150000 and whether there is a bus trip from 
Detroit to New York. To establish whether John's profits are > 150000, the agent must first establish 
whether John has added 15 or more new clients. Suppose we convince the software agent that John has 
added  23  new  clients.  Then  the  agent  can  infer  that  John's  profits  are  >  150000.  From 
BusTripKnowledge the agent was able to infer that there was a trip from Detroit to New York. Using 
the beliefs about the bus trips, and the belief about the 23 new clients, the agent uses the process of 
forward chaining to deduce that John will go on vacation. We call this forward chaining from the fact 
that with 23 new clients added and the bus schedule facts, the agent moved to the conclusion. The 
inference form of this process looks like:

A  B

(B and C)  D

A

C

______________________

D

where

A = If John adds 15 or more new clients

B = Profits > 150000

C = There is a bus trip from Detroit to New York

D = John will go on vacation

In this example,  the agent believes A and C to be true. Using the rules of inference,  B and D are 
established to be true. Therefore, the agent will commit to tell us that John will go on vacation. This 
kind of processing could be assigned to an agent in a situation where a manager has hundreds or even 
thousands of employees and decides to have agent software regularly schedule employee hours. The 
manager would then consult the agent to see who was working, who was on sick leave, who was on 
vacation, and so on. The agent would be given knowledge and authority to assign work schedules. Each 
week the agent would commit to a number of acceptable work schedules, vacations, and sick leaves. 
The agent in this case uses simple forward chaining and DFS to make its inferences. To implement this 



kind  of  inferencing  we  used  structs,  and  stack  and  set  classes.  These  classes  are  used  to  hold 
knowledge, propositions, and patterns of reasoning. They allow us to implement our CDS (Cognitive 
Data Structures). We used DFS techniques to move through the stack data structures and set structures 
to support the process of inference.

The combination of chaining and DFS produces a process whereby one proposition can be affirmed on 
the basis of previous propositions that have already been accepted. This is important because our agent 
will know that it is inherently correct when it accomplishes its objectives based on inference. This also 
affects parallel programming considerations. The fact that the agent is rational and moves according to 
rules of inference allows the developer to focus on correctly modeling the task that the agent performs 
instead of getting bogged down in attempts to explicitly control the parallelism in the program. The 
minimal requirements of parallelization DCS (decomposition, communication, and synchronization) are 
in large part addressed by the architecture of the agent. Each agent has a rationale for its behavior. That 
rationale will be based on well defined, well understood rules of inference. The decomposition happens 
simply as a matter of assigning the agent one or more prime directives. Thinking of the WBS in this 
way is natural and ultimately results in parallel or distributed programs that are easier to maintain and 
enhance.  It  is  easier  to  think  about  communication  between  agents  than  communication  between 
anonymous modules because the boundaries between agents are clear and obvious. Each agent has a 
purpose that is immediately apparent. The knowledge or information each agent needs to achieve its 
purpose is easily determined. To allow the agents to communicate, the developer can use simple MPI 
calls or the object communication facilities that are part of any CORBA implementation. The most 
challenging aspect of the communication, namely figuring out:

• what needs to be communicated

• who needs to communicate

• when the communication should occur

• what format the communication should be in

is  implied  in  the  design  of  the  agents.  All  that  is  left  is  the  physical  implementation  of  the 
communication, which is easily handled by any of the libraries that support parallelism that we have 
discussed  in  this  book.  Finally,  the  problems  of  synchronization  are  reduced  because  the  agent's 
rationale  tells  it  when  it  can  and  should  perform an  action.  Therefore,  the  complicated  issues  of 
synchronization  are  transformed  into  simpler  issues  of  cooperation.  This  subtle  difference  is  an 
important paradigm shift because it simplifies what the software developer has to think about. Lets look 
a little closer at the basic layout of an agent and how we can implement it in C++.

12.4 Implementing Agents in C++

We will explore a simplified variation of our previous example of an agent and demonstrate how it can 
be approached in C++. The purpose of this agent is to schedule and book vacations for the owner of the 
ABC Auto Repair Company. The owner has dozens of employees and therefore doesn't have time to 
figure out when and where to go on vacation. Furthermore, unless the owner is making a certain amount 
of profit, vacations are out of the question. So the owner has acquired agent software that will plan and 
schedule vacations at various times throughout the year if the conditions are right. As far as the owner 
is concerned, the primary selling feature is that the agent runs unattended. Once the agent is installed on 
the computer the owner doesn't have to bother with it. When the agent determines that an appropriate 
time for a vacation has arrived, the agent will schedule the vacation, book the hotel and transportation, 
and then e-mail the owner an itinerary. The only responsibility the owner has is during the setup of the 
agent. The owner has to specify where he would like to go and how much profit the business must 
make before he can go. Let's look at how this agent could be constructed. Recall from Figure 12-1 that 
the rational component of an agent class consists of cognitive data structures and inference methods. 
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The  cognitive  data  structures  help  to  capture  beliefs,  propositions,  notions  of  epistemic  data, 
knowledge, fallacies, facts, and so on. The agent class uses inference methods to access these cognitive 
data  structures  in  the process of  problem solving and task performance.  The standard C++ library 
comes with a set of container classes and algorithms that can be used to implement the CDS and the 
inference methods.

12.4.1 Proposition Datatypes and Belief Structures

This agent has beliefs about the performance of the owners auto repair business. The beliefs capture 
information about how many customers per hour, the bay utilization per day, and the total sales during 
the period. Furthermore, the agent knows that the owner only likes bus trips. Therefore, the agent keeps 
up on any available bus trips that the owner might enjoy. In a math-intensive program, the primary 
datatypes  are  integers  and  floating  point  numbers.  In  a  graphics-intensive  program,  the  primary 
datatypes  are  pixels,  lines,  colors,  circles,  and  so  on.  In  an  agent-oriented  program,  the  primary 
datatypes  are  propositions,  rules,  statements,  literals,  and  strings.  We  will  use  the  object-oriented 
support in C++ to build a few datatypes that are native to agent-oriented programming. Example 12.1 
shows the declaration for a proposition class.

Example 12.1 Declaration of a proposition class.

template<class C> class proposition {
//...
protected:
   list<C> UniverseOfDiscourse;
   bool TruthValue;
public:
   virtual bool operator()(void) = 0;
   bool operator&&(proposition &X);
   bool operator||(proposition &X);
   bool operator||(bool X);
   bool operator&&(bool X);
   operator void*();
   bool operator!(void);
   bool possible(proposition &X);
   bool necessary(proposition &X);
   void universe(list<C> &X);
   //...
};

A proposition is a statement in which the subject is affirmed or denied by the predicate. A proposition is 
either true or false. A proposition can be used to capture any single belief that the agent has. Also, other 
information that the agent does not necessarily believe but is offered to the agent will be presented as a 
proposition. The proposition is a cognitive datatype. It should be just as functional in an agent-oriented 
program as a floating point or integer datatype in a math-oriented program. Therefore,  we use the 
operator overloading facilities of C++ to provide some of the basic operators that are applicable to 
propositions. Table 12-4 shows how the operators are mapped to logic operators.

The proposition class in Example 12.1 is a scaled-down version. The goal of this class is to allow the 
proposition datatype to be used just as easily and naturally as any other C++ datatype. Notice that the 
proposition class has the declaration:
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Table 12-4. How the Operators are Mapped to Logical Operators

C++ User-Defined Operators Commonly Used Logical Operators

&& ^

|| v

! ~

possible

necessary

virtual bool operator()(void) = 0;

This is called a pure virtual method. When a class has a pure virtual method, it means the class is an 
abstract class and cannot be directly instantiated. This is because there is no definition for the pure 
virtual function in the class. The function is only declared, not defined. Abstract classes are used to 
define policies and blueprints for derived classes. A derived class must define any pure virtual functions 
that  it  inherits  from the  abstract  class.  Here  the  proposition  class  is  used  to  define  the  minimum 
capability that any descendant will have. Another important thing to notice about the proposition class 
in Example 12.1 is it's also a template class. It contains the data member:

list<C> UniverseOfDiscourse;

This data member will be used to hold the universe of discourse that the proposition belongs to. In 
logic,  the  universe  of  discourse  contains  all  of  the  legal  things  that  may  be  considered  during  a 
discussion. Here, we use a list container. Since the topics under consideration in a universe of discourse 
can take on different types, we use a container class. We make the UniverseOfDiscourse protected 
instead of private so that it can be accessed by all descendants of the proposition class. The proposition 
class also has the capability to deal with logical necessity and possibility, the major themes in modal 
logic that are also useful in agent-oriented programming. Modal logic allows the agent to deal with 
what is possibly true or what is necessarily true. Table 12-4 lists the primary operators used for logical 
possibility and necessity. We provide these methods for exposition purposes only; the implementations 
of these methods are beyond the scope of this book. However, they are part of the proposition classes 
that the authors use in practice. To make the proposition class usable, we derive a new class that we 
name trip_announcement. The trip_announcement class is a statement about the existence of a bus trip 
from some point of origin to some destination. For instance: There is a bus trip from Detroit to Toledo. 
This makes a statement that is either true or false. If we were concerned with when this statement was 
true or false we might imply temporal logic. Temporal logic deals with the logic of time. Agents also 
employ temporal reasoning. But here all propositions refer to the current time. This statement asserts 
that there is currently a bus trip from Detroit to Toledo. The agent will either be able to verify this and 
therefore  believe  or  reject  it  as  a  false  statement.  Example  12.2 shows  the  declaration  of  the 
trip_announcement class.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12table04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex01


Example 12.2 Declaration of the trip_announcement class.

class trip_announcement : public proposition<trip_announcement>{
//...
protected:
   string Origin;
   string Destination;
   stack<trip_announcement> Candidates;
public:
   bool operator()(void);
   bool operator==(const trip_announcement &X) const;
   void origin(string X);
   string origin(void);
   void destination(string X);
   string destination(void);
   bool directTrip(void);
   bool validTrip(list<trip_announcement>::iterator I,
                  string TempOrigin);
   stack<trip_announcement> candidates(void);
   friend bool operator||(bool X,trip_announcement &Y);
   friend bool operator&&(bool X,trip_announcement &Y);
   //...
};

Notice that the trip_announcement class inherits the proposition class. Recall that the proposition class 
is a template class and requires a parameter to determine its type. The declaration:

class trip_announcement : public proposition<trip_announcement>
                          {...};

provides the proposition class with a type. It is also important to note that the trip_announcement class 
defines the operator(). Therefore, trip_announcement is a concrete class as opposed to an abstract class. 
We may declare and use the trip_announcement proposition directly within our agent program. The 
trip_announcement class adds some additional data members:

Origin
Destination
Candidates

These data members are used to contain the origin and destination of a bus trip. If the bus trip requires 
transfers from one bus to another and multiple layovers, then the Candidates data member will contain 
the complete route involved. Therefore, the trip_announcement object will be a statement about a bus 
trip and the route involved. The trip_announcement class also defines some additional operators. These 
operators help to put the trip_announcement class on equal footing with built-in C++ datatypes. In 
addition to beliefs about trips, the agent also has beliefs about the performance of areas within the 
owner's business. These beliefs differ in structure but are still basically statements that will be either 
true or false. So, we again use the proposition class as a base class. Example 12.3 shows the declaration 
for the peformance_statement class.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex03


Example 12.3 Declaration for the performance_statement class.

class performance_statement : public proposition<performance_
                              statement>{
   //...
   int Bays;
   float Sales;
   float PerHour;
public:
   bool operator() (void);
   bool operator==(const performance_statement &X) const;
   void bays(int X);
   int bays(void);
   float sales(void);
   void sales(float X);
   float perHour(void);
   void perHour(float X);
   friend bool operator||(bool X,performance_statement &Y);
   friend bool operator&&(bool X,performance_statement &Y);
   //...
};

Notice that this class also provides the template class proposition with a parameter:

class performance_statement : public proposition<performance_
                              statement> {...}

With  this  declaration  the  proposition  class  is  now  specified  for  performance_statements.  The 
performance_statement class is used to represent beliefs about how many sales, customers per hour, and 
bay utilization the owner's business has. Each statement corresponds to a single belief that the agent has 
in each area. This information is held in the data members:

Bays
Sales
PerHour

Statements such as: "Location 1 grossed $300,000 in sales, had 10 customers per hour, and had a bay 
utilization of 4" can be represented by the performance_statement class. So our agent class has two 
categories of beliefs implemented as datatypes derived from the proposition class. Figure 12-2 shows a 
UML class  diagram  for  the  trip_announcement  class  and  the  performance_statement  class.  These 
classes hold the structure of the agent's beliefs.

Figure 12-2. UML class diagram for the trip_announcement class and the performance_statement class.
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12.4.2 The Agent Class

The classes shown in Figure 12-2 provide the foundation for the CDS of the agent, the basis for what 
will make the agent rational. It's the fact that the agent class is rational that distinguishes it from other 
types of object-oriented classes. Example 12.4 shows the declaration for the agent class.

Example 12.4 Declaration of the agent class.

class agent{
   //...
private:
   performance_statement Manager1;
   performance_statement Manager2;
   performance_statement Manager3;
   trip_announcement Trip1;
   trip_announcement Trip2;
   trip_announcement Trip3;
   list<trip_announcement> TripBeliefs;
   list<performance_statement> PerformanceBeliefs;
public:
   agent(void);
   bool determineVacationAppropriate(void);
   bool scheduleVacation(void);
   void updateBeliefs(void);
   void setGoals(void);
   void displayTravelPlan(void);
   //...
};

As with the proposition classes, the agent class is a scaled-down version of what would be used in 
practice. A complete listing of the declaration of the practical versions of these classes would be three 
or four pages. We show enough for exposition purposes. The agent class contains two list containers:

list<trip_announcement> TripBeliefs;
list<performance_statement> PerformanceBeliefs;

The list  containers are standard C++ lists.  Each list  is used to hold a collection of what the agent 
currently believes about the world. Our simple agent world is restricted to knowledge about bus trips 
and sales performance of  his  owner's  business.  The contents of  these two containers  represent  the 
complete knowledge and belief set of the agent. If there are statements in these lists that the agent no 
longer believes, the agent will remove them. If the agent uncovers new statements during the course of 
inference, they are added to these beliefs. The agent has ongoing access to information about bus trips 
and the performance of the owner's business. The agent is able to update its beliefs as necessary. In 
addition to beliefs, the agent has objectives, which are sometimes represented as desires in the BDI 
(Beliefs Desires Intentions) model. The objectives support the primary directives that the agent has 
been given by its client. In our case the objectives will be stored in statements:

performance_statement Manager1;
performance_statement Manager2;
performance_statement Manager3;
trip_announcement Trip1;
trip_announcement Trip2;
trip_announcement Trip3;

Keep in mind that this is an oversimplification of how objectives and directives are represented within 
an agent class. However, there is enough here to understand how these structures are built. The three 
Manager statements contain the performance goals that must be met before the owner can even consider 
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going on vacation. The three Trip statements contain the bus trips that the owner would like to take if a 
vacation is earned. The beliefs together with the directives provide the basic cognitive datatypes that the 
agent has. The agent's inference methods combined with these cognitive datatypes form the agent's 
CDS (Cognitive Data Structure). The CDS forms the rational component and the distinguishing feature 
of an agent class. In addition to containers that hold beliefs and structures that in turn hold directives 
and  objectives,  most  practical  agent  classes  will  have  containers  that  hold  the  agent's  intentions, 
commitments, or plans. The agent gives directives by his client. The agent uses its ability to inference 
and acts to fulfill its directives. The inferencing and actions that an agent does often result in a container 
that  holds intentions,  commitments,  or  plans.  Our simple agent  doesn't  require  a  container  to  hold 
intentions or plans. However, it does keep track of the route that a bus trip vacation would take. This is 
stored in a container called Candidates. The intentions or plans would work similarly. If our agent is 
able to achieve its directives, it will schedule the trip and e-mail the owner the specifics. The instant our 
agent  object  is  constructed,  it  goes  to  work.  Example  12.5 shows  an  excerpt  from  the  agent's 
constructor.

Example 12.5 The agent class's constructor.

agent::agent(void)
{
   setGoals();
   updateBeliefs();
   if(determineVacationAppropriate()){
      displayTravelPlan();
      scheduleVacation();
      cout << "Emailed Vacation Approved and Scheduled" << endl;
   }
   else{
          cout << "Emailed Vacation Not Appropriate At this time" << endl;
   }
}

12.4.2.1 The Agent Loop

Many definitions for agents include requirements of continuity and autonomy. The idea is that the agent 
continually performs what tasks it is assigned without the need for human intervention. The agent has 
the capability to interact and semi-control its environment through a feedback loop. The continuity and 
autonomy are often implemented as an event loop where the agent continually receives messages and 
events. The agent uses the messages and events to update its internal model of the world, intentions, 
and take action. However, autonomy and continuity are relative terms. Some agents need to function 
from one microsecond to the next, while other agents only need to perform their services annually. In 
fact, with deep space mission software, an agent may have longer than an annual cycle. Multiple years 
may pass before the agent performs the next task. Therefore, we don't focus on physical event loops and 
constantly  active message queues.  While  these work for  some agents,  they are  not  appropriate  for 
others. We have found the notion of a logical cycle to be the most practical. The logical cycle may or 
may not be implemented as an event loop. The logical cycle can be anything from nanoseconds to 
years. Figure 12-3 shows a simple overview of a logical agent cycle.
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Figure 12-3. Simple overview of a logical agent cycle.

The universe of discourse in Figure 12-3 represents everything our agent can legitimately interact with. 
This might include files, information from ports, or data acquisition devices. The information will be 
represented as some kind of proposition or statement. Notice that there is a feedback loop from the 
agent's outputs back to the agent's inputs. Our agent from Example 12.4 is only needed a few times a 
year. Therefore, it  is not appropriate to put it  in an event loop that constantly runs. Our agent will 
simply activate itself periodically during the course of the year to execute its initiatives. Example 12.5 
shows the agent's constructor. When the agent activates, it sets some goals, updates its beliefs, and then 
determines whether a vacation is appropriate. If the vacation is appropriate, the necessary steps are 
taken and the owner is e-mailed. If a vacation is not appropriate at that time, then the owner is e-mailed 
with that fact also.

12.4.2.2 The Agent's Inference Methods

This agent has inference capabilities implemented partially by the proposition class descendants and 
partially by the method. Recall that the proposition class declared the operator()=0 as a pure virtual. 
They force derived classes to implement the operator(). We use this operator to design a proposition so 
the proposition itself can determine whether it is true or not, that is, the proposition classes are self-
contained. This is a fundamental tenet of object-oriented programming, namely, that a class is a self-
contained encapsulation of characteristics and behaviors. Therefore, one of the primary behaviors of the 
proposition  class  and its  descendants  is  the  capability  to  determine  whether  it  is  true  or  not.  The 
operator overloading and function objects are used to accommodate this feature. Example 12.6 shows 
an excerpt from the proposition class and its descendant's definitions.

determineVacationAppropriate()
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Example 12.6 Excerpts from the definition of the proposition class and its descendants.

template <class C> bool proposition<C>::operator&&(proposition &X)
{
   return((*this)() && X());
}

template <class C> bool proposition<C>::operator||(proposition &X)
{
   return((*this)() || X());
}
template<class C> proposition<C>::operator void*(void)
{
   return((void*)(TruthValue));
}

bool trip_announcement::operator() (void)
{
   list<trip_announcement>::iterator I;
   if(directTrip()){
      return(true);
   }
   I = UniverseOfDiscourse.begin();
   if(validTrip(I,Origin)){
      return(true);
   }
   return(false);
}

The  definitions  of  the  ||  and  the  && operators  for  the  proposition  classes  determine  whether  the 
proposition is true or false. Each of these operator definitions ultimately calls the operator() defined for 
its class. Notice in Example 12.6 the definition for ||. This operator is defined as:

template <class C> bool proposition<C>::operator||
                                        (proposition &X)
{
   return((*this)() || X());
}

It allows code to be written as:

trip_announcement A;
performance_statement B;
if (A || B){
   // Do Something
}

When  A  or  B  is  evaluated,  the  operator  definitions  will  cause  the  operator()  to  be  called.  Each 
proposition class defines behavior for the operator(). For example, the trip_announcement class defines 
the operator() as:

bool trip_announcement::operator()(void)
{
   list<trip_announcement>::iterator I;
   if(directTrip()){
      return(true);
   }
   I = UniverseOfDiscourse.begin();
   if(validTrip(I,Origin)){
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      return(true);
   }
   return(false);
}

This code will determine whether there is a trip from some designated origin to some destination. For 
example, if the desired type is Detroit to Columbus and the universe of discourse contains:

Detroit to Toledo

Toledo to Columbus

Then a  trip_announcement  object will  report  that  the statement  that  there is  a  trip from Detroit  to 
Columbus is true, although the universe of discourse does not contain a statement like:

Detroit to Columbus

In  fact,  the  trip_announcement  class  does  check  to  see  if  there  is  a  direct  route  from Detroit  to 
Columbus. If there is a direct route, then it returns true. If there is no direct route, it attempts to find an 
indirect route. This behavior is accomplished by:

if(directTrip()){
   return(true);
}
I = UniverseOfDiscourse.begin();
if(validTrip(I,Origin)){
   return(true);
}

processing in the operator() for the trip_anouncement class. The directTrip() method is straightforward 
and simply sequentially searches through the universe to see if there is a statement that says:

Detroit to Columbus

The validTrip() method uses a DFS (Depth First Search) technique to determine if there is an indirect 
route. Example 12.7 contains definitions for validTrip() and directTrip():

Example 12.7 Definitions for validTrip and directTrip().

bool trip_announcement::validTrip(list<trip_announcement>::
                                  iterator I, string TempOrigin)
{
   if(I == UniverseOfDiscourse.end()){
      if(Candidates.empty()){
         TruthValue = false;
         return(false);
      }
      else{
             trip_announcement Temp;
             Temp = Candidates.top();
             I = find(UniverseOfDiscourse.begin()
                      UniverseOfDiscourse.end(),Temp);
             UniverseOfDiscourse.erase(I);
             Candidates.pop();
             I = UniverseOfDiscourse.begin();
             if(I != UniverseOfDiscourse.end()){
                TempOrigin = Origin;
             }
             else{

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex07


                TruthValue = false;
                return(false);
          }

      }
   }
   if((*I).origin() == TempOrigin && (*I).destination() == Destination){
       Candidates.push(*I);
       TruthValue = true;
       return(true);
   }
   if((*I).origin() == TempOrigin){
          TempOrigin = (*I).destination();
          Candidates.push(*I);
   }
   I++;
   return(validTrip(I,TempOrigin));
}

bool trip_announcement::directTrip(void)
{
   list<trip_announcement>::iterator I;
   I = find(UniverseOfDiscourse.begin(),UniverseOfDiscourse.end(),*this);
   if(I == UniverseOfDiscourse.end()){
      TruthValue = false;
      return(false);
   }
   TruthValue = true;
   return(true);
}

Both the validTrip() and directTrip() methods make use of the find() algorithm from the Standard C++ 
library. The UniverseOfDiscourse is a container that contains the agent's beliefs and statements made to 
the agent. Recall that one of the first steps the agent took was to updateBeliefs(). The updateBeliefs() 
method is what ultimately populates the UniverseOfDiscourse container.  Example 12.8 contains the 
definition for the updateBeliefs() method.

Example 12.8 Update beliefs.

void agent::updateBeliefs(void)
{
   performance_statement TempP;
   TempP.sales(203.0);
   TempP.perHour(100.0);
   TempP.bays(4);

   PerformanceBeliefs.push_back(TempP);
   trip_announcement Temp;
   Temp.origin("Detroit");
   Temp.destination("LA");
   TripBeliefs.push_back(Temp);
   Temp.origin("LA");
   Temp.destination("NJ");
   TripBeliefs.push_back(Temp);
   Temp.origin("NJ");
   Temp.destination("Windsor");
   TripBeliefs.push_back(Temp);
}
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In practice the beliefs will come from the agent's executing environment (i.e., files, sensors, ports, data 
acquisition  devices,  etc.).  In  Example  12.8 the  information  pushed  into  TripBeliefs  and 
PerformanceBeliefs represent new statements that the agent is receiving about the available trips and 
the performance of one of the auto repair locations. These statements will be evaluated against the 
directives or initiatives that the agent has. The setGoals() method establishes what the agent's directives 
are. Example 12.9 shows the definition for the setGoals() method.

Example 12.9 The set goals method.

void agent::setGoals(void)
{
   Manager1.perHour(15.0);
   Manager1.bays(8);
   Manager1.sales(123.23);
   Manager2.perHour(25.34);
   Manager2.bays(4);
   Manager2.sales(12.33);
   Manager3.perHour(34.34);
   Manager3.sales(100000.12);
   Manager3.bays(10);
   Trip1.origin("Detroit");
   Trip1.destination("Chicago");
   Trip2.origin("Detroit");
   Trip2.destination("NY");
   Trip3.origin("Detroit");
   Trip3.destination("Windsor");
}

These goals tell the agent that the owner would like to go from either Detroit to Chicago, Detroit to 
New York, or Detroit to Windsor. In addition to the trips, the financial objectives are also set. In order 
for a vacation to be achieved, one or more of these objectives must be met. After the goals have been 
set and the agent updates its beliefs, the next objective is to determine from the goals and the beliefs if a 
vacation can be scheduled. The second component of the agent's inference methods is invoked:

determineVacationAppropriate()

This method will pass the UniverseOfDiscourse to each of the proposition objects. It will then use a 
statement of the form:

(A v B v C) ^ (Q v R v S)  W

which states if at least one of the statements is true from each grouping, then W is true. In the case of 
our agent, this means that if at least one of the sales performance goals are met and there is a bus trip 
that  is  satisfactory,  then  a  vacation  is  appropriate.  Example  12.10 shows  the  definition  of  the 
determineVacationAppropriate() method.
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Example 12.10 Second inference method.

bool agent::determineVacationAppropriate(void)
{
   bool TruthValue;
   Manager1.universe(PerformanceBeliefs);
   Manager2.universe(PerformanceBeliefs);
   Manager3.universe(PerformanceBeliefs);
   Trip1.universe(TripBeliefs);
   Trip2.universe(TripBeliefs);
   Trip3.universe(TripBeliefs);
   TruthValue = ((Manager1 || Manager2 || Manager3) &&
                 (Trip1 || Trip2 || Trip3));
   return(TruthValue);
}

Notice that the TripBeliefs and the PerformanceBeliefs are arguments to the universe() method of the 
Trip and Manager objects. This is where the propositions get the UniverseOfDiscourse information. 
Prior to the proposition calling their operator(), their UniverseOfDiscourse is populated. In  Example 
12.10 the statement:

((Manager1 || Manager2 || Manager3) && (Trip1 || Trip2 ||
                                        Trip3));

causes six propositions to be evaluated by the || operator. The || operator for each proposition executes 
the operator() for each proposition. The operator() uses the UniverseOfDiscourse to determine whether 
the proposition is true or false.  Examples 12.6 and 12.7 show how the operator() is defined for the 
trip_announcement  class.  Keep  in  mind  that  the  trip_announcement  class  and  the 
performance_statement class inherit much of their functionality from the proposition class.  Example 
12.11 shows how the operator() is defined for the performance_statement class.

Example 12.11 The performance_statement class.

bool performance_statement::operator()(void)
{
   bool Satisfactory = false;
   list<performance_statement>::iterator I;
   I = UniverseOfDiscourse.begin();

   while(I != UniverseOfDiscourse.end() && !Satisfactory)
   {
      if(((*I).bays() >= Bays) || ((*I).sales() >= Sales) ||
         ((*I).perHour() >= PerHour)){
        Satisfactory = true;

      }
      I++;
   }
   return(Satisfactory);
}

The operator() for each proposition class plays a part in the inferencing capabilities of the agent class. 
Example 12.6 shows how the operator() is called whenever || or && is evaluated for a proposition class 
or one of its descendants. It is the combination of the proposition classes' operator() methods and the 
agent's methods that produce the inference methods for the agent class. In addition to the || and && 
operator defined by the proposition class, the trip_announcement class and the performance_statement 
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class define:

friend bool operator||(bool X,trip_announcement &Y);
friend bool operator&&(bool X,trip_announcement &Y);

The friend declarations allow the propositions to be used in longer expressions. If we have:

//...
trip_announcement A,B,C;
bool X;
X = A || B || C;
//...

then A and B will be OR'ed together and the result will be a bool. The next part of the evaluation tries 
to || the bool with the trip_announcement datatype:

bool || trip_announcement

Without the friend declararations, this would be a illegal operation.  Example 12.12 shows how these 
friend functions are defined.

Example 12.12 Operator overloading of || and &&.

bool operator||(bool X,trip_announcement &Y)
{
   return(X || Y());
}

bool operator&&(bool X,trip_announcement &Y)
{
   return(X && Y());
}

Notice that the definitions of these friend functions also call the function operator() with the reference 
to Y(). These functions are also defined for the performance_statement class. The goal is to make the 
proposition classes as easy to use as the built-in datatypes. The proposition class also defines another 
operator that allows the proposition to be used in a natural fashion. Let's examine the code:

//...
trip_announcement   A;
if(A){
   //... do something
}
//...

How does the compiler define Test A? The if() statement is looking for an integral type or a bool. A is 
neither. We want the compiler to treat A as a statement that is either true or false. The function operator 
is  not  called  under  this  circumstance.  So  we  define  the  void*  operator  to  give  us  the  desired 
functionality. This function operator can be defined accordingly:

template<class C> proposition<C>::operator void*(void)
{
   return((void*)(TruthValue));
}

This definition allows any proposition type presented in standalone fashion to be tested for a truth 
value. For example, when our agent class is preparing to send the owner an e-mail containing the route. 
The agent needs to determine which trip is available.  Example 12.13 shows another excerpt from the 
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agent's trip processing methods.

Example 12.13 displayTravelPlan() method.

void agent::displayTravelPlan(void)
{
   stack<trip_announcement> Route;
   if(Trip1){
      Route = Trip1.candidates();
   }
   if(Trip2){
      Route = Trip2.candidates();
   }
   if(Trip3){
      Route = Trip3.candidates();
   }
   while(!Route.empty())
   {
       cout << Route.top().origin() << " TO " << Route.
               top().destination() << endl;
      Route.pop();
   }
}

Notice that Trip1, Trip2, and Trip3 are tested as if they were bools. The candidates() method simply 
returns the route discovered for the trip. The operator overloading capabilities and the template facilities 
support the development of reusable inference methods and the CDS. These inference methods and the 
CDS make the object a rational object. A C++ programmer uses the classes construct to design agents. 
Container objects are often used in conjunction with the built-in algorithms to implement the CDS. A 
class that has a CDS is rational. A rational class is an agent.

12.4.3 Simple Autonomy

Since our simple agent class does not require the traditional "agent loop" to do its processing, we need 
other means to activate this agent without human intervention and on a period or cyclic basis. There 
will be many situations where an agent that you are writing only needs to run sometimes or only under 
limited conditions. The UNIX/Linux environments come with the crontab facility. The crontab facility 
is the user interface of the UNIX cron system. The crontab utility allows you to schedule one or more 
programs to be executed on a cyclic or periodic basis. Crontab jobs can be scheduled to the month, 
week, day, hour, and minute. To use crontab a file must be created that contains the schedule for when 
the agent is to be activated. The file is a simple text file set up in the following form:



minute hour day month weekday command

Where each column can take on the following values:

minute 0-59

hour 0–23

day 1–31

month 1–12

weekday 1–7 (1 = Mon., 7 = Sun)

command can be any UNIX/Linux command as well as the name of the file that contains your agents

Once this text file is created, it is submitted to the cron system as the command:

$crontab NameOfCronFile

For example, if we have a file named activate.agent that is set up as follows:

15 8 * * * agent1

0 21 * * 6 agent2

* * 1 12 * agent3

and we execute the crontab command:

$crontab activate.agent

Then agent1 will activate everyday at 8:15 A.M., agent2 will activate every Saturday at 9:00 P.M. and 
agent3  will  activate  every 1st  of  December.  The  cron  files  can  be added or  deleted  as  necessary. 
Cronfiles can contain references to other cron jobs, thus allowing an agent to reschedule itself. In fact, 
shell scripts can be used in conjunction with the crontab utility to provide extremely flexible, dynamic, 
and reliable activation of agents. See the man pages for a complete description of the crontab facility.

$man crontab or $man at

The crontab and at facilities are the simplest method to automate or regularly schedule agents that don't 
require  constantly  executing event loops.  They are reliable  and flexible.  On the other extreme,  the 
implementation repositories and object request brokers that we discussed in Chapter 8 can also be used 
to implement automatic agent activation. Standard CORBA implementations also provide event looping 
capabilities.
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12.5 Multiagent Systems

Multiagent  systems are  systems  in  which  two or  more  agents  cooperate,  collaborate,  negotiate,  or 
compete toward the solution to some problem. The C++ software developer has several options for 
implementing multiagent  systems.  Agents can be implemeted in  separate  threads using the POSIX 
thread API. This method divides a single program into multiple threads where each thread contains one 
or more agents. Therefore, each agent shares the same address space. This allows the agents to easily 
communicate  using global  variables  and simple parameter  passing.  If  the computer  the program is 
running on contains more than one processor, then the agents can perform their activities in parallel. 
Obviously  each  agent  should  have  the  necessary  synchronization  objects  defined,  as  discussed  in 
Chapters 5 and  11, and the exception handling components, as discussed in  Chapter 7. Multiagents 
implemented with multithreading are the easiest approach but limits the agents to a single computer. 
The most flexible approach to multiagents is using a CORBA implementation. The CORBA standard 
has a MAF (multi-agent facility) specification in addition to the core CORBA specification. The MICO 
implementation that we use in the CORBA examples in this book can be used to implement agents that 
can interact over the Internet, over intranets, and over local networks. The C++ binding of the CORBA 
standard has complete support for the object-oriented metaphor and therefore has inherent support for 
agent-oriented programming. In Chapter 13, we discuss how the PVM and MPI libraries can be used to 
support agents in a parallel and distributed programming context.

Summary

Agents are rational objects. Agent-oriented programming is another important approach to parallel and 
distributed programming. Agent-oriented programming provides a fresh approach to dealing with the 
age-old problems of decomposition, communication, and synchronization that are part of every parallel 
programming  or  distributed  programming  project.  The  C++  support  for  operator  overloading, 
containers, and templates provide effective tools for implementing a wide range of agent classes. Future 
massively parallel and large complex distributed systems will rely on agent-oriented implementations 
because there is almost no other way to competently approach such systems. While the agent examples 
and  techniques  that  we  presented  in  this  chapter  were  introductory,  they  provide  the  basis  for 
understanding how practical agent systems can be built. The POSIX thread API, MICO, PVM, and MPI 
libraries that are freely available and widely used can be used to deploy multiagent systems. Multiagent 
systems can be used to implement either solutions that require parallel programming or solutions that 
require  distributed  programming.  This  book  advocates  two  primary  architectures  for  parallel 
programming  and  distributed  programming:  Agents  provide  the  first  architecture,  and  blackboards 
(which assume agents)  provide  the  second.  The  next  chapter  provides  a  discussion of  how to  use 
blackboards to implement parallel and distributed programming solutions.
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Chapter 13. Blackboard Architectures Using PVM, Threads, and 
C++ Components
"The  human  brain  is  far  more  complicated  than  any  computer,  and  in  any  event  the 
benchmark  to  be  attained  by  some  super  microchip  of  the  future  is  to  match  the 
performance, not of an isolated human brain, but of a brain reared in a society comprising 
many humans..."

—Timothy Ferris, The Universe and Eye

In this Chapter

• The Blackboard Model  

• Approaches to Structuring the Blackboard  

• The Anatomy of a Knowledge Source  

• The Control Strategies for Blackboards  

• Implementing the Blackboard Using CORBA Objects  

• Implementing the Blackboard Using Global Objects  

• Activating Knowledge Sources Using Pthreads  

• Summary  

One of the primary goals in parallel programming is to divide the work a program must do into a set of 
tasks that may be executed with as much concurrency as necessary. This goal is an elusive one. Finding 
the correct WBS (Work Breakdown Structure) that will support parallelism and produce correct and 
efficient  results  can  be  a  challenge.  We use  a  modeling  and  architectural  approach  to  achieve  an 
acceptable WBS. In practice the process of modeling the problem and solution as naturally as possible 
with either objects or processes reveals any necessary parallelism. The model also identifies where the 
parallelism occurs within the problem or the solution. It's not necessary to introduce parallelism into a 
solution. If the problem and solution are appropriately modeled, then any necessary parallelism will be 
discovered. The blackboard architecture helps with this modeling process. In particular, the blackboard 
model helps to organize and conceptualize the concurrency and the communication within a system that 
requires parallelism or distributed programming.
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13.1 The Blackboard Model

The blackboard model is  an approach to  collaborative problem solving.  The blackboard is  used to 
record, coordinate, and communicate the efforts of two or more software-based problem solvers. Hence 
there are two primary types of components in the blackboard model: the blackboard and the problem 
solvers.

The blackboard is a centralized object that each of the problem solvers has access to. The problem 
solvers  may  read  the  blackboard  and  change  the  contents  of  the  blackboard.  The  contents  of  the 
blackboard at any given time will vary. The initial content of the blackboard will include the problem to 
be solved. Other information representing the initial state of the problem, problem constraints, goals, 
and objectives may be contained on the blackboard. As the problem solvers are working toward the 
solution,  intermediate  results,  hypotheses,  and  conclusions  are  recorded  on  the  blackboard.  The 
intermediate results written by one problem solver on the blackboard may act as a catalyst for other 
problem  solvers  reading  the  blackboard.  Tentative  solutions  are  posted  to  the  blackboard.  If  the 
solutions are determined not to be sufficient, these solutions are erased and other solutions are pursued. 
The problem solvers use the blackboard as opposed to direct communication to pass partial results and 
findings to each other. In some configurations the blackboard acts as a referee, informing the problem 
solvers when a solution has been reached or whether to start work or stop work. The blackboard is an 
active object, not simply a storage location. In some cases the blackboard determines which problem 
solvers  to  involve  and  what  content  to  accept  or  reject.  The  blackboard  may  also  organize  the 
incremental or intermediate results of the problem solvers. The blackboard may translate or interpret the 
work from one set of problem solvers so that it may be used by another set of problem solvers.

The  problem solver  is  a  piece  of  software  that  typically  has  specialized  knowledge or  processing 
capabilities within some area or problem domain. The problem solver can be as simple a routine that 
converts from Celsius to Fahrenheit or as complex as a smart agent that handles medical diagnoses. In 
the blackboard model these problem solvers are called knowledge sources. To solve a problem using 
blackboards,  two or more knowledge sources are needed and each knowledge source usually has a 
different area of focus or specialty. The blackboard is a natural fit for problems that can be divided into 
separate  tasks  that  can  be  solved  independently  or  semi-independently.  In  the  basic  blackboard 
configuration each problem solver tackles a different part of the problem. Each problem solver only 
sees the part of the problem with which it is familiar. If the solutions to any parts of the problem are 
dependent on the solutions or partial solutions to other parts of the problem, then the blackboard is used 
to coordinate the problem solvers and integrate the partial solutions. A blackboard's problem solvers 
need not be homogeneous. Each problem solver may be implemented using different techniques. For 
instance,  some problem solvers might be implemented using object-oriented techniques while other 
solvers might be implemented as functions. Furthermore, the problem solvers may employ completely 
different problem-solving paradigms. For example, solver A might use a backward-chaining approach 
to  solving  its  problem,  while  solver  B  might  use  a  counterpropagation  approach.  There  is  no 
requirement  that  the  blackboard's  problem  solvers  be  implemented  using  the  same  programming 
language.

The blackboard model does not specify any particular structure or layout for the blackboard nor does it 
suggest how the knowledge sources should be structured. In practice, the structure of a blackboard is 
problem dependent.[1] The implementation of the knowledge sources is also specific to the problem 
being  solved.  The  blackboard  framework  is  a  conceptual  model  describing  relationships  without 
describing the structures of the blackboard and knowledge sources. The blackboard model does not 
dictate the number or purpose of the knowledge sources. The blackboard may be a single global object 
or a distributed object with components on multiple computers. Blackboard systems may consist of 
multiple blackboards, with each blackboard dedicated to a part of the original problem. This makes the 
blackboard an extremely flexible model for problem solving. The blackboard model supports parallel 
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programming and distributed programming. First, the knowledge sources may execute simultaneously, 
with each knowledge source working on its part of the problem. Second, the knowledge sources may be 
implemented in separate threads or in separate processes on the same or different computers.

[1] While a blackboard may be reused for other, very similar problems, it is nontrivial to 
design a blackboard that can be used for completely different kinds or classes of problems. 
Reuse is usually limited to problems that are very similar in nature. This is because the 
solution space is closely mapped to the problem and the rule component is closely mapped 
to the solution space, which prevents the use of the blackboard for general problems.

The blackboard can be segmented into separate parts allowing concurrent access by multiple knowledge 
sources. The blackboard easily supports CREW, EREW, and MIMD. We implement the blackboard as 
a  global  object  or  collection  of  objects  when the  knowledge  sources  are  implemented  in  separate 
threads. Since the threads share the same address space, a blackboard implemented as a global object or 
family of objects will be accessible by each threaded knowledge source. If the knowledge sources are 
implemented  as  separate  processes  running  on  the  same  or  different  computers,  the  blackboard  is 
implemented as a CORBA object or collection of CORBA objects. Recall that CORBA objects can be 
used to support both a parallel and distributed model of computing. Here, we use CORBA to support 
the blackboard as a kind of distributed shared-memory between tasks executing in different address 
spaces. The tasks can be PVM (Parallel Virtual Machine) tasks, tasks spawned by the traditional fork-
exec functions calls, or tasks spawned by the new posix_spawn(). Figure 13-1 shows our two memory 
configurations for the blackboard.

Figure 13-1. Two memory configurations for the blackboard.

In both the cases in  Figure 13-1, all knowledge sources have access to the blackboard. Knowledge 
sources in different address spaces will each make a network connection to a blackboard implemented 
as one or more CORBA objects. Also, when the knowledge sources are implemented as PVM tasks, the 
knowledge sources can supplement the blackboard communication with the message-passing model. 
This configuration provides for an extremely flexible model of problem solving.
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13.2 Approaches to Structuring the Blackboard

There  is  no  one  way  to  structure  a  blackboard.  However,  most  blackboards  will  have  certain 
characteristics and attributes in common. The original contents of the blackboard will typically contain 
some kind of partitioning of the solution space for the problem that is to be solved. The solution space 
will contain all the partial solutions and full solutions to a problem. For instance, let's say that we have a 
search engine that searches the Internet for pictures of cars. The search engine can process a bitmap 
image or vector image to determine whether it contains a picture of a car and if so, whether it is the 
target car. Let's say that our search engine is developed using the blackboard model. Each knowledge 
source has a speciality: one knowledge source is a specialist in identifying images of tires, another 
focuses on identifying rearview mirrors, and another is an expert in identifying car door handles, lug 
nuts, and so on. Each aspect of the car represents a small part of the solution space. Parts of the solution 
space contain full images of cars from different perspectives that is, from the top, the bottom, 45-degree 
angles, and so on. Other parts of the solution space only contain sections of cars, perhaps the front end, 
the roof, the trunk, and the back end. A bitmap or vector image is placed on the blackboard and the 
individual knowledge sources attempt to identify something in the image that might be part of a car. If 
some part of the solution space matches something in the image, that piece of the image is written to 
another part of the blackboard as a partial solution. One knowledge source might put an identified car 
door handle on the blackboard. Another may put an identified car door on the blackboard. Once these 
two pieces of information have been put on the blackboard, another knowledge source may use this 
information to aid in identifying the front end of a car in the image. Once this has been identified, the 
image of the front end is placed on the blackboard. Each of these various ways to identify the image of 
a car represents part of the solution space.

The solution space is sometimes organized in a hierarchy. In our car example, complete images of cars 
might be at the top of the hierarchy and the next level may consist of various views of front ends and 
back ends, with the next level consisting of the doors, trunks, hoods, windshields, and wheels. Each 
level describes a smaller, perhaps less obvious image of some part of a car. The knowledge sources may 
work on multiple levels within the hierarchy simultaneously. The solution space may also be organized 
as  a  graph  where  each  node  represents  some  part  of  the  solution  and  each  edge  represents  the 
relationships between two partial  solutions.  The solution space may be represented as one or more 
matrices, with each element of the matrix containing a solution or partial solution. The solution space 
representation is an important component of the blackboard architecture. The nature of the problem will 
often  determine  how  the  solution  space  should  be  partitioned.  In  addition  to  a  solution  space 
component, blackboards typically have one or more rule (heuristic) components. The rule component is 
used to determine which knowledge sources to deploy and what solutions to accept or reject. The rule 
component can also be used to translate partial solutions from one level in the solution space hierarchy 
to another level. The rule component may also be used to prioritize the knowledge source approaches. 
Some knowledge sources may go down blind alleys. The blackboard deselects one set of knowledge 
sources  in  favor  of  another  set.  The  blackboard  may  use  the  rule  component  to  suggest  to  the 
knowledge sources a more appropriate potential  hypothesis  based on the partial  hypothesis  already 
generated. In addition to the solution space and rule component, the blackboard will often contain initial 
values, constraint values, and ancillary goals. In some cases the blackboard will contain one or more 
event queues used to capture input from either the problem space or the knowledge sources. Figure 13-2 
shows a logical layout for a basic blackboard architecture.
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Figure 13-2. The logical layout for a basic blackboard architecture.

* If the KS (knowledge source) is a process, communication can be over a network or IPC (interprocess 
communication). If the KS is a thread, communication may be parameter passing.

Figure  13-2 shows  the  blackboard  has  a  number  of  segments,  each  segment  having  a  variety  of 
implementations. This suggests that blackboards are more than global pieces of memory or traditional 
databases. While  Figure 13-2 shows the common core components that most blackboards have, the 
blackboard architecture is not limited to these components. Other useful components for blackboards 
include context models of the problem and domain models that can be used to aid the problem solvers 
with  navigation  through  the  solution  space.  The  support  C++  has  for  object-oriented  design  and 
programming fits nicely with the flexibility requirements of the blackboard model. Most blackboard 
architectures can be modeled using classes in C++. Recall  that  classes can be used to model some 
person,  place,  thing,  or idea.  Blackboards  are  used to  solve problems that involve persons,  places, 
things,  or ideas.  So using C++ classes to  model the objects  that  blackboards contain or the actual 
blackboards is a natural fit. We take advantage of C++ container classes and the standard algorithms in 
our implementations of the blackboard model. In addition to the built-in classes we construct interface 
classes for the mutexes and other synchronization variables that we use with the blackboard. Because 
multiple knowledge sources can access the blackboard simultaneously, this means that the blackboard 
is a critical section and access needs to be synchronized. So along with the other components that a 
blackboard contains, we will use synchronization objects to the blackboard.

13.3 The Anatomy of a Knowledge Source

Knowledge sources are represented as objects, procedures, sets of rules, logic assertions, and in some 
cases  entire  programs.  Knowledge  sources  have  a  condition  part  and  an  action  part.  When  the  
blackboard contains some information that satisfies the condition part of some knowledge source, then 
the  action  part  of  the  knowledge  source  is  activated.  Englemore  and  Morgan  clearly  state  the 
responsibilities of a knowledge source in their work Blackboard Systems:

Each  knowledge  source  is  responsible  for  knowing  the  conditions  under  which  it  can  
contribute  to  a  solution.  Each  knowledge  source  has  preconditions  that  indicate  the  
condition on the blackboard that must exist before the body of the knowledge source is  
activated. One can view a knowledge source as a large rule. The major difference between  
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a rule and a knowledge source is the grain size of the knowledge each holds. The condition  
part of this large rule is called the knowledge source precondition, and the action part is  
called the knowledge source body.

Here Englemore and Morgan do not specify any of the details of the condition part or the action part of  
a knowledge source. They are logical constructs. The condition part could be as simple as the value of  
some boolean flag on the blackboard or as complex as a specific sequence of events arriving in an 
event queue within a certain period of time. Likewise, the action part of a knowledge source can be as  
simple as a single statement performing an expression assignment or as involved as a forward chain in 
an expert system. Again, this is a statement of how flexible the blackboard model can be. The C++  
class construct and the notion of an object will be sufficient for our purposes. Each knowledge source 
will be an object. The action part of the knowledge source will be implemented by the object's methods.  
The condition part of the knowledge source will be captured as data members of the object. Once the  
object is in a certain state then the action parts of that object will be activated. To keep things simple  
we will map knowledge sources to either threads or processes. Therefore, for each thread there will  
only be one knowledge source and for each process there will only be one knowledge source. When 
using the PVM with the blackboard, a knowledge source will be equivalent to a PVM task. Figure 13-3 
shows the logical layout of the anatomy of a knowledge source.

Figure 13-3. The logical layout of a knowledge source.

Each  knowledge  source's  condition  part  is  updated  from the  blackboard.  Some  of  the  knowledge  
source's action part updates the blackboard. Notice in Figure 13-3 there is a one-for-one correlation  
between process space and knowledge source or thread space and knowledge source. An important  
attribute of the knowledge source is its autonomy. Each knowledge source is a specialist and is largely  
independent from the other problem solvers. This presents one of the desired qualities for a parallel  
program. Ideally the tasks in a parallel program can operate concurrently without much interaction  
with  other  tasks.  This  is  exactly  the  case  in  the  blackboard  model.  The  knowledge  sources  act 
independently and any major interaction is through the blackboard. So from the knowledge source's  
point of view it is acting alone and getting additional information from the blackboard and recording  
its findings on the blackboard. The activities of the other knowledge sources and their strategies and  
structures  are  unknown.  In  the  blackboard  model,  the  problem  is  partitioned  into  a  number  of  
autonomous or semi-autonomous problem solvers. This is the advantage of the blackboard model over  
other models. In the most flexible configuration the knowledge sources are intelligent agents. The agent  
will  be  completely  self-sufficient  and  able  to  act  on  its  own  with  minimum  interaction  with  the  
blackboard. The intelligent agent presents the greatest opportunity for large-scale parallelism.
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13.4 The Control Strategies for Blackboards

There are several layers of control in a blackboard implementation where the knowledge sources may 
be activated concurrently. At the lowest layer their synchronization schemes must protect the integrity 
of the blackboard. The blackboard is a critical section because it is a shared, modifiable resource. In a 
parallel  environment  the  knowledge  source's  read  and  write  access  must  be  coordinated  and 
synchronized. This coordination and synchronization can involve file locking, semaphores, mutexes, 
and so on. This layer of control is not directly involved in the solution the knowledge sources are 
working toward. This is a utility layer of control and should be independent of the problem to be solved 
by the blackboard. In our architectural approach, this layer of control will be implemented by interface 
classes  like  the  mutex,  and  semaphore  classes  that  we  introduced  in  Chapter  11.  Recall  that  the 
functionality  contained  in  these  classes  is  independent  of  the  application  they  are  used  in.  For 
concurrency implementations of blackboards, this layer selects one or more of the four types of parallel 
access that the knowledge source algorithms or heuristics will have to the physical implementation of 
the blackboard. That is, the users of the blackboard can be EREW, CREW, ERCW, or CRCW. This 
access determines how the synchronization primitives will be used. Table 13-1 contains the descriptions 
of the four types of parallel access that a model can use.

Table 13-1. Four Types of Parallel Access Used by a Model

PRAM models Description

EREW Exclusive Read Exclusive Write

CREW Concurrent Read Exclusive Write

ERCW Exclusive Read Concurrent Write

CRCW Concurrent Read Concurrent Write

The segmentation of the blackboard into parts will determine which of the types of concurrency in 
Table 13-1 are appropriate. The most flexible CRCW can be achieved depending on the structure of the 
blackboard.  For  instance,  if  16  knowledge sources  are  involved in  a  collaborative  effort  and  each 
knowledge source  accesses  its  own segment  of  the  blackboard,  then  these  knowledge sources  can 
concurrently read and write the blackboard without data race problems.

The next layer of control involves the selection of which knowledge sources to involve in the search for 
the solution and which aspects of the problem to focus on. This is a focus-of-attention layer. This layer 
of control decides to focus on a certain area of the problem and selects knowledge sources accordingly. 
One of the major issues to tackle in any kind of problem solving is where to start and what kind of 
information is needed to solve the problem. The focus/attention layer evaluates the initial conditions of 
the problem and then controls which knowledge sources to use and where they will start. The available 
knowledge sources will be known to the blackboard and typically the knowledge source will accept 
messages or parameters that dictate how it should proceed or where in the solution space it should begin 
the  search.  For  parallel  implementations,  this  layer  will  determine  the  basic  model  of  parallelism 
(distribution of the problem solvers). Usually for blackboards this is the Multiple Programs Multiple 
Data (MPMD, a.k.a. MIMD) model because each knowledge source/problem solver has its own area of 
speciality. However, the nature of the problem might warrant the popular Single Program Multiple Data 
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(SPMD) model. If this model is used, the control layer will spawn N number of the same knowledge 
source but pass different parameters to each.

The next layer of control involves determining what to do with the solution or partial solutions written 
to the blackboard. This layer of control will determine whether the knowledge sources can stop work or 
whether the solution generated is acceptable, unacceptable, partially acceptable, and so on. This layer of 
control has complete visibility of the blackboard and all the partial or tentative solutions. It guides the 
overall  problem-solving  strategies  of  the  collective.  As  with  the  layout  of  the  blackboard  and the 
structure  of  the  knowledge  sources,  the  blackboard  model  suggests  the  existence  of  a  control 
component but does not specify how it should be structured. Sometimes the control component is part 
of the blackboard. Sometimes the control component is implemented by the knowledge sources. In 
some cases the control component is implemented by modules external to the blackboard. The control 
component can also be implemented by any combination of these. The knowledge sources collectively 
search for a solution to some problem. We want to emphasize a solution because many problems have 
more than one solution. Some solutions may be deeper in the search space than others, some may cost 
more to find than others, and some may be deemed not good enough. The control component helps to 
manage the collective search strategies of the knowledge sources and monitors the tentative or partial 
solutions to make sure that the knowledge sources are not pursuing an impractical search strategy. The 
control component looks out for any infinite loops, blind alleys, or recursive regression. Furthermore, 
the control component is involved in selecting the best or the most appropriate knowledge sources for 
the problem. As the knowledge sources make progress toward a solution, the control component may 
relieve some knowledge sources while assigning others. The control strategy will be closely related to 
the search strategies used by the knowledge sources. It is important to remember that the knowledge 
sources may each use different search strategies and problem-solving techniques. Although they work 
with a common blackboard, the knowledge sources or problem solvers are essentially autonomous and 
self-contained.  Therefore,  this  layer  of  control  has  a  two-way communication  with  the  knowledge 
sources. Figure 13-4 shows possible control configurations and their layers in a blackboard architecture.

13.5 Implementing the Blackboard Using CORBA Objects

Recall from  Chapter 8 that a CORBA object is a platform-independent distributed object.  CORBA 
objects can be accessed between processes on the same machines or processes running on different 
machines  connected  to  a  network.  This  makes  CORBA  objects  candidates  for  use  in  PVM 
environments where the program is divided into a number of processes that may or may not be running 
on the same computer. Ordinarily the PVM environment is used for the message-passing strengths and 
any shared memory approaches are secondary if used at all. The notion of a network-accessible shared 
object adds computational power to the PVM environment. Keep in mind that CORBA objects can 
model  anything that  nondistributed objects  can represent.  This means PVM tasks that  have shared 
access to CORBA objects  can access container objects, framework objects, pattern objects, domain 
objects, and any kind of utility object. In this case, we want the PVM tasks to have access to blackboard 
objects.  So the message-passing model  is  supplemented with shared access to  complex objects.  In 
addition  to  PVM  tasks  accessing  distributed  CORBA  objects,  traditional  tasks  spawned  by  the 
posix_spawn() or fork-exec functions can access the CORBA objects. These tasks execute in separate 
address spaces on the same machine but may still connect to a CORBA object that is either located on 
the same machine or some different machine. So while the tasks created with the posix_spawn() and 
fork-exec functions will all reside on the same machine, the CORBA objects can be located on any 
machine.
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13.5.1 The CORBA Blackboard: An Example

To demonstrate our notion of a CORBA-based blackboard, we'll look at a blackboard developed at 
Ctest Laboratories. While providing a complete implementation of the blackboard is beyond the scope 
of this book and subject to other restrictions, we look closely at some of the most important aspects of 
the  blackboard  and  the  knowledge  sources  as  they  relate  to  our  architectural  approach  to  parallel 
programming. The blackboard implements a software-based course adviser. The blackboard solves the 
course scheduling problems for the typical college student. Students often encounter several obstacles 
to the perfect schedule. During course registration there is always a competition for seats in a class. At 
some point important classes are closed. So there is the infamous first-come, first-serve issue. So during 
registration where tens of thousands of students are trying to sign up for a limited number of courses, 
this timeliness is a factor. The student wishes to get courses that apply directly to the degree sought. 
Ideally these courses will be during hours that the student can attend and has open. Also, the student 
would  like  to  stay  within  a  certain  course load,  and  keep  some time open for  working and other 
extracurricular activities. The problem is that when the student is ready to take a given course, the 
course may not always be offered, so substitutes or filler classes are offered to the student instead. The 
substitutes and filler classes add to the cost and duration of the student's education. Adding to the cost 
and duration are negative outcomes from the student's vantage point. However, if the substitutes or 
filler classes are in some way related to the student's nonacademic interests, hobbies, or goals, then the 
substitutes  or  filler  classes  will  be  reluctantly  tolerated.  Also,  there  are  a  number of  electives  and 
options that can be taken under the degree sought. The student wishes to have the optimum mix of 
courses that will allow the student to graduate either early or on time, within budget, and with the most 
flexibility  possible.  The  student  uses  real-time  course  advisement  software  built  with  blackboard 
technology to solve the problem.

It is important to note that the blackboard has real-time access to the student's academic record, the 
current courses open or closed at any instant during the registration process. The blackboard has access 
to the student's degree plan, the university's requirements for the degree plan, the student availability 
schedule,  the  student's  goals,  and  so on.  Each of  these items  are  modeled  using  C++ classes  and 
CORBA classes and make up the components of the blackboard.  To keep our blackboard example 
simple, we will look only at these four knowledge sources:

• General requirements counselor

• Major requirements counselor

• Electives counselor

• Minor requirements counselor

Example 13.1 shows an excerpt from the blackboard's CORBA interface.

Example 13.1 Two CORBA declarations necessary for our blackboard class.

typedef sequence<long> courses;

interface black_board{
   //...
   void suggestionsForMajor(in courses Major);
   void suggestionsForMinor(in courses Minor);
   void suggestionsForGeneral(in courses General);
   void suggestionsForElectives(in courses Electives);
   courses currentDegreePlan();
   courses suggestedSchedule();
   //...  };
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The primary purpose of the black_board interface is to provide read/write access to the knowledge 
sources. In this case, the blackboard's partitions will include segments for each knowledge source.[2] 
This will allow the knowledge sources to access the blackboard with a CRCW policy with respect to 
each other. That is, multiple types of knowledge sources can access the blackboard at the same time, 
however, two or more knowledge sources of the same type will be restricted to a CREW policy. Any 
method or member function the knowledge sources will access should be defined in the black_board 
interface class. The class courses has been declared as a CORBA type and therefore it can be used as 
parameter and return values between the knowledge sources and the blackboard. So the black_board 
class declarations such as:

[2] In practice, each of the knowledge source segments will contain one or more standard 
C++ container classes used as data queues and event queues. Each container is made safe 
with synchronization components.

courses Minor;
courses Major;

will be used to represent information that is either being written to or read from the blackboard. The 
type courses is a CORBA typedef for sequence<long>. A sequence in CORBA is a variable-length 
vector (array). This means that courses will be used to store an array of longs. Each long will be used to 
store a course code. Each course code represents a course offered at the university. Since C++ does not 
have a sequence type, the sequence<long> declaration is mapped to a C++ class. The class has the same 
name as sequence<long> typedef: courses. The mapping process from CORBA types to C++ types 
occurs during the idl compilation phase when building a CORBA application. The idl compiler will 
translate the sequence<long> declaration into C++ code. The C++ courses class will have a number of 
method functions automatically included:

allocbuf()
freebuf()
get_buffer()
length()
operator[]
release()
replace()
maximum()

The knowledge sources  will  interact  with  these  methods.  The  sequence<long> declaration  will  be 
transparent  to  the  knowledge  sources;  they  only  see  the  class  courses.  Because  CORBA supports 
datatypes  such  as  structs,  classes,  arrays,  and  sequences,  the  knowledge  sources  can  exchange 
sophisticated objects with the blackboard. This allows the programmer to maintain the object-oriented 
metaphor when exchanging data with the blackboard. Maintaining the object-oriented metaphor where 
necessary is an important part of reducing the complexity of parallel programming. The ability to easily 
read and write complex objects or object hierarchies from the blackboard simplifies the programming in 
parallel applications. There is no need to perform the translation from primitive datatypes to complex 
objects. The complex objects may be exchanged directly.

13.5.2 The Implementation of the black_board Interface Class

Notice in Example 13.1 the interface class does not declare any variables. Recall the interface class in 
CORBA is restricted to only declaring the method interfaces. There are no storage components in the 
interface class. CORBA classes must be supplied with C++ implementations before any work can get 
done. The actual implementations of the methods and any variables are added to a derived class of the 
interface class.  Example 13.2 shows the derived (implementation) class for the black_board interface 
class.
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Example 13.2 An excerpt from the implementation class for the black_board interface class.

#include "black_board.h"
#include <set.h>

class blackboard : virtual public POA_black_board{
protected:
   //...
   set<long> SuggestionForMajor;
   set<long> SuggestionForMinor;
   set<long> SuggestionForGeneral;
   set<long> SuggestionForElective;
   courses Schedule;
   courses DegreePlan;
public:
   blackboard(void);
  ~blackboard(void);
   void suggestionsForMajor(const courses &X);
   void suggestionsForMinor(const courses &X);
   void suggestionsForGeneral(const courses &X);
   void suggestionsForElectives(const courses &X);
   courses *currentDegreePlan(void);
   courses *suggestedSchedule(void);
   //...
};

The implementation class is used to provide the actual implementations of the methods defined in the 
interface class. In addition to method implementation, the derived class may contain data components 
since it is not declared as an interface. Notice that the black_board implementation class in  Example 
13.2 does not directly inherit  the black_board interface class.  Instead it  inherits POA_black_board, 
which is one of the classes that the idl compiler created on behalf of the black_board interface class. 
Example 13.3 contains the declaration of POA_black_board created by the idl compiler.

Example 13.3 Excerpt of the POA_black_board class created by the idl compiler for the black_board interface class.

class POA_black_board : virtual public PortableServer:
                        :StaticImplementation
{
public:
   virtual ~POA_black_board ();
   black_board_ptr _this ();
   bool dispatch (CORBA::StaticServerRequest_ptr);
   virtual void invoke (CORBA::StaticServerRequest_ptr);
   virtual CORBA::Boolean _is_a (const char *);
   virtual CORBA::InterfaceDef_ptr _get_interface ();
   virtual CORBA::RepositoryId _primary_interface
                  (const PortableServer::ObjectId &,
                  PortableServer::POA_ptr);

   virtual void * _narrow_helper (const char *);
   static POA_black_board * _narrow (PortableServer::Servant);
   virtual CORBA::Object_ptr _make_stub (PortableServer::
                                        POA_ptr,
                                        CORBA::Object_ptr);
   //...
   virtual void suggestionsForMajor (const courses& Major)
                                     = 0;
   virtual void suggestionsForMinor (const courses& Minor)
                                     = 0;
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   virtual void suggestionsForGeneral (const courses& General)
                                       = 0;
   virtual void suggestionsForElectives (const courses& Electives)
                                         = 0;

   virtual courses* currentDegreePlan() = 0;
   virtual courses* suggestedSchedule() = 0;
   //...
protected:
   POA_black_board () {};
private:
   POA_black_board (const POA_black_board &);
   void operator= (const POA_black_board &);
};

Notice that the class in  Example 13.3 is an abstract virtual class because it has pure virtual member 
functions such as:

virtual courses* suggestedSchedule() = 0;

This means that this class cannot be used directly. It must have a derived class that provides actual 
member  functions  for  every  pure  virtual  member  function.  The  blackboard  class  in  Example  13.2 
provides the required definitions for each pure virtual member function. In the case of our blackboard 
class, C++ methods will be used to implement the functionality of the blackboard and invocation of the 
knowledge sources. However, the knowledge sources themselves are implemented partially in C++ and 
partially  in  the logic  programming language Prolog.[3] But  since C++ supports  multilanguage and 
multiparadigm development, the advantages of Prolog can be intermixed with C++. In C++ we can 
either spawn Prolog executables using posix_spawn(), fork-exec functions, or we can access the Prolog 
through its foreign language interface that allows Prolog to talk directly to C++ and vice versa. Whether 
the actual implementation is in C++ or Prolog, the blackboard class only has to interact  with C++ 
methods.

[3] This  configuration  is  useful  because  Prolog  has  many  features  built  in,  such  as 
unification,  backtracking,  and  support  for  predicate  logic  that  would  have  to  be 
implemented from scratch in C++. For the examples in this book where we intermix C++ 
with Prolog, SWI-Prolog (University of Amsterdam) and its C++ interface library is used.

13.5.3 Spawning the Knowledge Sources in the Blackboard's Constructor

The blackboard is implemented as a distributed object using the CORBA protocol. One of the primary 
functions of the blackboard in this case is to spawn the knowledge sources. This is important because 
the blackboard will need access to the process ids of the tasks. The initial state of the blackboard is set 
in  the  constructor.  The  initial  state  includes  information  about  the  student,  the  student's  academic 
record, the current semester, degree requirements and so on. The blackboard decides which knowledge 
sources to begin based on the initial state. As the blackboard evaluates the initial problem and state of 
the  system  it  decides  on  a  list  of  knowledge  sources  to  invoke.  Each  knowledge  source  has  an 
associated binary file. The blackboard uses a container called Solvers to store the names of the binaries 
of the knowledge sources. Later during the construction process, a function object and the for_each() 
algorithm are used to spawn the knowledge sources. Recall that any class that has the operator() defined 
can be used as a function object. Function objects are used with the standard algorithms in place of 
functions or in addition to functions. Usually where a function can be used a function object may be 
used instead. To define your own function object you must define the operator() with the appropriate 
meaning,  parameter  list,  and  return  type.  Our  CORBA  blackboard  implementation  can  support 
knowledge sources implemented within PVM tasks, traditional UNIX/Linux tasks, or within separate 

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13fn03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex03


threads  using  the  POSIX thread  libraries.  The type of  task  spawned in  the  constructor  determines 
whether the blackboard will be working with POSIX threads, traditional UNIX/Linux processes, or 
PVM tasks.

13.5.3.1 Spawning Knowledge Sources Using PVM Tasks

Part of the constructor contains the call:

for_each(Solve.begin(),Solve.end(),Task);

The for_each() algorithm applies the function object operator for the task class to each element of the 
Solve container. This technique is used to spawn knowledge sources in a MIMD model, which is used 
when the knowledge sources each have a different speciality working on different data. Example 13.4 
contains the declaration of the task class.

Example 13.4 The declaration of the task class.

class task{
   int Tid[4];
   int N;
   //...
public:
   //...
   task(void) { N = 0; }
   void operator()(string X);
};

void task::operator()(string X)
{
   int cc;
   pvm_mytid();
   cc = pvm_spawn(const_cast<char *>(X.data()),NULL,0,"",1,
                  &Tid[N]);N++;
}

blackboard::blackboard(void)
{

   task Task;

   vector<string> Solve;
   //...
   // Determine which KS to invoke
   //...
   Solve.push_back(KS1);
   Solve.push_back(KS2);
   Solve.push_back(KS3);
   Solve.push_back(KS4);
   for_each(Solve.begin(),Solve.end(),Task);
}

This Task class encapsulates a process that has been spawned. It will contain the task ids in the case of 
PVM. In the case of standard UNIX/Linux processes or Pthreads, it will contain the process ids and 
thread ids. This class acts  as an interface to the created thread or process and the blackboard. The 
blackboard acts as the primary control component. It can manage the PVM tasks through their task ids. 
Also, the blackboard can use the PVM group operations to synchronize the PVM tasks with barriers, 
organize the PVM tasks into logical groups that will work on certain aspects of the problem, and to 
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signal group members with certain message tags. Table 13-2 contains the PVM group routines and their 
descriptions.

The pvm_barrier()  and the pvm_joingroup() routines in  Table 13-2 are of particular interest  to our 
blackboard because there are situations where the blackboard does not want to launch new knowledge 
sources until a certain group of knowledge sources has finished their work. The pvm_barrier() routine 
can be used to block the calling process until the appropriate knowledge sources have finished their 
processing.  For  instance,  the  course  advisor  blackboard  does  not  want  to  activate  the  scheduler 
knowledge source until the knowledge sources that focus on major requirements, general requirements, 
minor requirements, and electives are through making their suggestions. So the blackboard will use the 
pvm_barrier() routine to wait on the PVM task group that focuses on requirements. Figure 13-5 shows a 
UML activity diagram that shows how the knowledge sources and the blackboard are synchronized.

Table 13-2. PVM Group Routines

PVM group operations Description

int pvm_joingroup(char *groupname); Enrolls the calling process in the group groupname and 
then returns an int, which is the instance number of this 
process in this group.

int pvm_lvgroup(char *groupname); Unrolls the calling process from the group groupname.

int pvm_gsive(char *groupname); Returns an int, which is the number of members in the 
group groupname.

int pvm_gettid(char *groupname,
               int inum);

Returns  an  int,  which  is  the  task  id  of  the  process 
identified  by  the  group  name  groupname  and  the 
instance number inum.

int pvm_getinst(char *groupname,
                int taskid);

Returns an int, which is the instance number associated 
with the group name group-name and the process with 
the task id taskid.

int pvm_barrier(char *groupname,
                int count);

Blocks the calling process until count members in the 
group groupname have called this function.

int pvm_bcast(char *groupname,
              int messageid);

Broadcasts  a message stored in the active send buffer 
associated  with  messageid  to  all  the  members  of  the 
group groupname.

int pvm_reduce(void *operation,
               void *buffer,
               int count,
               int datatype,
               int messageid,
               char *groupname,

Performs  a  global  operation  operation  on  all  the 
processes in the group groupname.
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PVM group operations Description

               int root);

Figure 13-5. UML activity diagram showing the synchronization of the blackboard and the knowledge sources.

In  Figure 13-5,  the synchronization barrier  is  implemented with the help of the pvm_barrier()  and 
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pvm_joingroup() routines. Example 13.5 contains the function operator of the task object.

Example 13.5 The function operator of the task object.

void task::operator()(string X)
{
   int cc;
   pvm_mytid();
   cc = pvm_spawn(const_cast<char *>(X.data()),NULL,0,"",1,
                  &Tid[N]);N++;
}

The function operator is used to spawn PVM tasks. The name of the task is contained in X.data(). The 
call to the pvm_spawn() routine in Example 13.5 creates one task and stores the task id of the task in 
Tid[N]. The pvm_spawn() routine and the invocation of PVM tasks are discussed in  Chapter 6. The 
task class is used as a function object. The algorithm:

for_each(Solve.begin(),Solve.end(),Task);

will cause the operator() to execute for the Task object. This operation will cause a knowledge source in 
the Solve container to be activated. The for_each() algorithm ensures that each knowledge source will 
be activated. If the SIMD model is used, then the for_each() algorithm is not necessary. Instead we use 
a PVM spawn call directly in the constructor of the blackboard. Example 13.6 shows how a set of PVM 
tasks using a SIMD model can be launched from the blackboard constructor.

Example 13.6 Launching PVM tasks from the task class constructor.

void task::operator()(string X)
{

   int cc;
   pvm_mytid();
   cc = pvm_spawn(const_cast<char *>(X.data()),NULL,0,"",1,
                  &Tid[N]);N++;
}

13.5.3.2 Connecting Blackboard and the Knowledge Sources

In Example 13.6, 20 knowledge sources are spawned. Initially they will each execute the same code. 
After they are spawned, the blackboard will send messages to them representing what part they are to 
play in the problem-solving process. With this configuration the knowledge sources and the blackboard 
are part of the PVM. After the knowledge sources are created, they will be able to interact with the 
blackboard by connecting to the port that the blackboard is located on, or to the address the blackboard 
is  at  on an intranet  or  the  Internet.  The knowledge sources  will  need  the object  reference for  the 
blackboard. These references may be coded within the knowledge sources, or the knowledge sources 
might read them from a configuration file, or get them from a naming service. Once the knowledge 
source has the reference the knowledge source interacts with the ORB (Object Request Broker) to 
locate the actual knowledge and activate it. For our example, we will assign the blackboard a specific 
port. We start the CORBA blackboard with a command:

blackboard -ORBIIOPAddr inet:porthos:12458

This command executes our blackboard program and assigns it to listen on port 12458 on host porthos. 
Starting a CORBA object will differ depending on the CORBA implementation used. Here we are 
using Mico,[4] an open-source implementation of CORBA. When the blackboard program executes, it 
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instantiates the blackboard that in turn spawns the knowledge sources. When the knowledge sources are 
spawned by the blackboard they will have the port number hard-coded. Example 13.7 shows an excerpt 
from a knowledge source that connects to the CORBA-based blackboard.

[4] We used Mico 2.3.3 in the Linux environment and Mico 2.3.7 under Solaris 8 for all of 
the CORBA examples in this book.

Example 13.7 A knowledge source that connects to the CORBA blackboard.

 1 #include "pvm3.h"
 2 using namespace std;
 3 #include <iostream>
 4 #include <fstream>
 5 #include <string.h>
 6 #include <strstream>
 7 #include "black_board_impl.h"
 8
 9 int main(int argc, char *argv[])
10 {
11   CORBA::ORB_var Orb = CORBA::ORB_init(argc,argv,
                                          "mico-local-orb");
12   CORBA::Object_var Obj =Orb->bind("IDL:black_board:1.0",
                                      "inet:porthos:12458");
13   courses Courses;
14   //...
15   //...
16   black_board_var BlackBoard = black_board::_narrow(Obj);
17
18   int Pid;
19   //...
20   //...
21
22   cout << "created the knowledge source" << endl;
23   Courses.length(2);
24   Courses[0] = 255551;
25   Courses[1] = 253212;
26   string FileName;
27   strstream Buffer;
28   Pid = pvm_mytid();
29   Buffer << "Result." << Pid << ends;
30   Buffer >> FileName;
31   ofstream Fout(FileName.data());
32   BlackBoard->suggestionsForMajor(Courses);
33   Fout.close();
34   pvm_exit();
35   return(0);
36 }
37

In line 11 in  Example 13.7, the ORB runtime is initalized. Line 12 associates the black_board object 
name with the port 12458 and returns a reference to the CORBA object in the Obj variable. Line 16 
performs a kind of cast operation so that the Blackboard variable is referring to the right size object. 
Once  the  knowledge  source  has  instantiated  the  Blackboard  object,  any  method  declared  in  the 
black_board  interface  shown in  Example  13.1 may be  invoked.  Notice  on  line  13  that  the  object 
Courses is instantiated. Recall that courses was originally defined as a CORBA sequence type. Here, 
the knowledge source is using the class courses created during the idl compilation. The elements are 
added to this class as they would be for an array. 
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Lines 24 and 25 add two courses to the Courses object and line 32 contains the method invocation:

BlackBoard->suggestionsForMajor(Courses)

This call writes the courses on the blackboard. Similarly, the:

courses currentDegreePlan();
courses suggestedSchedule();

methods can be used to read information from the blackboard. So all that is needed by the knowledge 
source is a reference to the Black_board object.  The Black_board object may be located anywhere 
within an intranet or the Internet. It is the ORB's responsibility to actually locate the object. (Chapter 8 
discusses the process of locating and activating CORBA objects.) Because the Black_board object has 
the PVM task ids, it may perform task management and send and receive messages directly from the 
knowledge sources. Likewise the knowledge sources may communicate directly with each other using 
the more traditional PVM messaging. It is important to note that the destructor for the Black_board 
object will call pvm_exit() and each knowledge source should call pvm_exit() after there are no more 
PVM system calls. This will remove them from the PVM environment, although other processing may 
continue.

13.5.3.3 Activating Knowledge Sources Using POSIX spawn()

Implementing the knowledge sources or problem solvers within PVM tasks is especially useful when 
the tasks will run on separate computers. Each knowledge source can take advantage of any special 
resource that a particular computer may have. These resources can include processor speed, databases, 
special peripherals, processor architectures, and numbers of processors. The PVM tasks may also be 
used  on  a  single  computer  that  has  multiple  processors.  However,  since  our  blackboard  can  be 
implemented by connecting to ports, we can just as easily use traditional UNIX/Linux processes to 
contain our  knowledge sources.  When the knowledge sources  are  created in standard UNIX/Linux 
processes and the computer has multiple processors, then the knowledge sources may run concurrently 
on the processors available. Obviously if there are more knowledge sources than there are processors, 
then multitasking will be necessary. Figure 13-6 shows two simple architectures that can be used with 
the CORBA-based blackboard and UNIX/Linux processes.

Figure 13-6. Two architectures that can be used with the CORBA-based blackboard and UNIX/Linux processes.
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In Case 1, the CORBA object is located on the same computer as the knowledge sources and each 
knowledge source has its own address space. That is, each knowledge source has been spawned using 
either the posix_spawn() routine or the fork-exec routines. In Case 2, the CORBA object is located on a 
different computer and the knowledge sources are each located on the same computer but in different 
address spaces. In both Case 1 and Case 2, the CORBA object acts as a kind of shared memory for the 
knowledge sources because they each have access to it and they may exchange information through the 
blackboard. But there is a major advantage of the CORBA object—it is far more sophisticated than a 
simple block of memory locations. The blackboard is a complete object that may consist of any type of 
data  structure,  object,  or  even  other  blackboards.  This  kind  of  sophistication  cannot  be  easily 
implemented using the basic shared memory routines. So the CORBA gives us an ideal method for 
implemented complex shared objects between processes. In  section 13.5.3.1 we spawned PVM tasks 
that  implemented  the  knowledge  sources.  Here  we  change  the  constructor  to  contain  calls  to  the 
posix_spawn() routine or we can use our for_each() algorithm and the task function object to call the 
posix_spawn() routine. In Case 1 in Figure 13-6, the blackboard can spawn the knowledge sources from 
its constructor. However, in Case 2, this is not possible because the blackboard is located on a separate 
computer. In Case 2, the blackboard will use some intermediary to cause the posix_spawn() routine to 
be executed. There are several options available such as the blackboard calling another CORBA object 
on the computer that contains the knowledge sources, or RPC, or using a MPI or PVM task that will 
call a program containing a call to posix_spawn(). Chapter 3 contains a discussion of how to set up a 
call to posix_spawn(). Example 13.8 shows how the posix_spawn() routine can be used to activate one 
of the knowledge sources.

Example 13.8 Using posix_spawn() to launch knowledge sources.

#include <spawn.h>

blackboard::blackboard(void)
{
   //...
   pid_t Pid;
   posix_spawnattr_t M;
   posix_spawn_file_actions_t N;
   posix_spawn_attr_init(&M);
   posix_spawn_file_actions_init(&N);
   char *const argv[] = {"knowledge_source1",NULL};
   posix_spawn(&Pid,"knowledge_source1",&N,&M,argv,NULL);
   //...
}

In  Example  13.8,  the  spawn  attributes  and  the  spawn  file  actions  are  initialized  and  then  the 
posix_spawn() routine is used to create a separate process that will execute knowledge_source1. Once 
this process is created the blackboard has some access to the process through the process's id stored in 
Pid. In addition to the blackboard as a means of communication, the standard IPC communication is 
available if the blackboard is located on the same computer as the knowledge sources. While sockets 
are available in the configuration where the blackboard is on a separate computer, the blackboard is the 
simplest means of communication between the knowledge sources. When using this configuration, the 
control  that  the blackboard has  over the knowledge sources  will  be governed more strictly  by the 
content of the blackboard at any given time as opposed to sending messages directly to the knowledge 
sources. Sending messages directly is more easily accommodated using the blackboard in conjunction 
with  PVM  tasks.  Here  the  knowledge  sources  regulate  themselves  based  on  the  content  of  the 
blackboard.  However,  the blackboard does have some level of control over the knowledge sources 
because the blackboard has the process ids for each process containing a knowledge source. Both the 
MPMD (MIMD)  and SPMD (SIMD) models  are  also  supported  using  the  posix_spawn()  routine. 
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Example 13.9 shows a class that will be used as a function object with the for_each() algorithm.

Example 13.9 The child_process will be used as a function object when launching knowledge sources.

class child_process{
   string Command;
   posix_spawnattr_t M;
   posix_spawn_file_actions_t N;
   pid_t Pid;
   //...
public:
   child_process(void);
   void operator()(string X);
   void spawn(string X);
};

void child_process::operator()(string X)
{
   //...
   posix_spawnattr_init(&M);
   posix_spawn_file_actions_init(&N);
   Command.append("/tmp/");
   Command.append(X);
   char *const argv[] = {const_cast<char*>(Command.data())
                         ,NULL};
   posix_spawn(&Pid,Command.data(),&N,&M,argv,NULL);
   Command.erase(Command.begin(),Command.end());
   //...

}

We  encapsulate  the  attributes  for  the  posix_spawn()  routine  in  a  class  named  child_process. 
Encapsulating all of the information needed to use the posix_spawn() routine within a class makes it 
easier to use posix_spawn() and provides a natural interface to the attributes of a process that will be 
created  using  posix_spawn().  Notice  in  Example  13.9 that  we  defined  the  operator  ()  for  the 
child_process class. This means that the class can be used as a function object with the for_each() 
algorithm. As the blackboard decides which knowledge sources will be involved in a problem-solving 
effort,  it  stores the name of the knowledge sources in a container we call  Solve.  Later,  during the 
construction of the blackboard, the knowledge sources are activated using the for_each() algorithm.

// Constructor
//...
child_process Task;
for_each(Solve.begin(),Solve.end(),Task);

This will cause the operator() method shown in Example 13.9 to be executed for each element of the 
Solve container. Once these knowledge sources are activated, they access a reference to the blackboard 
and can begin the problem-solving process. Although these are not PVM tasks they connect to the 
blackboard in the same manner (see section 13.5.3.2) and they perform the work in the same manner. 
The difference is  the interprocess communication between standard UNIX/Linux processes and the 
interprocess communication that is possible using the PVM environment. Also, the PVM tasks may be 
located  on  separate  computers.  While  processes  created  with  posix_spawn()  exist  on  the  same 
computer.  If  processes created by either posix_spawn() or the fork-exec routines are to be used in 
conjunction with the SIMD model, then the argc and argv parameters can be used in addition to the 
blackboard to assign the knowledge sources a specific area of the problem to solve. In the case where 
the blackboard is on the same computer as the knowledge sources and the blackboard activates the 
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knowledge sources in its constructor, then technically the blackboard is the parent of the knowledge 
sources  and  the  knowledge  sources  will  inherit  the  environment  variables  of  the  blackboard.  The 
environment variables of the blackboard are an additional method that can be used to pass information 
to the knowledge sources. These environment variables can be easily manipulated using the:

#include <stdlib.h>
//...
setenv();
unsetenv();
putenv();

routines. When the knowledge sources are implemented in processes that were created using either 
posix_spawn() or the fork-exec routines, the programs look like regular CORBA programs and can take 
advantage of all of the facilities that the CORBA protocol has to offer.

Figure 13-4. Control configurations and their layers in the blackboard architecture.



Note  the  configuration  in  Figure  13-4 contains  the  control  within  the  blackboard  as  opposed to  a 
separate  module or knowledge source.  In this  configuration,  the control  is  designed as  part  of the 
blackboard class. Since a two-way communication is needed in Layer 2 and Layer 3, it is convenient to 
have the blackboard spawn the processes or threads that will contain the knowledge sources. If the 
blackboard spawns the processes or threads it will have easy access to the thread ids or process ids. This 
will allow the blackboard to easily broadcast messages to the knowledge sources, and perform process 
and thread management. When the blackboard needs to terminate a knowledge source for some reason, 
access to the thread id or process id will make this easy. Notice if Figure 13-4 that one of the options is 
to have the control external to the blackboard and the knowledge sources. If this configuration is used, 
thread ids and process ids must be communicated explicitly to the control modules.

13.6 Implementing the Blackboard Using Global Objects

The choice of a CORBA-based blackboard is a natural choice when the knowledge sources will be 
implemented within an intranet or the Internet environment or when the knowledge sources will be 
implemented in separate processes for purposes of modularity,  encapsulation,  and so on. However, 
distributed blackboards are not always necessary.  In the case where the knowledge sources can be 
implemented within the same process and on the same computer, multiple threads provide a superior 
solution  because  they  will  be  faster,  have  less  overhead,  and  are  easier  to  use  and  set  up.  The 
communication between multiple  threads is  also easier  because the threads share the same address 
space and can use global variables. In fact, with threads the blackboard will be instantiated as a global 
object  available  to  all  of  the  threads  within  the  process.  There  is  no  need  for  inter-process 
communication,  socket  communication,  or  any  other  kind  of  network  communication  when  the 
knowledge sources are implemented as threads within a single program. Also, the added layer of the 
CORBA protocol  is  not necessary and the objects  may be designed as regular C++ classes.  If  the 
program is running on a machine that has multiple processors, then the threads may run concurrently on 
as many processors as are available. The thread's configuration of the blackboard is very attractive in 
SMP and MPP systems. In general, threads will have the best performance. Threads are often referred 
to as lightweight processes because they don't require the same overhead as traditional UNIX/Linux 
processes.  The  POSIX threads  (Pthreads)  library  offers  virtually  everything  needed for  knowledge 
source  creation  and  management.  Figure  13-7 contrasts  the  three  basic  configurations  for  process 
distributions for blackboards and knowledge sources.
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Figure 13-7. Contrasts of the three basic configurations for process distribution for blackboards and knowledge 
sources.

Because the blackboard is implemented within a multithread environment, then Pthread mutexes and 
condition variables may be used to synchronize access to the blackboard. Of course the mutexes and 
condition variables should be encapsulated within interface classes, as discussed in Chapter 11. Also, 
pthread_cond_signal() and pthread_cond_broadcast() can be used to coordinate and synchronize the 
work that the knowledge sources are performing. Since the blackboard creates the threads it will have 
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easy access to the thread id of each knowledge source. This means the blackboard can cancel a thread if 
necessary  with  pthread_cancel().  Also,  the  blackboard  will  be  able  to  synchronize  on  the  various 
knowledge sources using the pthread_join() routine. In addition to the performance and ease-of-use 
advantages  of  threads  and  global  blackboards,  there  is  also  the  issue  of  error  and  exception 
management. In general, it is easier to deal with errors and exceptions within the same process than 
between different processes, and with errors on the same machine than between different machines. 
Figure 13-8 shows the exception and error level difficulty when handling errors and difficulties within a 
program.

Figure 13-8. The exception and error level difficulty.

Since the knowledge sources are implemented within separate threads within the same process, any 
errors or exceptions that occur will be at Level 2. Whenever programs that require concurrency are 
designed and developed, the complexity of handling and recovering from errors and exceptions must be 
considered. The blackboard implemented as a global object and the knowledge sources implemented as 
threads are the simplest architecture when using the blackboard model for concurrency. Example 13.10 
contains an excerpt declaration from our course advisor blackboard.

Example 13.10 An excerpt from the course advisor blackboard designed for a threaded environment.

class blackboard{
protected:
   //...
   set<long> SuggestionForMajor;
   set<long> SuggestionForMinor;
   set<long> SuggestionForGeneral;
   set<long> SuggestionForElective;
   set<long> Schedule;
   set<long> DegreePlan;
   mutex Mutex[10];
   //...
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public:
   blackboard(void);
  ~blackboard(void);
   void suggestionsForMajor(set<long> &X);
   void suggestionsForMinor(set<long> &X);
   void suggestionsForGeneral(set<long> &X);
   void suggestionsForElectives(set<long> &X);
   set<long> currentDegreePlan(void);
   set<long> suggestedSchedule(void);
   //...
};

This blackboard class is designed to be instantiated as a global object accessible to all the threads within 
a program. Notice that the blackboard class in Example 13.10 has an array of mutexes. These mutexes 
will be used to protect the critical sections within the blackboard. The knowledge sources are virtually 
unaware of the synchronized access to the critical sections because the synchronization is encapsulated 
within the blackboard.

13.7 Activating Knowledge Sources Using Pthreads

The knowledge sources are implemented within separate threads. The blackboard's constructor creates 
the threads and assigns each thread a specific knowledge source. This gives the blackboard its MIMD 
model. Example 13.11 contains part of the constructor for the blackboard.

Example 13.11 The blackboard's constructor used to create the threads that will contain the knowledge sources.

blackboard::blackboard(void)
{
    pthread_t Tid[4];
    //...
    try{
          pthread_create(&Tid[0],NULL,suggestionForMajor,
                         NULL);
          pthread_create(&Tid[1],NULL,suggestionForMinor,
                         NULL);
          pthread_create(&Tid[2],NULL,suggestionForGeneral,
                         NULL);
          pthread_create(&Tid[3],NULL,suggestionForElective,
                         NULL);
          pthread_join(Tid[0],NULL);
          pthread_join(Tid[1],NULL);
          pthread_join(Tid[2],NULL);
          pthread_join(Tid[3],NULL);
    }

    //...
}

Notice that the constructor calls the pthread_join() routine. This causes the constructor to wait for these 
four  threads  to  terminate  before  it  continues.  These  threads  can  be  activated  from other  member 
functions  of  the  blackboard.  However,  the  particular  processing  these  knowledge  sources  are 
performing for the constructor is a preliminary kind of initialization for the blackboard, so it is totally 
appropriate for the blackboard to wait on these threads before it continues to construct the object. This 
technique of creating threads within the constructor also raises error handling and exception handling 
issues. What happens if the threads fail for some reason? Since constructors don't have return values, 
exception handling must be used.
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Each thread is associated with a function. In this case:

void *suggestionForMajor(void *X);
void *suggestionForMinor(void *X);
void *suggestionForGeneral(void *X);
void *suggestionForElective(void *X);

These  four  functions  are  used  by  the  threads  to  implement  the  functionality  of  these  particular 
knowledge sources. Since the blackboard is a global object,  each of these functions has immediate 
access  to the blackboard's  member functions.  So the knowledge sources  may call  the blackboard's 
member functions directly, such as:

//...
Combination.generateCombinations(1,9,Courses);
Result = Combination.element(9);
//...
Blackboard.suggestionsForMinor(Value);
//...

Since some divisions of the blackboard are restricted to a particular knowledge source, these divisions 
of the blackboard may be accessed using CRCW policies, as shown in Figure 13-9.

Figure 13-9. The four knowledge sources may concurrently read and write their section of the blackboard.

The type of parallelism shown in  Figure 13-9 is a natural scheme in blackboard systems because the 
blackboard is often divided into sections, with each section referring to a certain part of the problem or 
subproblem.  There  is  typically  one  knowledge source  per  problem area,  so these  sections  may be 
accessed concurrently.
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Summary

The  blackboard  model  supports  concurrency.  The  concurrency  is  inherent  in  the  structure  of  the 
blackboard and the relationship between the blackboard and the knowledge sources and between the 
knowledge sources and each other. The blackboard is a problem-solving model. The problem is divided 
up into knowledge-specific areas. Each area is assigned a knowledge source or problem solver. The 
knowledge sources and problem solvers are typically self-contained and require little interaction with 
the other  knowledge sources.  The communication that  is  necessary occurs through the blackboard. 
Therefore, the knowledge sources and problem solvers serve to modularize the processing within the 
program. These modules can be treated separately and they can execute concurrently without complex 
synchronization  needs.  The  blackboard  may  be  implemented  using  CORBA  objects.  When  the 
blackboard  is  implemented  as  CORBA  objects,  the  knowledge  sources  can  be  distributed  across 
intranets or the Internet. The blackboard acts as a kind of shared distributed memory for tasks within a 
PVM-type  environment.  The  blackboard  model  easily  supports  MPMD  (MIMD)  and  the  SPMD 
(SIMD) model. The concept of the blackboard motivates the designer to break down the work that a 
program needs to do along knowledge lines. This results in the program having a WBS of knowledge 
specialists. The blackboard will contain software models of the problem domain and the solution space. 
These software models help the designer and developer to discover any parallelism that is necessary 
within a program that will be implemented. Alongside of the classic client-server model of distributed 
programming the blackboard model is one of the most powerful models available for both distributed 
and parallel  programming. The knowledge sources or problem solvers in the blackboard model are 
often implemented as agents. In the next chapter we will take a closer look at how to implement agents 
and how to deploy multiagent systems to achieve concurrency.

Appendix A. Diagrams
This appendix provides a quick reference to the UML diagrams used throughout this book. The UML 
(United Modeling Language) is a graphical notation used to design, visualize, model, and document the 
artifacts  of a software system. It  is  the de facto standard for communicating and modeling object-
oriented systems. The modeling language uses symbols and notations to represent the artifacts of a 
software  system  from  different  views  and  different  focuses.  Although  there  are  other  graphical 
notations and artifacts used in this book, this appendix provides a quick way the reader can become 
familiar with the basic UML notations and symbols they may require in documenting their software 
systems.

A.1 Class and Object Diagrams

Class and object diagrams are the most common diagrams used in modeling an object-oriented system. 
Class diagrams can be use to represent each type of class in your system, including template classes and 
interface classes. Class diagrams can include the details of the class (e.g., attributes, services). Class and 
object  diagrams  can  show  the  datatype,  value  of  variables,  and  return  types  of  functions.  Object 
diagrams can show the object name. Both types of diagrams can depict the number of classes or objects 
used in the system along with their relationships between classes and objects.



Figure  A-1.  The multiple  ways a class  or  object  can  be  represented.  Classes  can  show services,  attributes,  and 
visibility. Active classes or objects use a heavier line.

Figure  A-2.  Multiple  instances  of  classes  and objects.  Multiple  instances  can  be  shown graphically  or  by  using 
multiplicity notation.

Figure A-3. The ways to represent bound or unbound template or parameterized classes.



A.2 Interaction Diagrams

Interaction  diagrams  show  the  interaction  between  objects.  It  consists  of  a  set  of  objects,  their 
relationship, and the messages exchanged between them. Interaction diagrams include collaboration, 
sequence, and activity diagrams.

A.2.1 Collaboration Diagrams

Collaboration diagrams are used to show a set of objects working together to perform some work. The 
collaboration in the system is a temporary cooperation between a set of objects. Collaboration diagrams 
can depict the organization of the collaboration or can depict the structure of the collaboration. This 
involves showing all the objects in the set, their links, and the messages sent and received between 
them.

A.2.2 Sequence Diagrams

Sequence diagrams are used to emphasize the time ordering of messages received and sent by objects in 
a system.

Figure A-4. The ways to represent an interface class. An interface class can be represented using a lollipop symbol or 
as a regular class displaying the <<interface>> stereotype. The relationship between the interface class 
and the realization of the class can also be depicted.



Figure A-5. The ways to represent single and multiple inheritance. There are two target styles that can be used when 
multiple classes are involved in a relationship: shared and separate. With the shared target style, multiple 
classes are tied to a single inheritance symbol that points to the target class. With the separate target 
style, each class has its own inheritance symbol.



A.2.3 Activity Diagrams

Activity  diagrams  show  the  flow  of  control  from  one  activity  to  another.  Activities  are  actions 
performed  by  objects.  Actions  include  processing  input/output,  creating  or  destroying  objects,  or 
performing computations. Activity diagrams are similar to flowcharts.

Figure A-6. Examples of the multiple relationships that can be depicted in a class diagram. Multiplicity notation can 
be used to show the number of instances between classes and objects.



Figure A-7. A collaboration diagram showing the organization of collaborations within a system and the structural 
relationship of objects within a collaboration.

Figure A-8. A sequence diagram is used to emphasize the time ordering of messages passed between objects. The 
active objects are placed at the top on the x-axis of the diagram. The messages passed between the objects 
are  placed  on  the  y-axis  of  the  diagram.  The  diagram  can  depict  synchronous  and  asynchronous 
messaging. The time ordering of messages is demonstrated by reading the messages from top to bottom 
along the y-axis.



Figure A-9. Activity diagrams show the action of objects as it flows from the focus of control of one object to another. 
It depicts the forking of multiple flows of control (concurrency) and joining of flows of control with a 
synchronization bar. Swimlanes are used to show which object is performing the action. Transitions may 
cut across swimlanes. A synchronization bar may also cut across swimlanes, indicating multiple flows of 
control reside in different objects performing actions concurrently.



A.3 State Diagrams

A state diagram is used to emphasize the state of objects and their transitions to those states. A state is a 
condition that an object occupies at some point in its lifetime. An object can be transformed into many 
different states in its lifetime. The objects transform into a state if some condition is met, some action is 
performed, or some event has taken place.

Figure A-10. State diagrams show the states and transitions of an object during its lifetime. A state diagram has an 
initial state and a final state. A state has several parts. States can also be a composite of other states or 

even another state diagram. Substates that execute in parallel within a single entity are called concurrent 
substates.



A.4 Package Diagrams

Package diagrams are used to organize entities into groups.

Figure A-11. Package diagrams can be used to organize elements of a system. The stereotypes <<system>> or 
<<subsystem>> can be used. The tab on the left can hold the name of the package if the package contains 

other entities.
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