

Parallel and Distributed Programming Using C++
By Cameron Hughes , Tracey Hughes

Publisher: Addison Wesley
Pub Date: August 25, 2003

ISBN: 0-13-101376-9
Pages: 720

Parallel and Distributed Programming Using C++ provides an up-close look at how to build software
that can take advantage of multiprocessor computers. Simple approaches for programming parallel
virtual machines are presented, and the basics of cluster application development are explained.
Through an easy-to-understand overview of multithreaded programming, this book also shows you how
to write software components that work together over a network to solve problems and do work.

Parallel and Distributed Programming Using C++ provides an architectural approach to parallel
programming for computer programmers, software developers, designers, researchers, and software
architects. It will also be useful for computer science students.

Copyright
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special
sales. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

 International Sales
 (317) 581-3793
 international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

A CIP catalog record for this book can be obtained from the Library of Congress.

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

http://www.informit.com/safari/author_bio.asp?ISBN=0131013769
http://www.awprofessional.com/
mailto:international@pearsontechgroup.com
mailto:corpsales@pearsontechgroup.com
http://www.informit.com/safari/author_bio.asp?ISBN=0131013769
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_pref01.htm

For information on obtaining permission for use of material from this work, please submit a written
request to:

 Pearson Education, Inc.
 Rights and Contracts Department
 75 Arlington Street, Suite 300
 Boston, MA 02116
 Fax: (617) 848-7047

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10 First printing, June 2003

Dedication

This book is dedicated to all the code warriors, white hat hackers, midnight engineers, and countless
volunteers who have tirelessly given their skill, talent, experience, and time to make the open-source
movement a reality and the Linux revolution possible. Without their tremendous contributions, the
software needed to explore cluster programming, MPP programming, SMP programming, and
distributed programming would simply not be as widely accessible and available to everyone in the
world as it now is.

Preface
We present an architectural approach to distributed and parallel programming using the C++ language.
Particular attention is paid to how the C++ standard library, algorithms, and container classes behave in
distributed and parallel environments. Methods for extending the C++ language through class libraries
and function libraries to accomplish distributed and parallel programming tasks are explained.
Emphasis is placed on how C++ works with the new POSIX and Single UNIX standards for
multithreading. Combining C++ executables with other language executables to achieve multilingual
solutions to distributed or parallel programming problems is also discussed. Several methods of
organizing software that support parallel and distributed programming are introduced.

We demonstrate how to remove the fundamental obstacles to concurrency. The notion of emergent
parallelization is explored. Our focus is not on optimization techniques, hardware specifics,
performance comparisons, or on trying to apply parallel programming techniques to complex scientific
or mathematical algorithms; rather, on how to structure computer programs and software systems to
take advantage of opportunities for parallelization. Furthermore, we acquaint the reader with a
multiparadigm approach to solving some of the problems that are inherent with distributed and parallel
programming. Effective solutions to these problems often require a mix of several software design and
engineering approaches. For instance, we deploy object-oriented programming techniques to tackle data
race and synchronization problems. We use agent-oriented architectures to deal with multi-process and
multithread management. Blackboards are used to minimize communication issues. In addition to
object-oriented, agent-oriented, and AI-oriented programming, we use parameterized programming to
implement generalized algorithms that are suitable where concurrency is required. Our experience with
the development of software of all sizes and shapes has led us to believe that successful software design
and implementation demands versatility. The suggestions, ideas, and solutions we present in this book
reflect that experience.

The Challenges

There are three basic challenges to writing parallel or distributed programs:

1. Identifying the natural parallelism that occurs within the context of a problem domain.

2. Dividing the software appropriately into two or more tasks that can be performed at the same
time to accomplish the required parallelism.

3. Coordinating those tasks so that the software correctly and efficiently does what it is supposed
to do.

These three challenges are accompanied by the following obstacles to concurrency:

Data race Deadlock detection

Partial failure Latency

Deadlock Communication failures

Termination detection Lack of global state

Multiple clock problem Protocol mismatch

Localized errors Lack of centralized resource allocation

This book explains what these obstacles are, why they occur, and how they can be managed.

Finally, several of the mechanisms we use for concurrency use TCP/IP as a protocol. Specifically the
MPI (Message Passing Interface) library, PVM (Parallel Virtual Machine) library, and the MICO
(CORBA) library. This allows our approaches to be used in an Internet/Intranet environment, which
means that programs cooperating in parallel may be executing at different sites on the Internet or a
corporate intranet and communicating through message passing. Many of the ideas serve as foundations
for infrastructure of Web services. In addition to the MPI and PVM routines, the CORBA objects we
use can communicate from different servers accross the Internet. These components can be used to
provide a variety of Internet/intranet services.

The Approach

We advocate a component approach to the challenges and obstacles found in distributed and parallel
programming. Our primary objective is to use framework classes as building blocks for concurrency.
The framework classes are supported by object-oriented mutexes, semaphores, pipes, and sockets. The
complexity of task synchronization and communication is significantly reduced through the use of
interface classes. We deploy agent-driven threads and processes to facilitate thread and process
management. Our primary approach to a global state and its related problems involve the use of
blackboards. We combine agent-oriented and object-oriented architectures to accomplish
multiparadigm solutions. Our multiparadigm approach is made possible using the support C++ has for
object-oriented programming, parameterized programming, and structured programming.

Why C++?

There are C++ compilers available for virtually every platform and operating environment. The ANSI
(American National Standards Institute) and ISO (International Standard Organization) have defined
standards for the C++ language and its library. There are robust open-source implementations as well as

commercial implementations of the language. The language has been widely adopted by researchers,
designers, and professional developers around the world. The C++ language has been used to solve
problems of all sizes and shapes from device drivers to large-scale industrial applications. The language
supports a multiparadigm approach to software development and libraries that add parallel and
distributed programming capabilities are readily available.

Libraries for Parallel and Distributed Programming

The MPICH, an implementation of MPI, the PVM library, and the Pthreads (POSIX Threads) library,
are used to implement parallel programming using C++. MICO, a C++ implementation of the CORBA
standard, is used to achieve distrbuted programming. The C++ Standard Library, in combination with
CORBA and the Pthreads library, provides the support for agent-oriented and blackboard programming
concepts that are discussed in this book.

The New Single UNIX Specification Standard

The new Single UNIX Specification Standard, Version 3, a joint effort between IEEE and the Open
Group, was finalized and released in December 2001. The new Single UNIX Specification
encompasses the POSIX standards and promotes portability for application programmers. It was
designed to give software developers a single set of APIs to be supported by every UNIX system. It
provides a reliable road map of standards for programmers who need to write multitasking and
multithreading applications. In this book we rely on the Single UNIX Specification Standard for our
discussions on process creations, process management, the Pthreads library, the new posix_spawn()
routines, the POSIX semaphores, and FIFOs. Appendix B in this book contains excerpts from the
standard that can be used as a reference to the material that we present.

Who is This Book For?

This book is written for software designers, software developers, application programmers, researchers,
educators, and students who need an introduction to parallel and distributed programming using the C+
+ language. A modest knowledge of the C++ language and standard C++ class libraries is required.
This book is not intended as a tutorial on programming in C++ or object-oriented programming. It is
assumed that the reader will have a basic understanding of object-oriented programming techniques
such as encapsulation, inheritance, and polymorphism. This book introduces the basics of parallel and
distributed programming in the context of C++.

Development Environments Supported

The examples and programs presented in this book were developed and tested in the Linux and UNIX
environments, specifically with Solaris 8, Aix, and Linux (SuSE, Red Hat). The PVM and MPI code
was developed and tested on a 32-node Linux-based cluster. Many of the programs were tested on Sun
Enterprise 450s. We used Sun's C++ Workshop, The Portland Group's C++ compiler, and GNU C++.
Most examples will run in both the UNIX and Linux environments. In the cases where an example will
not run in both environments, this fact is noted in the Program Profiles that are provided for all the
complete program examples in the book

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_app02.htm#app02

Ancillaries

UML Diagrams

Many of the diagrams in this book use the UML (Unified Modeling Language) standard. In particular,
activity diagrams, deployment diagrams, class diagrams, the state diagrams are used to describe
important concurrency architectures and class relationships. Although a knowledge of the UML is not
necessary, familarity is helpful. Appendix A contains an explanation and description of the UML
symbols and language that we use in this book.

Program Profiles

Each complete program in the book is accompanied by a program profile. The profile will contain
implementation specifics such as headers required, libraries required, compile instructions, and link
instructions. The profile also includes a Notes section that will contain any special considerations that
need to be taken when executing the program. Code that is not accompanied by a profile is meant for
exposition purposes only.

Sidebars

We made every attempt to stay away from notation that is too theoretical for a introductory book such
as this one. However, in some cases the theoretical or mathematical notation was unavoidable. In those
cases we use the notation but we provide a detailed explanation of the notation in a sidebar.

Testing and Code Reliability

Although all examples and applications in this book were tested to ensure correctness, we make no
warranties that the programs contained in this book are free of defects or error, are consistent with any
particular standard or merchantability, or will meet your requirement for any particular application.
They should not be relied upon for solving problems whose incorrect solution could result in injury to
person or loss of property. The authors and publishers disclaim all liability for direct or consequential
damages resulting from your use of the examples, programs, or applications present in this book.

Acknowledgments

We could not have successfully pulled this project off without the help, suggestions, constructive
criticisms, and resources of many of our friends and colleagues. In particular, we would like to thank
Terry Lewis and Doug Johnson from OSC (Ohio Super-Computing) for providing us with complete
access to a 32-node Linux-based cluster. To Mark Welton from YSU for his expertise and help with
configuring the cluster to support our PVM and MPI programs. To Sal Sanders from YSU for providing
us with access to Power-PCs running Mac OSX and Adobe Illustrator. To Brian Nelson from YSU for
allowing us to test many of our multithreaded and distributed programs on multiprocessor Sun E-250s
and E-450s. We are also indebted to Mary Ann Johnson and Jeffrey Trimble from YSU MAAG for
helping us locate and hold on to the technical references we required. Claudio M. Stanziola, Paulette
Goldweber, and Jacqueline Hansson from the IEEE Standards and Licensing and Contracts Office for
obtaining permission to reprint parts of the new Single-UNIX/POSIX standard; Andrew Josey and
Gene Pierce from The Open Group was also helpful in this regard. Thanks to Trevor Watkins of the Z-
Group for all his help with the testing of the program examples; his multi-Linux distribution
environment was especially important in the testing process. A special thanks to Steve Tarasweki for
agreeing to provide a technical review for this book while it was in its roughest form. To Dr. Eugene

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_app01.htm#app01

Santos for pointing us in the right direction as we explored how categorical data structures could be
used with PVMs. To Dr. Mike Crescimanno from the Advanced Computing Work Group at YSU for
allowing us to present some of the materials from this book at one of the ACWG meetings. Finally, to
Paul Petralia and the production team (especially Gail Cocker-Bogusz) from Prentice Hall who had to
put up with all of our missed deadlines and strange UNIX/Linux file formats—we are extremely
indebted to their patience, encouragement, enthusiasm, and professionalism.

Chapter 1. The Joys of Concurrent Programming
"I suspect that concurrency is best supported by a library and that such a library can be
implemented without major language extensions."

—Bjarne Stroustrup, inventor of C++

In this Chapter

• What is Concurrency?

• The Benefits of Parallel Programming

• The Benefits of Distributed Programming

• The Minimal Effort Required

• The Basic Layers of Software Concurrency

• No Keyword Support for Parallelism in C++

• Programming Environments for Parallel and Distributed Programming

• Summary—Toward Concurrency

The software development process now requires a working knowledge of parallel and distributed
programming. The requirement for a piece of software to work properly over the Internet, on an
intranet, or over some network is almost universal. Once the piece of software is deployed in one or
more of these environments it is subjected to the most rigorous of performance demands. The user
wants instantaneous and reliable results. In many situations the user wants the software to satisfy many
requests at the same time. The capability to perform multiple simultaneous downloads of software and
data from the Internet is a typical expectation of the user. Software designed to broadcast video must
also be able to render graphics and digitally process sound seamlessly and without interruption. Web
server software is often subjected to hundreds of thousands of hits per day. It is not uncommon for
frequently used e-mail servers to be forced to survive the stress of a million sent and received messages
during business hours. And it's not just the quantity of the messages that can require tremendous work,
it's also the content. For instance, data transmissions containing digitized music, movies, or graphics
devour network bandwidth and can inflict a serious penalty on server software that has not been
properly designed. The typical computing environment is networked and the computers involved have
multiple processors. The more the software does, the more it is required to do. To meet the minimal
user's requirements, today's software must work harder and smarter. Software must be designed to take
advantage of computers that have multiple processors. Since networked computers are more the rule
than the exception, software must be designed to correctly and effectively run, with some of its pieces
executing simultaneously on different computers. In some cases, the different computers have totally
different operating systems with different network protocols! To accommodate these realities, a
software development repertoire must include techniques for implementing concurrency through
parallel and distributed programming.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec8.htm#ch01lev1sec8
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec7.htm#ch01lev1sec7
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec6.htm#ch01lev1sec6
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec5.htm#ch01lev1sec5
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec4.htm#ch01lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec3.htm#ch01lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec2.htm#ch01lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec1.htm#ch01lev1sec1

1.1 What is Concurrency?

Two events are said to be concurrent if they occur within the same time interval. Two or more tasks
executing over the same time interval are said to execute concurrently. For our purposes, concurrent
doesn't necessarily mean at the same exact instant. For example, two tasks may occur concurrently
within the same second but with each task executing within different fractions of the second. The first
task may execute for the first tenth of the second and pause, the second task may execute for the next
tenth of the second and pause, the first task may start again executing in the third tenth of a second, and
so on. Each task may alternate executing. However, the length of a second is so short that it appears that
both tasks are executing simultaneously. We may extend this notion to longer time intervals. Two
programs performing some task within the same hour continuously make progress of the task during
that hour, although they may or may not be executing at the same exact instant. We say that the two
programs are executing concurrently for that hour. Tasks that exist at the same time and perform in the
same time period are concurrent. Concurrent tasks can execute in a single or multiprocessing
environment. In a single processing environment, concurrent tasks exist at the same time and execute
within the same time period by context switching. In a multiprocessor environment, if enough
processors are free, concurrent tasks may execute at the same instant over the same time period. The
determining factor for what makes an acceptable time period for concurrency is relative to the
application.

Concurrency techniques are used to allow a computer program to do more work over the same time
period or time interval. Rather than designing the program to do one task at a time, the program is
broken down in such a way that some of the tasks can be executed concurrently. In some situations,
doing more work over the same time period is not the goal. Rather, simplifying the programming
solution is the goal. Sometimes it makes more sense to think of the solution to the problem as a set of
concurrently executed tasks. For instance, the solution to the problem of losing weight is best thought
of as concurrently executed tasks: diet and exercise. That is, the improved diet and exercise regimen are
supposed to occur over the same time interval (not necessarily at the same instant). It is typically not
very beneficial to do one during one time period and the other within a totally different time period. The
concurrency of both processes is the natural form of the solution. Sometimes concurrency is used to
make software faster or get done with its work sooner. Sometimes concurrency is used to make
software do more work over the same interval where speed is secondary to capacity. For instance, some
web sites want customers to stay logged on as long as possible. So it's not how fast they can get the
customers on and off of the site that is the concern—it's how many customers the site can support
concurrently. So the goal of the software design is to handle as many connections as possible for as
long a time period as possible. Finally, concurrency can be used to make the software simpler. Often,
one long, complicated sequence of operations can be implemented easier as a series of small,
concurrently executing operations. Whether concurrency is used to make the software faster, handle
larger loads, or simplify the programming solution, the main object is software improvement using
concurrency to make the software better.

1.1.1 The Two Basic Approaches to Achieving Concurrency

Parallel programming and distributed programming are two basic approaches for achieving concurrency
with a piece of software. They are two different programming paradigms that sometimes intersect.
Parallel programming techniques assign the work a program has to do to two or more processors within
a single physical or a single virtual computer. Distributed programming techniques assign the work a
program has to do to two or more processes—where the processes may or may not exist on the same
computer. That is, the parts of a distributed program often run on different computers connected by a
network or at least in different processes. A program that contains parallelism executes on the same
physical or virtual computer. The parallelism within a program may be divided into processes or

threads. We discuss processes in Chapter 3 and threads in Chapter 4. For our purposes, distributed
programs can only be divided into processes. Multithreading is restricted to parallelism. Technically,
parallel programs are sometimes distributed, as is the case with PVM (Parallel Virtual Machine)
programming. Distributed programming is sometimes used to implement parallelism, as is the case with
MPI (Message Passing Interface) programming. However, not all distributed programs involve
parallelism. The parts of a distributed program may execute at different instances and over different
time periods. For instance, a software calendar program might be divided into two parts: One part
provides the user with a calendar and a method for recording important appointments and the other part
provides the user with a set of alarms for each different type of appointment. The user schedules the
appointments using part of the software, and the other part of the software executes separately at a
different time. The alarms and the scheduling component together make a single application, but they
are divided into two separately executing parts. In pure parallelism, the concurrently executing parts are
all components of the same program. In distributed programs, the parts are usually implemented as
separate programs. Figure 1-1 shows the typical architecture for a parallel and distributed program.

Figure 1-1. Typical architecture for a parallel and distributed program.

The parallel application in Figure 1-1 consists of one program divided into four tasks. Each task
executes on a separate processor, therefore, each task may execute simultaneously. The tasks can be
implemented by either a process or a thread. On the other hand, the distributed application in Figure 1-1
consists of three separate programs with each program executing on a separate computer. Program 3
consists of two separate parts that execute on the same computer. Although Task A and D of Program 3
are on the same computer, they are distributed because they are implemented by two separate processes.
Tasks within a parallel program are more tightly coupled than tasks within a distributed program. In
general, processors associated with distributed programs are on different computers, whereas processors

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec1.htm#ch01fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec1.htm#ch01fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec1.htm#ch01fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04.htm#ch04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03

associated with programs that involve parallelism are on the same computer. Of course, there are hybrid
programs that are both parallel and distributed. These hybrid combinations are becoming the norm.

1.2 The Benefits of Parallel Programming

Programs that are properly designed to take advantage of parallelism can execute faster than their
sequential counterparts, which is a market advantage. In other cases the speed is used to save lives. In
these cases faster equates to better. The solutions to certain problems are represented more naturally as
a collection of simultaneously executing tasks. This is especially the case in many areas of scientific,
mathematical, and artificial intelligence programming. This means that parallel programming
techniques can save the software developer work in some situations by allowing the developer to
directly implement data structures, algorithms, and heuristics developed by researchers. Specialized
hardware can be exploited. For instance, in high-end multimedia programs the logic can be distributed
to specialized processors for increased performance, such as specialized graphics chips, digital sound
processors, and specialized math processors. These processors can usually be accessed simultaneously.
Computers with MPP (Massively Parallel Processors) have hundreds, sometimes thousands of
processors and can be used to solve problems that simply cannot realistically be solved using sequential
methods. With MPP computers, it's the combination of fast with pure brute force that makes the
impossible possible. In this category would fall environmental modeling, space exploration, and several
areas in biological research such as the Human Genome Project. Further parallel programming
techniques open the door to certain software architectures that are specifically designed for parallel
environments. For example, there are certain multiagent and blackboard architectures designed
specifically for a parallel processor environment.

1.2.1 The Simplest Parallel Model (PRAM)

The easiest method for approaching the basic concepts in parallel programming is through the use of
the PRAM (Parallel Random Access Machine). The PRAM is a simplified theoretical model where
there are n processors labeled as P1, P2, P3, ... Pn and each processor shares one global memory. Figure

1-2 shows a simple PRAM.

Figure 1-2. A Simple PRAM.

All the processors have read and write access to a shared global memory. In the PRAM the access can
be simultaneous. The assumption is that each processor can perform various arithmetic and logical
operations in parallel. Also, each of the theoretical processors in Figure 1-2 can access the global shared
memory in one uninterruptible unit of time. The PRAM model has both concurrent and exclusive read
algorithms. Concurrent read algorithms are allowed to read the same piece of memory simultaneously
with no data corruption. Exclusive read algorithms are used to ensure that no two processors ever read
the same memory location at the same time. The PRAM model also has both concurrent and exclusive
write algorithms. Concurrent write algorithms allow multiple processors to write to memory, while
exclusive write algorithms ensure that no two processors write to the same memory at the same time.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec2.htm#ch01fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec2.htm#ch01fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec2.htm#ch01fig02

Table 1-1 shows the four basic types of algorithms that can be derived from the read and write
possibilities.

Table 1-1. Four Basic Read-Write Algorithms

Read-Write Algorithm Type Meaning

EREW Exclusive read exclusive write

CREW Concurrent read exclusive write

ERCW Exclusive read concurrent write

CRCW Concurrent read concurrent write

We will refer to these algorithm types often in this book as we discuss methods for implementing
concurrent architectures. The blackboard architecture is one of the important architectures that we
implement using the PRAM model and it is discussed in Chapter 13. It is important to note that
although PRAM is a simplified theoretical model, it is used to develop practical programs, and these
programs can compete on performance with programs that were developed using more sophisticated
models of parallelism.

1.2.2 The Simplest Parallel Classification

The PRAM gives us a simple model for thinking about how a computer can be divided into processors
and memory and gives us some ideas for how those processors may access memory. A simplified
scheme for classifying the parallel computers was introduced by M.J. Flynn.[1] These schemes were
SIMD (Single Instruction Multiple Data) and MIMD (Multiple Instruction Multiple Data). These were
later extended to SPMD (Single Program Multiple Data) and MPMD (Multiple Program Multiple
Data). The SPMD (SIMD) scheme allows multiple processors to execute the same instruction or
program with each processor accessing different data. The MPMD (MIMD) scheme allows for multiple
processors with each executing different programs or instructions and each with its own data. So in one
scheme all the processors execute the same program or instructions and in the other scheme each
processor executes different instructions. Of course, there are hybrids of these models where the
processors are divided up and some are SPMD and some are MPMD. Using SPMD, all of the
processors are simply doing the same thing only with different data. For example, we can divide a
single puzzle up into groups and assign each group to a separate processor. Each processor will apply
the same rules for trying to put together the puzzle, but each processor has different pieces to work
with. When all of the processors are done putting their pieces together, we can see the whole. Using
MPMD, each processor executes something different. Even though they are all trying to solve the same
problem, they have been assigned a different aspect of the problem. For example, we might divide the
work of securing a Web server as a MPMD scheme. Each processor is assigned a different task. For
instance, one processor monitors the ports, another processor monitors login attempts, another
processor analyzes packet contents, and so on. Each processor works with its own data relative to its
area of concern. Although the processors are each doing different work using different data, they are
working toward a single solution: security. The parallel programming concepts that we discuss in this
book are easily described using PRAM, SPMD (SIMD), and MPMD (MIMD). In fact, these schemes
and models are used to implement practical small- to medium-scale applications and should be

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec2.htm#ch01fn01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13.htm#ch13
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec2.htm#ch01table01

sufficient until you are ready to do advanced parallel programming.

[1] M.J. Flynn. Very high-speed computers. In Proceedings of the IEEE, 54, 1901-1909
(December 1966).

1.3 The Benefits of Distributed Programming

Distributed programming techniques allow software to take advantage of resources located on the
Internet, on corporate and organization intranets, and on networks. Distributed programming usually
involves network programming in one form or another. That is, a program on one computer on a
network needs some hardware or software resource that belongs to another computer either on the same
network or on some remote network. Distributed programming is all about one program talking to
another program over some kind of network connection, which may involve everything from modems
to satellites. The distinguishing feature of distributed programs is they are broken into parts. Those parts
are usually implemented as separate programs. Those programs typically execute on separate computers
and the program's parts communicate with each other over a network. Distributed programming
techniques provide access to resources that may be geographically distant. For example, a distributed
program divided into a Web server component and a Web client component can execute on two
separate computers. The Web server component can be located in Africa and the Web client component
can be located in Japan. The Web client part is able to use software and hardware resources of the Web
server component, although they are separated by a great distance and almost certainly located on
different networks running different operating environments. Distributed programming techniques
provide shared access to expensive hardware and software resources. For instance, an expensive, high-
end holographic printer may have print server software that provides print services to client software.
The print client software resides on one computer and the print server software resides on another
computer. Only one print server is needed to serve many print clients. Distributed computing can be
used for redundancy and fail over. If we divide the program up into a number of parts with each
running on different computers, then we may assign some of the parts the same task. If one of the
computers fails for some reason then another part of the same program executing on a different
computer picks up the work. Databases can be used to hold billions, trillions, even quadrillions of
pieces of information. It is simply not practical for every user to have a copy of the database. The
problem is some users are located in different buildings than where the computer with the database is
located. Some users are located in different cities, states, and in some instances, countries. Distributed
programming techniques are used to allow users to share the massive database regardless of where they
are located.

1.3.1 The Simplest Distributed Programming Models

The client-server model of distributed computing is perhaps the easiest to understand and the most
commonly used. In this model, a program is divided up into two parts: One part is called the server and
the other the client. The server has direct access to some hardware or software resource that the client
wants to use. In most cases, the server is located on a different machine than the client. Typically, there
is a many-to-one relationship between the server and the client, that is, there is usually one server
fulfilling the requests of many clients. The server usually mediates access to a large database, an
expensive hardware resource, or an important collection of applications. The client makes requests for
data, calculations, and other types of processing. A search engine is a good example of a client-server
application. Search engines are used to locate information on the Internet or on corporate and
organization intranets. The client is used to obtain a keyword or phrase that the user is interested in. The
client software part then passes the request to the server software part. The server has the muscle to
perform the massive search for the user's keyword or phrase. The server has either direct access to the
information or to other servers that have access to the information. Ideally, the server finds the keyword

or phrase the user requested and returns that information to the client component. Although the client
and the server are separate programs on separate computers, they make up a single application. This
division of a piece of software into a client and a server is the primary method of distributed
programming. The client-server model also has other forms depending on the environment. For
instance, the term producer-consumer is a close cousin of client-server. Typically, client-server
applications refer to larger programs and producer-consumer refers to smaller programs. Usually when
the programs are at the operating system level or lower they are called producer-consumer, and when
they are above the operating system level they are usually called client-server (however, there are
always exceptions).

1.3.2 The Multiagent (Peer-to-Peer) Distributed Model

Although the client-server model is the most prevalent distributed programming model in use, it is not
the only model. Agents are rational software components that are self directed, often autonomous, and
can continuously execute. Agents can both make requests of other software components and fulfill
requests of other software components. Agents can cooperate within groups to perform certain tasks
collectively. In this model there is no specific client or server. The agents form a kind of peer-to-peer
model where each of the components are on somewhat equal footing and each component has
something to offer to the other. For example, an agent that is providing a price quote for the
refurbishing of a vintage sports car might work together with other agents. Where one agent specializes
in engine work, another specializes in body work, another specializes in interior design and so on.
These agents may cooperatively and collectively come up with the most competitive quote for
refurbishing the car. The agents are distributed because each agent is located on a different server on
the Internet. The agents use an agreed-upon Internet protocol to communicate. The client-server model
is a natural fit for certain types of distributed programming and the peer-to-peer agent model is a natural
fit for certain types of distributed programming. We explore both types in this book. The client-server
and peer-to-peer models can be used to satisfy most distributed programming demands.

1.4 The Minimal Effort Required

Parallel and distributed programming come with a cost. Although there are many benefits to writing
parallel and distributed programming, there are also some challenges and prerequisites. We discuss
some challenges in Chapter 2. We mention the prerequisites here. Before a program is written or a piece
of software is developed, it must first go through a design process. For parallel and distributed
programs, the design process will include three issues: decomposition, communication, and
synchronization.

1.4.1 Decomposition

Decomposition is the process of dividing up the problem and the solution into parts. Sometimes the
parts are grouped into logical areas (i.e., searching, sorting, calculating, input, output, etc.). In other
situations the parts are grouped by logical resource (i.e., file, communication, printer, database, etc.).
The decomposition of the software solution amounts to the WBS (work breakdown structure). The
WBS determines which piece of software does what. One of the primary issues of concurrent
programming is identifying a natural WBS for the software solution at hand. There is no simple or
cookbook approach to identifying the WBS. Software development is the process of translating
concepts, ideas, patterns of work, rules, algorithms, or formulas into sets of instructions and data that
can be executed or manipulated by a computer. This is largely a process of modeling. Software models
are reproductions in software of some real-world task, process, or ideal. The purpose of the model is to
imitate or duplicate the behavior and characteristics of some real-world entity in a particular domain.
This process of modeling uncovers the natural WBS of a software solution. The better the model is

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02.htm#ch02

understood and developed the more natural the WBS will be. Our approach is to uncover the
parallelism or distribution within a solution through modeling. If parallelism doesn't naturally fit, don't
force it. The question of how to break up an application into concurrently executing parts should be
answered during the design phase and should be obvious in the model of the solution. If the model of
the problem and the solution don't imply or suggest parallelism and distribution then try a sequential
solution. If the sequential solution fails, that failure may give clues to how to approach the parallelism.

1.4.2 Communication

Once the software solution is decomposed into a number of concurrently executing parts, those parts
will usually do some amount of communicating. How will this communication be performed if the parts
are in different processes or different computers? Do the different parts need to share any memory?
How will one part of the software know when the other part is done? Which part starts first? How will
one component know if another component has failed? These issues have to be considered when
designing parallel or distributed systems. If no communication is required between the parts, then the
parts don't really constitute a single application.

1.4.3 Synchronization

The WBS designates who does what. When multiple components of software are working on the same
problem, they must be coordinated. Some component has to determine when a solution has been
reached. The components' order of execution must be coordinated. Do all of the parts start at the same
time or does some work while others wait? What two or more components need access to the same
resource? Who gets it first? If some of the parts finish their work long before the other parts, should
they be assigned new work? Who assigns the new work in such cases? DCS (decomposition,
communication, and synchronization) is the minimum that must be considered when approaching
parallel or distributed programming. In addition to considering DCS, the location of DCS is also
important. There are several layers of concurrency in application development. DCS is applied a little
differently in each layer.

1.5 The Basic Layers of Software Concurrency

In this book we are concerned with concurrency within the application as opposed to concurrency at the
operating system level, or concurrency within hardware. Although the concurrency within hardware
and the concurrency at the operating system level support application concurrency, our focus is on the
application. For our purposes, concurrency occurs at:

• Instruction level

• Routine (function/procedure) level

• Object level

• Application level

1.5.1 Concurrency at the Instruction Level

Concurrency at the instruction level occurs when multiple parts of a single instruction can be executed
simultaneously. Figure 1-3 shows how a single instruction can be decomposed for simultaneous
execution.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec5.htm#ch01fig03

Figure 1-3. Decomposition of a single instruction.

In Figure 1-3, the component (A + B) can be executed at the same time as (C – D). This is an example
of concurrency at the instruction level. This kind of parallelism is normally supported by compiler
directives and is not under the direct control of a C++ programmer.

1.5.2 Concurrency at the Routine Level

The WBS structure of a program may be along function lines, that is, the total work involved in a
software solution is divided between a number of functions. If these functions are assigned to threads,
then each function can execute on a different processor and if enough processors are available, each
function can execute simultaneously. We discuss threads in more detail in Chapter 4.

1.5.3 Concurrency at the Object Level

The WBS of a software solution may be distributed between objects. Each object can be assigned to a
different thread, or process. Using the CORBA (Common Object Request Broker Architecture)
standard, each object may be assigned to a different computer on the network or different computer on
a different network. We discuss CORBA in more detail in Chapter 8. Objects residing in different
threads or processes may execute their methods concurrently.

1.5.4 Concurrency of Applications

Two or more applications can cooperatively work together to solve some problem. Although the
application may have originally been designed separately and for different purposes, the principles of
code reuse often allow applications to cooperate. In these circumstances two separate applications work
together as a single distributed application. For example, the Clipboard was not designed to work with
any one application but can be used by a variety of applications on the desktop. Some uses of the
Clipboard had not been dreamed of during its original design.

The second and the third layers are the primary layers of concurrency that we will focus on in this book.
We show techniques for implementing concurrency in these layers. Operating system and hardware
issues are presented only where they are necessary in the context of application design. Once we have
an appropriate WBS for a parallel programming or distributed programming design, the question is how
do we implement it in C++.

1.6 No Keyword Support for Parallelism in C++

The C++ language does not include any keyword primitives for parallelism. The C++ ISO standard is
for the most part silent on the topic of multithreading. There is no way within the language to specify
that two or more statements should be executed in parallel. Other languages use built-in parallelism as a
selling feature. Bjarne Stroustrup, the inventor of the C++ language, had something else in mind. In
Stroustrup's opinion:

It is possible to design concurrency support libraries that approach built-in concurrency
support both in convenience and efficiency. By relying on libraries, you can support a
variety of concurrency models, though, and thus serve the users that need those different
models better than can be done by a single built-in concurrency model. I expect this will be

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08.htm#ch08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04.htm#ch04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec5.htm#ch01fig03

the direction taken by most people and that the portability problems that arise when several
concurrency-support libraries are used within the community can be dealt with by a thin
layer of interface classes.

Furthermore, Stroustrup says, "I recommend parallelism be represented by libraries within C++ rather
than as a general language feature." The authors have found Stroustrup's position and recommendation
on parallelism as a library the most practical option. This book is only made possible because of the
availability of high-quality libraries that can be used for parallel and distributed programming. The
libraries that we use to enhance C++ implement national and international standards for parallelism and
distributed programming and are used by thousands of C++ programmers worldwide.

1.6.1 The Options for Implementing Parallelism Using C++

Although there are special versions of C++ that implement parallelism, we present methods on how
parallelism can be implemented using the ISO (International Standard Organization) standard for C++.
The library approach to parallelism is the most flexible. System libraries and user-level libraries can be
used to support parallelism in C++. System libraries are those libraries provided by the operating
system environment. For example, the POSIX threads library is a set of system calls that can be used in
conjunction with C++ to support parallelism. The POSIX (Portable Operating System Interface) threads
are part of the new Single UNIX Specification. The POSIX threads are included in the IEEE Std.
1003.1-2001. The Single UNIX Specification is sponsored by the Open Group and developed by the
Austin Common Standards Revision Group. According to the Open Group, the Single UNIX
Specification is:

• Designed to give software developers a single set of APIs to be supported by every UNIX
system.

• Shifts the focus from incompatible UNIX system product implementations to compliance to a
single set of APIs.

• It is the codification and dejure standardization of the common core of UNIX system practice.

• The basic objective is portability of both programmers and application source code.

The Single UNIX Specification Version 3 includes the IEEE Std 1003. 1-2001 and the Open Group
Base Specifications Issue 6. The IEEE POSIX standards are now a formal part of the Single UNIX
Specification and vice versa. There is now a single international standard for a portable operating
system interface. C++ developers benefit because this standard contains APIs for creating threads and
processes. Excluding instruction-level parallelism, dividing a program up into either threads or
processes is the only way to achieve parallelism with C++. The new standard provides the tools to do
this. The developer can use:

• POSIX threads (also referred to as pthreads)

• POSIX spawn function

• the exec() family of functions

These are all supported by system API calls and system libraries. If an operation system complies with
the Single UNIX Specification Version 3, then these APIs will be available to the C++ developer.
These APIs are discussed in Chapters 3 and 4. They are used in many of the examples in this book. In
addition to system-level libraries, user-level libraries that implement other international standards such
as the MPI (Message Passing Interface), PVM (Parallel Virtual Machine), and CORBA (Common
Object Request Broker Architecture) can be used to support parallelism with C++.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04.htm#ch04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03

1.6.2 MPI Standard

The MPI is the standard specification for message passing. The MPI was designed for high
performance on both massively parallel machines and on workstation clusters. This book uses the
MPICH implementation of the MPI standard. MPICH is a freely available, portable implementation of
MPI. The MPICH provides the C++ programmer with a set of APIs and libraries that support parallel
programming. The MPI is especially useful for SPMD and MPMD programming. The authors use the
MPICH implementation of MPI on a 32-node cluster running Linux and an 8-node cluster running
Solaris and Linux. Although C++ doesn't have parallel primitives built in, it can take advantage of
power libraries such as MPICH that does support parallelism. This is one of the benefits of C++. It is
designed for flexibility.

1.6.3 PVM: A Standard for Cluster Programming

The PVM is a software package that permits a heterogeneous collection of computers hooked together
by a network to be used as a single large parallel computer. The overall objective of the PVM system is
to enable a collection of computers to be used cooperatively for concurrent or parallel computation. A
PVM library implementation supports:

• Heterogeneity in terms of machines, networks, and applications

• Explicit message-passing model

• Process-based computation

• Multiprocessor support (MPP, SMP)

• Translucent access to hardware (applications can either ignore or take advantage of hardware
differences)

• Dynamically configurable host pool (processors can be added and deleted at runtime and can
include processor mixes)

The PVM is the easiest to use and most flexible environment available for basic parallel programming
tasks that require the involvement of different types of computers running different operating systems.
The PVM library is especially useful for several single processor systems that can be networked
together to form a virtual parallel processor machine. We discuss techniques for using PVM with C++
in Chapter 6. The PVM is the de facto standard for implementing heterogeneous clusters and is freely
available and widely used. The PVM has excellent support for MPMD (MIMD) and SPMD (SIMD)
models of parallel programming. The authors use PVM for small- to medium-size parallel
programming tasks and the MPI for larger, more complex MPI tasks. PVM and MPI are both libraries
that can be used with C++ to do cluster programming.

1.6.4 The CORBA Standard

CORBA is the standard for distributed cross-platform object-oriented programming. We mention
CORBA here under parallelism because implementations of the CORBA standard can be used to
develop multiagent systems. Multiagent systems offer important models of peer-to-peer distributed
programming. Multiagent systems can work concurrently. This is one of the areas where parallel
programming and distributed programming overlap. Although the agents are executing on different
computers, they are executing during the same time period, working cooperatively on a common
problem. The CORBA standard provides an open, vendor-independent architecture and infrastructure
that computer applications use to work together over networks. Using the standard protocol IIOP, a
CORBA-based program from any vendor, on almost any computer, operating system, programming
language, and network, can interoperate with a CORBA-based program from the same or another

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06.htm#ch06

vendor on almost any other computer operating system, programming language, and network. In this
book we use the MICO implementation. MICO is a freely available and fully compliant implementation
of the CORBA standard. MICO supports C++.

1.6.5 Library Implementations Based on Standards

MPICH, PVM, MICO, and POSIX threads are each library implementations based on standards. This
means that software developers can rely on these implementations to be widely available and portable
across multiple platforms. These libraries are freely available and used by software developers
worldwide. The POSIX threads library can be used with C++ to do multithreaded programming. If the
program is running on a computer that has multiple processors, then each thread can possibly run on a
separate processor and thereby execute concurrently. If only a single processor is available, then the
illusion of parallelism is provided and concurrency is achieved through the process of context
switching. POSIX threads are perhaps the easiest way to introduce parallelism within a C++ program.
Whereas the MPICH, PVM, and MICO libraries will have to be downloaded or obtained (they are
readily available), any operating system environment that is client with the POSIX standard or the new
UNIX Specification Version 3 will have a POSIX threads implementation. Each library offers a slightly
different model of parallelism. Table 1-2 shows how each library can be used with C++.

Table 1-2. MPICH, PVM, MICO, and POSIX Threads Used with C++

Libraries C++ Usage

MPICH Supports large-scale, complex cluster programming. Strong support for SPMD model.
Also supports SMP, MPP, and multiuser configurations.

PVM Supports cluster programming of heterogeneous environments. Easy to use for single-
user, small to medium cluster applications. Also supports MPP.

MICO Supports either distributed or object-oriented parallel programming. Contains nice support
for agent and multiagent programming.

POSIX Supports parallel processing within a single application at the function or object level. Can
be used to take advantage of SMP or MPP.

Whereas languages that depend on built-in support for parallelism are restricted to the models supplied,
the C++ developer is free to mix and match parallel programming models. As the nature of the
applications change, a C++ developer can select different libraries to match the scenario.

1.7 Programming Environments for Parallel and Distributed Programming

The most common environments for parallel and distributed programming are clusters, MPPs, and SMP
computers. Clusters are collections of two or more computers that are networked together to provide a
single, logical system. The group of computers appear to the application as a single virtual computer.
MPP (Massively Parallel Processors) is a single computer that has hundreds of processors. SMP
(Symmetric Multiprocessing) is a single system that has processors that are tightly coupled where the
processors share memory and the data path. SMP processors share the resources and are all controlled
by a single operating system. This book provides a gentle introduction to parallel and distributed

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01lev1sec6.htm#ch01table02

programming, therefore we focus our attention on small clusters of 8 to 32 processors and on
multiprocessor machines with 2 to 4 processors. Although many of the techniques we discuss can be
used in MPP environments or in large SMP environments, our primary attention is on moderate
systems.

Summary—Toward Concurrency

Throughout this book we present an architectural approach to parallel and distributed programming.
The emphasis is placed on uncovering the natural parallelism within a problem and its solution. This
parallelism is captured within the software model for the solution. We suggest object-oriented methods
to help manage the complexity of parallel and distributed programming. Our mantra is function follows
form. We use the library approach to provide parallelism support for the C++ language. The libraries
we recommend are based on national and international standards. Each library is freely available and
widely used. Techniques and concepts presented in the book are vendor independent, nonproprietary,
and rely on open standards and open architectures. The C++ programmer and software developer can
use different parallel models to serve different needs because each parallelism model is captured within
a library. The library approach to parallel and distributed programming gives the C++ programmer the
greatest possible flexibility. While parallel and distributed programming can be fun and rewarding, it
presents several challenges. In the next chapter we will provide an overview of the most common
challenges to parallel and distributed programming.

Chapter 2. The Challenges of Parallel and Distributed
Programming
"The idea that you should really indicate the exact values of any physical quantity —
temperature, density, potential field strength or whatever ... is a bold extrapolation."

—Erwin Shrodinger, Causality and Wave Mechanics

In this Chapter

• The Big Paradigm Shift

• Coordination Challenges

• Sometimes Hardware Fails and Software Quits

• Too Much Parallelization or Distribution Can Have Negative Consequences

• Selecting a Good Architecture Requires Research

• Different Techniques for Testing and Debugging are Required

• The Parallel or Distributed Design Must Be Communicated

• Summary

In the basic sequential model of programming, a computer program's instructions are executed one at a
time. The program is viewed as a recipe and each step is to be performed by the computer in the order
and amount specified. The designer of the program breaks up the software into a collection of tasks.
Each task is performed in order, and each task must wait its turn. Every program is perceived as having
a beginning, middle, and end. The designer or developer envisions each program as a linear progression
of tasks. Not only must the tasks march in single file, but the tasks are related so that if the first task
cannot complete its work for some reason then the second task may never start. In other words, each
task is made to wait on the result of the previous task's work before it can execute. In the sequential
model tasks are often serially interdependent. This means that A needs something from B, B needs
something from C, C needs something from D, and so on. If B fails for some reason, then C and D will
never execute. In a sequential world the developer is accustomed to designing the software to perform
step 1 first, then step 2, then step 3. This sequential model is so entrenched in the software design and
development process that many programmers find it hard to see things any other way. The solution to
every problem, the design of every algorithm, and the layout of every data structure all rely on the
computer accessing each instruction or piece of data one at a time.

2.1 The Big Paradigm Shift

All of this changes in the world of parallel programming. In this world, multiple instructions can
execute at the same instant. A single instruction might be broken down into smaller pieces with each
piece being executed simultaneously. A program can be broken into multiple tasks that can each
execute at the same time. Instead of one task, a program might consist of hundreds or thousands of
routines executing concurrently. In the world of parallel programming, the sequence and location of
things is not always predictable. Multiple tasks can start at the same time on any processor with no
guarantee what task will finish first, in what order they'll finish, or on what processor they will execute.
In addition to tasks executing in parallel, a single task may have concurrently executing parts or
subtasks. In some configurations, it is possible for the subtasks to run on separate processors, possibly
separate computers. Figure 2-1 shows three levels of parallelism that are possible within a single
computer program.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec1.htm#ch02fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec8.htm#ch02lev1sec8
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec7.htm#ch02lev1sec7
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec6.htm#ch02lev1sec6
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec5.htm#ch02lev1sec5
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec4.htm#ch02lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec3.htm#ch02lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec2.htm#ch02lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec1.htm#ch02lev1sec1

Figure 2-1. The three levels of parallelism that are possible within a single computer program.

The programmer and developer's model of a program undergoes a big paradigm shift because of the
three levels of parallelism shown in Figure 2-1 and how these levels of parallelism can be distributed to
multiple processors. Figure 2-2 illustrates how the three levels of parallelism are combined with the
basic parallel processor configurations.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec1.htm#ch02fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec1.htm#ch02fig01

Figure 2-2. The three levels of parallelism combined with the basic parallel processor configurations.

Notice in Figure 2-2 that multiple tasks can run on a single processor even when the computer has more
than one processor. This situation can be created by operating system scheduling policies. Scheduling
policies, process priorities, thread priorities, and input/output device performance all impact where and
for how long a task, subtask, or partial instruction will execute. Figure 2-2 emphasizes the different
architectures that a programmer must face when moving from the sequential programming model to a
parallel programming model. The model changes from a strictly ordered sequence of tasks to only a
partially ordered (possibly unordered) collection of tasks. Parallelism turns order of execution, time of
execution, and location of execution into wildcards. Any combination of these wildcards is subject to
change values in often unpredictable ways.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec1.htm#ch02fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec1.htm#ch02fig02

2.2 Coordination Challenges

If a program has routines that can execute in parallel, and these routines share any files, devices, or
memory locations, then several coordination issues are introduced. For example, lets say we have an
electronic bank withdrawal and deposit program that is divided into three tasks that can execute in
parallel. We label the tasks A, B, C.

Task A receives requests from Task B to make withdrawals from an account. Task A also receives
requests from Task C to make deposits to an account. Task A accepts and processes requests on a first-
come, first-serve basis. What if we have an account that has a balance of $1,000 and Task C wants to
make a $100 deposit to the account and Task B wants to make a $1,100 withdrawal from the account?
What happens if Task B and Task C both try to update the same account at the same time? What would
the balance be? Obviously an account balance can only hold one value at a time. Task A can only apply
one transaction at a time to the account, so there's a problem. If Task B's request executes a fraction of a
second faster than Task C, then the account will have a negative balance. On the other hand, if Task C
gets to the account first, then the account will not have a negative balance. So the balance of the
account depends on which task happens to get its request to Task A first. Furthermore, we can execute
Tasks B and C several times, each time starting with the same amounts, and sometimes Task B would
execute a fraction of a second faster and sometimes Task C would execute faster. Clearly some form of
coordination is in order.

To coordinate tasks that are executing in parallel requires communication between the tasks and
synchronization of their work. Four common types of problems occur when the communication or the
synchronization is incorrect.

Problem #1 Data Race

If two or more tasks attempt to change a shared piece of data at the same time and the final value of the
data depends simply on which tasks get there first, then a race condition has occurred. When two or
more tasks are attempting to update the same data resource at the same time, the race condition is called
data race. In our electronic banking program, which task gets to the account balance first turns out to be
a matter of operating system scheduling, processor states, latency, and chance. This situation creates a
race condition. Under these circumstances, what should the bank report as the account's real balance?

So while we would like our electronic banking program to be able to simultaneously handle many
banking deposits and withdrawals, we need to coordinate the tasks in the program if the deposits and
withdrawals happen to be applied to the same account. Whenever tasks concurrently share a modifiable
resource, rules and policies will have to be applied to the task's access. For instance, in our banking
program we might apply any deposits to the account before we apply any withdrawals. We might set a
rule that only one transaction has access to an account at a time. If more than one transaction for the
same account arrives at the same time, then the transactions must be held and organized according to
some rule and then granted access one at a time. These organization rules help to accomplish proper
synchronization.

Problem #2 Indefinite Postponement

Scheduling one or more tasks to wait until some event or condition occurs can be tricky. First, the event
or condition must take place in a timely fashion. Second, it requires carefully placed communications
between tasks. If one or more tasks are waiting for a piece of communication before they execute and
that communication either never comes, comes too late, or is incomplete, then the tasks may never
execute. Likewise, if the event or condition that we assumed would eventually happen actually never
occurs, then the tasks that we have suspended will wait forever. If we suspend one or more tasks
waiting on some condition or event that never occurs, this is known as indefinite postponement. In our

electronic banking example, if we set up rules that cause the withdrawal tasks to wait until all deposit
tasks are completed, then the withdrawal tasks could be headed for indefinite postponement.

The assumption is that there are deposit tasks. If no deposit requests are made, what will cause the
withdrawal tasks to execute? What if the reverse happens, that is, what if deposit requests are
continuously made to the same account? As long as a deposit is in progress, no withdrawal can be
made. This situation can indefinitely postpone withdrawals.

Indefinite postponement might take place if no deposit tasks appear or if deposit tasks constantly
appear. What if deposit requests appear correctly but we fail to properly communicate the event? So as
we try to coordinate our parallel task's access to some shared data resource, we have to be mindful of
situations that can create indefinite postponement. We discuss techniques for avoiding indefinite
postponement in Chapter 5.

Problem #3 Deadlock

Deadlock is another waiting-type pitfall. To illustrate an example of deadlock, lets assume that the three
tasks in our electronic banking program example are working with two accounts instead of one. Recall
that Task A receives withdrawal requests from Task B and deposit requests from Task C. Tasks A, B,
and C can execute concurrently. However, Tasks B and C may only update one account at a time. Task
A grants access on a first-come, first-serve basis. Lets say that Task B has exclusive access to Account
1, and Task C has exclusive access to Account 2. But Task B needs access to Account 2 to complete its
processing and Task C needs access to Account 1 to complete its processing. Task B holds on to
Account 1 waiting for Task C to release Account 2 and Task C holds on to Account 2 waiting for Task
B to release Account 1. Tasks B and C are engaged in a deadly embrace, also known as a deadlock.
Figure 2-3 shows the deadlock situation between Tasks B and C.

Figure 2-3. The deadlock situation between Tasks B and C.

The form of deadlock shown in Figure 2-3 requires concurrently executing tasks that have access to
some shared writeable data to wait on each other for access to that shared data. In Figure 2-3 the shared
data are Accounts 1 and 2. Both tasks have access to these accounts. It happens that instead of one task
getting access to both accounts at the same time, each task got access to one of the accounts. Since Task
B can't release Account 1 until it gets Account 2, and Task C can't release Account 2 until it gets
Account 1, the electronic banking program is locked. Notice that Tasks B and C can drive another
task(s) into indefinite postponement. If other tasks are waiting on access to Accounts 1 or 2 and Tasks
B and C are engaged in a deadlock, then those tasks are waiting for a condition that will never happen.
In attempting to coordinate concurrently executing tasks, deadlock and indefinite postponement are two

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec2.htm#ch02fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec2.htm#ch02fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec2.htm#ch02fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05.htm#ch05

of the ugliest obstacles that must be overcome.

Problem #4 Communication Difficulties

Many commonly found parallel environments (e.g., clusters) often consist of heterogeneous computer
networks. Heterogeneous computer networks are systems that consist of different types of computers
often running different operating systems with different network protocols. The processors involved
may have different architectures, different word sizes, and different machine languages. Besides
different operating systems, different scheduling and priority schemes might be in effect. To make
matters worse, each system might have different qualities of data transmission. This makes error and
exception handling particularly challenging. The heterogeneous nature of the system might include
other differences. For instance, we might need to share data and logic between programs written in
different languages or developed using different software models. The solution might be partially
implemented in Fortran, C++, and Java. This introduces interlanguage communication issues. Even
when the distributed or parallel environment is not heterogeneous, there is the problem of
communicating between two or more processes or between two or more threads. Because each process
has its own address space, sharing variables, parameters, and return values between processes requires
the use of IPC (inter-process communication) techniques. While IPC is not necessarily difficult, it adds
another level of design, testing, and debugging to the system.

The POSIX specification supports five basic mechanisms used to accomplish communication between
processes:

• Files with lock and unlock facilities

• Pipes (unnamed and named, also called fifos)

• Shared memory and messaging

• Sockets

• Semaphores

Each of these IPC mechanisms have strengths, weaknesses, traps, and pitfalls that the software designer
and developer must manage in order to facilitate reliable and efficient communication between two or
more processes. Communication between two or more threads (sometimes called lightweight processes)
is easier because threads share a common address space. This means that each thread in the program
can easily pass parameters, get return values from functions, and access global data. However, if the
communication is not appropriately designed, then deadlock, indefinite postponement, and other data
race conditions can easily occur. Both parallel and distributed programming have these four types of
coordination problems in common.

Although purely parallel processing systems are different from purely distributed processing systems,
we have purposely blurred the lines between the coordination problems in a distributed system versus
the coordination problems in a parallel system. This is partly because there is an overlap between the
kinds of problems encountered in parallel programming and those encountered in distributed
programming. It's also partly because the solutions to the problems in one area are often applicable to
problems in the other. However, the primary reason we lose the distinction is that hybrid systems that
are part parallel and part distributed are quickly becoming the norm. The state of the art in parallel
computing involves clusters, beowolfs, and grids. Exotic cluster configurations is comprised of
commodity, off-the-shelf parts that are readily available. These architectures involve multiple
computers with multiple processors. Furthermore, single processor systems are on the decline. So, in
the future purely distributed systems will be built with computers that have multiple processors (forcing
the hybrid issue). This means that as a practical matter the software designer and developer will most
likely be faced with problems of distribution and parallelization. Therefore, we discuss the problems in

the same space. Table 2-1 presents a matrix of the combinations of parallel and distributed
programming with hardware configurations.

Table 2-1. A Matrix of the Combinations of Parallel and Distributed Programming with Hardware Configurations

 Single Computer Multiple Computers

Parallel
programming

Accomplished with multiple processors
and breaking up the logic into multiple
threads or processes. Threads or processes
can run on different processors. IPC
required to coordinate tasks.

Accomplished with libraries such as
PVM. This requires the type of message
passing normally associated with
distributed programming.

Distrubuted
programming

Multiple processors are not necessary.
The logic may be broken up into multiple
processers or threads. IPC required to
coordinate tasks.

Accomplished with sockets and
components such as CORBA ORB
(Object Request Broker). Can use
communication that is normally
associated with parallel programming.

Notice in Table 2-1 that there are configurations where parallelism is accomplished by using multiple
computers. This can be the case using the PVM library. Likewise, there are configurations where
distribution can be accomplished on a single computer using multiple processes, or threads. The fact
that multiple processes or threads are involved means that the work of the program is "distributed." The
combinations in Table 2-1 imply that coordination problems that are normally associated with
distributed programming can pop up in parallel programming situations and problems that are normally
associated with parallel programming can appear in distributed programming situations.

Regardless of the hardware configuration, there are two basic mechanisms for communicating between
two or more tasks: shared memory, and message passing. To effectively use the shared memory
mechanism, the programmer must constantly be aware of data race, indefinite postponement, and
deadlock pitfalls. The message passing scheme offers other showstoppers such as interrupted
transmissions (partial execution), garbled messages, lost messages, wrong messages, too long
messages, late messages, early messages, and so on. Much of this book is about the effective use of
both mechanisms.

2.3 Sometimes Hardware Fails and Software Quits

When multiple processors are cooperating to provide the solution to some problem, what happens if one
or more of the processors fail? Should the program halt or should the work be redistributed somehow?
When multiple computers are involved in the solution to some problem, what happens if the
communications link between two or more of the computers is temporarily interrupted? What if instead
of the communications link being interrupted, the traffic is so slow that processes on each end of the
communications time out? How should the software respond in these situations? If we have 50
computers cooperatively solving a problem and only two of the computers fail, should the other 48 pick
up the work? If in our electronic banking programming we have a $1,000 withdrawal and deposit tasks
executing simultaneously and two of the tasks are deadlocked, should we shut down the server task?
What do we do about the two tasks that are locked? What if the withdrawal and deposit tasks are
working properly and for some reason the server task locks up? Should we terminate all the pending
withdrawal and deposit tasks? What do we do about partial failures or partial executions? These kinds
of considerations are not necessary in single computer sequential programs. Sometimes the failure is a

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec2.htm#ch02table01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec2.htm#ch02table01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec2.htm#ch02table01

result of some administration or security policy. For instance, if we have 1,000 routines working on
some problem and several of the routines need write access to a file but don't have the write access, this
could cause indefinite postponement, deadlock, or partial failure. What if some of the routines are
blocked because they don't have security access to the resources they need? Should the entire system be
shut down in such cases? How can the information or processing performed be useful if there are
hardware interruptions, communications failures, and partial executions? Yet these situations represent
normal processing within distributed and parallel environments. In this book, we present several
software architectures and programming techniques that can be used to manage these situations.

2.4 Too Much Parallelization or Distribution Can Have Negative Consequences

There is a point where the overhead in managing multiple processors outweighs the speedup and other
advantages gained from parallelization. The old adage "you can never have enough processors" is
simply not true. Communication between computers or synchronization between processors comes at a
cost. The complexity of the synchronization or the amount of communication between processors can
require so much computation that the performance of the tasks that are doing the work can be
negatively impacted. How many processes, tasks, or threads should a program be divided into? Is there
an optimal number of processors for any given parallel program? At what point does adding more
processors or computers to the computation pool slow things down instead of speeding them up? It
turns out that the numbers change depending on the program. Some scientific simulations may max out
at several thousand processors, while for some business applications several hundred might be
sufficient. For some client-server configurations, eight processors are optimal and nine processors
would cause the server to perform poorly.

There is the work and resources involved in managing parallel hardware and the work involved in
managing concurrently executing processes and threads in software. The limit of software processes
might be reached before we've reached the optimum number of processors or computers. Likewise, we
might see diminishing returns in the hardware before we've reached the optimum number of
concurrently executing tasks.

2.5 Selecting a Good Architecture Requires Research

There are many software architectures that support concurrency. The correct architecture needs to be
matched with the WBS (Work Breakdown Structure) of a piece of software. Not all parallel and
distributed architectures are created equal. While some distributed architectures would work fine in a
Web environment, they would fail immediately in a real-time environment. For instance, distributed
architectures that support long latency times that would be acceptable in a Web environment are
unacceptable for many real-time environments. Compare the distributed processing in a Webbased e-
mail system to the distributed processing that takes place with banking ATMs (automated teller
machines). Latency that is present in many e-mail systems would simply be unacceptable in real-time
systems such as ATMs. Certain distributed architectures (some asynchronous models) manage latency
times better than others. Care must also be taken to select the proper parallel processing architectures.
For instance, vector processing techniques may work well for certain mathematical and simulation
problems, but are ineffective when applied to multiagent planning algorithms. Table 2-2 shows
commonly found software architectures that support parallel and distributed programming.

The four basic models listed in Table 2-2 and their variations provide the basic foundations for all the
concurrency architectures (i.e., agent, blackboard, object-oriented) that we discuss in this book. It is
necessary to become familiar with each of these models and their applications to parallel and distributed
programming. We provide an introduction to these models and the bibliography contains material that
covers more advanced treatment of each of these models. It is best to find the natural or inherent
parallelism in the work being done or in the solution to a problem. The architecture chosen should

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec5.htm#ch02table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec5.htm#ch02table02

match this natural or inherent parallelism as closely as possible. For instance, the parallelism in a
solution may be better described using a peer-to-peer model, where all workers are considered equal, as
opposed to a boss worker model, where there is a master process managing all the other processes as
subordinates.

Table 2-2. Commonly Found Software Architectures that Support Parallel and Distributed Programming

Model Architecture Distributed
Programming

Parallel
Programming

Host node also called

• master/slave

• • boss/worker

• • loosely (client
server)

Master control tasks that monitors
and delegates work to subordinate
tasks.

Peer or node only All tasks are basically equal and
work is distributed evenly.

Vector processing
loosely pipeline or array
processing

One worker for each element of the
array or stage in the pipeline.

Tree (parent–child) Dynamically generated workers in a
parent–child relationship. Useful in
these types of algorithms:

• recursion

• recursion

• AND/OR

• tree processing

2.6 Different Techniques for Testing and Debugging are Required

When testing a sequential program the developer can trace the logic of a program in a step-by-step
manner. If the developer starts with the same data and makes sure the system is in the same state, then
the outcome or flow of the logic is predictable. The programmer can find bugs in the software by
starting the program in the necessary state, using the appropriate input and then tracing through the
logic step-by-step. Testing and debugging in the sequential model depends on the predictability of the
program's initial state, and current state given the specified input.

This changes with parallel and distributed environments. It is difficult to reproduce the exact context of
parallel or distributed tasks because of operating system scheduling policies, dynamic workloads on the
computer, processor time slices, process and thread priorities, communication latency, execution
latency, and the random chance involved in parallel and distributed contexts. To reproduce the exact
state the environment was in during testing and debugging requires that every task the operating system
was working on be recreated. The processor scheduling state must be known. The status of virtual
memory and context switching all must be reproduced exactly. Interrupt and signal conditions must be
recreated. In some cases, networking traffic would have to be recreated! Even the testing and debugging
tools impact the exact environment. This means that recreating the same sequence of events in order to
test or debug a program is often out of the question. The reason these things would have to be recreated
is because they can all help to determine which process or thread can execute and on what processor
they can execute. Moreover, it is the particular mix of executing processes and threads that could be the
reason for a deadlock, indefinite postponement, data race, or another kind of problem. Although some
of these issues also affect sequential programming, they don't disrupt the assumptions of the sequential
model. The kind of predictability that is present in the sequential model is simply not available in
concurrency programming. This forces the developer to acquire new tactics for testing and debugging
programs. It also requires that the developer find new ways to prove program correctness.

2.7 The Parallel or Distributed Design Must Be Communicated

There is also the challenge of how to accurately capture a parallel or distributed design in
documentation. We must be able to describe the work breakdown structure as well as the
synchronization and communication between tasks, objects, processes, and threads. Designers must be
able to effectively communicate to developers. Developers must be able to communicate with those that
must maintain and administer the system. Ideally, this should be done using a standard notation and
representation that is readily available to all concerned. However, finding a single documentation
language that is broadly understood and can clearly represent the multiparadigm nature of some of these
systems is elusive. We have chosen the UML (Unified Modeling Language) for this purpose. Table 2-3
lists the seven UML diagrams that are helpful for multithreaded, parallel, or distributed programs.

Table 2-3. Seven UML Diagrams Helpful for Documenting Multithreaded, Parallel, and Distributed Programs

UML Diagrams Descriptions

Activity diagram A type of state diagram in which most (if not all) of the states represent activity
and most of the transitions (if not all) are activated by completion of an activity
in the source states.

Interaction A type of diagram that shows the interaction among a set of objects; the
interaction is described as a message exchanged among them. These diagrams

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec7.htm#ch02table03

UML Diagrams Descriptions

include:

• collaboration diagrams

• sequence diagrams

• activity diagrams

State/concurrent
state diagram

A diagram that shows the sequence of an object's transformation as it state
diagram responds to events. In the case of concurrent state diagram, these
transformations can occur during the same time interval.

Sequence diagram An interaction diagram that shows the organization of the structure of objects
that receive and send messages.

Collaboration
diagram

An interaction diagram that shows the organization of the structure of objects
that receive and send messages.

Deployment
diagram

A diagram that shows the runtime configuration of processing nodes, hardware,
and software components in a system.

Component
diagram

An interaction diagram that shows the dependencies and organization among a
set of physical modules of code (packages) in a system.

The seven diagram types in Table 2-3 are only a subset of the diagram types available in the UML, but
these types of diagrams are immediately applicable to what we want to capture in our concurrency
designs. In particular, the UML's activity, deployment, and state diagrams are very useful in
communicating parallel and distributed processing behavior. Since the UML is the de facto standard for
communicating object-oriented and agent-oriented designs, we rely upon its use in this book. The
Appendix contains a description and explanation for the notation and symbols used in these diagrams.

Summary

Parallel and distributed programming present challenges in several areas. New approaches to software
design and architectures must be adopted. Many of the fundamental assumptions that are held in the
sequential model of programming don't apply in the realm of parallel and distributed programming. The
four primary coordination problems, data race, indefinite postponement, deadlock, and communication
synchronization, are among the major obstacles to programs that require concurrency. Every aspect of
the software development life cycle is impacted when the requirements include parallelism or
distribution from the initial design down to the testing and documentation. In this book, we present
architectural approaches to many of these problems. In addition to the architectural approach, we take
advantage of the multiparadigm capabilities of C++ to provide techniques for managing the complexity
of parallel and distributed programs.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02lev1sec7.htm#ch02table03

Chapter 3. Dividing C++ Programs into Multiple Tasks
"Hence, whatever parallel processes may be going on at a lower (neural) level, at the
symbolic level the human mind is fundamentally a serial machine, accomplishing its work
through temporal sequences of processes, each typically requiring hundreds of milliseconds
for execution."

—Herbert A Simon, The Machine As Mind

In this Chapter

• Process: A Definition

• Anatomy of a Process

• Process States

• Process Scheduling

• Context Switching

• Creating a Process

• Terminating a Process

• Process Resources

• What are Asynchronous and Synchronous Processes?

• Dividing the Program into Tasks

• Summary

Concurrency in a C++ program is accomplished by factoring your program into either multiple
processes or multiple threads. While there are variations on how the logic for a C++ program can be
organized (e.g, within objects, functions, generic templates), the options for (with the exception of
instruction level) parallelization is accounted for through the use of multiple processes and threads. This
chapter focuses on the notion of a process and how C++ programs can be divided into multiple
processes.

3.1 Process: A Definition

A process is a unit of work created by the operating system. It is important to note that processes and
programs are not necessarily equivalent. A program may consist of multiple processes. In some
situations, a process might not be associated with any particular program. Processes are artifacts of the
operating system and programs are artifacts of the developer. Current operating systems such as UNIX/
Linux are capable of managing hundreds or even thousands of concurrently loaded processes.

In order for a unit of work to be called a process it must have an address space assigned to it by the
operating system. It must have a process id. It must have a state and an entry in the process table.
According to the POSIX standard, it must have one or more flows of controls executing within that
address space and the required system resources for those flows of control. A process has a set of
executing instructions that reside in the address space of that process. Space is allocated for the
instructions, any data that belongs to the process, and stacks for function calls and local variables.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec11.htm#ch03lev1sec11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec10#ch03lev1sec10
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec9.htm#ch03lev1sec9
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec8.htm#ch03lev1sec8
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec7.htm#ch03lev1sec7
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03lev1sec6
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec5.htm#ch03lev1sec5
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec3.htm#ch03lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec2.htm#ch03lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec1.htm#ch03lev1sec1

3.1.1 Two Kinds of Processes

When a process executes, the operating system assigns the process to a processor. The process executes
its instructions for a period a time. The process is preempted so another process can be assigned the
processor. The operating system scheduler switches between the code of one process, user, or system to
the code of another process, giving each process a chance to execute their instructions. There are user
and system processes. Processes that execute system code are called system processes. System
processes administer to the whole system. They perform housekeeping tasks such as allocating
memory, swapping pages of memory between internal and secondary storage, checking devices, and so
on. They also perform tasks on behalf of the user processes such as fulfill I/O requests, allocate
memory, and so on. User processes execute its own code and sometimes they make system function
calls. When a user process executes its own code, it is in user mode. In user mode, the process cannot
execute certain privileged machine instructions. When a user process makes a system function call, for
example read(), write(), open(), it is executing operating system instructions. What occurs is the user
process is put on hold until the system call has completed. The processor is given to the kernel to
complete the system call. At that time the user process is said to be in kernel mode and cannot be
preempted by any user processes.

3.1.2 Process Control Block

Processes have characteristics used for identification and determining their behavior during execution.
The kernel maintains data structures and provides system functions that allow the user to have access to
this information. Some information is stored in the PCB (process control block). The information stored
in the PCB describes the process to the operating system. This information is needed in order for the
operating system to manage each process. When the operating system switches between a process
utilizing the CPU to another process, it saves the current state of the executing process and its context to
the PCB save area in order to restart the process the next time it is assigned to the CPU. The PCB is
read and changed by various modules of the operating system. Modules concerned with the monitoring
the operating system's performance, scheduling, allocating resources, and interrupt processing access
and/or modify the PCB. PCB information includes:

• current state and priority of the process

• process, parent, and child identifiers

• pointers to allocated resources

• pointers to location of the process's memory

• pointer to the process's parent and child processes

• processor utilized by process

• control and status registers

• stack pointers

The information stored in the PCB can be organized as information concerned with process control
such as the current state and priority of the process, pointers to parent/child PCBs, allocated resources,
and memory. This also includes any scheduling-related information, process privileges, flags,
messages, and signals that have to do with communication between processes (IPC, or interprocess
communication). The process control information is required by the operating system in order to
coordinate the concurrently active processes. Stack pointers and the content of user, control, and status
registers describe information concerned with the state of the processor. When a process is running,
information is placed in the registers of the CPU. Once the operating system decides to switch to

another process, all the information in those registers has to be saved. When the process gains the use of
the CPU again, this information can be restored. Other information has to do with process
identification. This is the process id (PID), and the parent id (PPID). These identification numbers are
unique for each process. They are positive, nonzero integers.

3.2 Anatomy of a Process

The address space of a process is divided into three logical segments: text (program code), data and
stack segments. Figure 3-1 shows the logical layout of a process. The text segment is at the bottom of
the address space. The text segment contains the instructions to be executed, called the program code.
The data segment above it contains the initialized global, external, and static variables for the process.
The stack segment contains locally allocated variables and parameters passed to functions. Because a
process can make system function calls as well as user-defined function calls, two stacks are maintained
in the stack segment, the user-stack and the kernel-stack. When a function call is made, a stack-frame is
constructed and pushed onto either the user or kernel stack depending on whether the process is in user
or kernel mode. The stack segment grows downward toward the data segment. The stack frame is
popped from the stack when the function returns. The text, data, stack segments, and process control
block are part of what forms the process image.

Figure 3-1. The address space of a process divided into the text, data, and stack segments. This is the logical layout of
a process.

The address space of a process is virtual. Virtual storage dissociates the addresses referenced in an
executing process from the addresses actually available in internal memory. This allows the addressing
of storage space much larger than what is available. The segments of the process's virtual address space
are contiguous blocks of memory. Each segment and physical address space are broken up into chunks
called pages. Each page has a unique page frame number. The virtual page frame number is used as an
index into the process's page tables. The page table entries contain a physical page frame number, thus
mapping the virtual page frames to physical page frames. This is depicted in Figure 3-2. As illustrated,
virtual address space is contiguous but it is mapped to physical pages in any order.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec2.htm#ch03fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec2.htm#ch03fig01

Figure 3-2. The contiguous virtual page frames mapped to pages in physical memory.

Although the virtual address space of each process is protected to prevent another process from
accessing it, the text segment of a process can be shared among several processes. Figure 3-2 also
shows how two processes can share the same program code. The same physical page frame number is
stored in the page table entries of both processes' page tables. As illustrated in Figure 3-2, process A
virtual page frame 0 is mapped to physical page frame 5 as well as process B's virtual page frame 2.

In order for the operating system to manage all the processes stored in internal memory, it creates and
maintains process tables. Actually, the operating system has a table for all of the entities that it
manages. Keep in mind that the operating system manages not only processes but all the resources of
the computer including devices, memory, and files. Some of the memory, devices, and files are
managed on behalf of the user processes. This information is referenced in the PCB as resources
allocated to the process. The process table will have an entry for each process image in memory. Each
entry contains the process and parent process id, real and effective user id and group id, list of pending
signals, the location of the text, data, and stack segments, and the current state of the process. When the
operating system needs to access a process, the process is looked up in the process table and then the
process image is located in memory. This is depicted in Figure 3-3.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec2.htm#ch03fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec2.htm#ch03fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec2.htm#ch03fig02

Figure 3-3. The operating system control tables. Each entry in the process table stores represents a process in the
system.

3.3 Process States

During a process' execution, the process's state changes. The state of the process is the current condition
or status of the process. In the UNIX environment, a process can be in the following states:

• running

• runnable (ready)

• zombied

• waiting (blocked)

• stopped

The process changes its state when certain circumstances created by the process or the operating system
exist. The state transition is the circumstance that causes the process to change its state. Figure 3-4 is
the state diagram for the UNIX environment. The state diagram has nodes and directed edges between
the nodes. Each node represents the state of the process. The directed edges between the nodes are state
transitions. Table 3-1 lists the state transitions with a brief description. As Figure 3-4 and Table 3-1
show, only certain transitions are allowed between states. For example, there is a transition, an edge,
between ready and running but there is no transition between sleeping and running, meaning there are
circumstances that cause a process to move from the ready state to the running state but there are no
circumstances that cause a process to move from the sleeping state to a running state.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec3.htm#ch03table01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec3.htm#ch03fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec3.htm#ch03table01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec3.htm#ch03fig04

Figure 3-4. The process states and transitions in the UNIX/Linux environments.

When a process is created, it is ready to execute its instructions but must first wait until the processor is
available. Each process is only allowed to use a processor for a discrete interval called a time slice.
Processes waiting to use a processor are placed in a ready queues. Only processes in the ready queues
are selected (by the scheduler) to use the processor. Processes in the ready queues are runnable. When
the processor is available, a runnable process is assigned a processor by the dispatcher. When the time
slice has expired, the process is removed from the processor, whether it has finished executing all its
instructions or not. The process is placed back in the ready queue to wait for its next turn to use the
processor. A new process is selected from a ready queue and is given its time slice to execute. System
processes are not preempted. When they are given the processor, they run until completion. If the time
slice has not expired, a process may voluntarily give up the processor if it cannot continue to execute.
The process may have made a request to access an I/O device by making a system call or it may need to
wait on a synchronization variable to be released. Processes that cannot continue to execute because
they are waiting for an event to occur are in a sleeping state. They are placed in a queue with other
sleeping processes. They are removed from that queue and placed back in the ready queue when the
event occurrs. The processor may be taken away from a process before its time slice has run out if a
process with a higher priority, like a system process, is runnable. The preempted process is still
runnable and therfore placed back in the ready queue.

Table 3-1. Process Transitions

State transitions Descriptions

READY RUNNIN
G (dispatch)

The process is assigned to the processor.

RUNNING READ
Y (timer runout)

The time slice the process is assigned to the processor has run out. The
process is placed back in the ready queue.

RUNNING READ
Y (preempt)

The process has been preempted before the time slice ran out. This can occur
if a process with a higher priority is runnable. The process is placed back in

State transitions Descriptions

the ready queue.

RUNNING SLEEP
ING (block)

The process gives up the processor before the time slice has run out. The
process may need to wait for an event or has made a system call, for example,
a request for I/O. The process is placed in a queue with other sleeping
processes.

SLEEPING READ
Y (unblock)

The event the process was waiting for has occured or the system call has
completed, for example, I/O request is filled. The process is placed back in
the ready queue.

RUNNING STOP
PED

The process gives up the processor because it has received a signal to stop.

STOPPED READ
Y

The process has received the signal to continue and is placed back in the
ready queue.

RUNNING ZOMB
IED

The process has been terminated and awaits the parent to retrieve its exit
status from the process table.

ZOMBIED EXIT The parent process has retrieved the exit status and the process exits the
system.

RUNNING EXIT The process has terminated, the parent has retrieved the exit status, and the
process exits the system.

A running process can receive a signal to stop executing. The stopped state is different from a sleeping
state because the time slice has not expired nor has the process made any requests of the system. The
process may receive a signal to stop because it is being debugged or some situation in the system has
occured. The process makes a transition from running state to stopped state. Later, the process may be
awakened or destroyed.

When a process has executed all its instructions, it exits the system. The process is removed from the
process table, the PCB is destroyed, and all of its resources are deallocated and returned to the system
pool of available resources. A process that is unable to continue executing and cannot exit the system is
zombied. A zombied process does not use any system resources but it still maintains an entry in the
process table. When the process tables contain too many zombied processes, the performance of the
system is affected, which can possibly cause the system to reboot.

3.4 Process Scheduling

When a ready queue contains several processes, the scheduler must determine which process should be
assigned to a processor first. The scheduler maintains data structures that allow it to schedule the
processes in an efficient manner. Each process is given a priority class and placed in a priority queue
with other runnable processes with the same priority class. There are multiple priority queues, each
representing a different priority class used by the system. These priority queues are stratified and placed
in a dispatch array called the multilevel priority queue, illustrated in Figure 3-5. Each element in the
array points to a priority queue. The scheduler assigns the process at the head of the nonempty highest
priority queue to the processor.

Figure 3-5. The multilevel priority queue in which each entry of the dispatch array points to a ready queue of
processes with the same priority level.

Priorities can be dynamic or static. Once a static priority of a process is set, it cannot be changed.
Dynamic priorities can be changed. Processes of the highest priority can monopolize the use of the
processor. If the priority of a process is dynamic, the initial priority can be adjusted to a more
appropriate value. The process is placed in a priority queue that has a higher priority. A process
monopolizing the processor can also be given a lower priority or other processes can be given a higher
priority than that process. In the UNIX/Linux environments, the range of priority levels is from -20 to
19. The higher the value, the lower the priority.

When assigning priority to a user process, what the process spends most of its time doing should be
considered. Some processes are CPU intensive. CPU-intensive processes use the processor for the
whole time slice. Some processes spend most of their time waiting for I/O or some other event to occur.
When such a process is ready to use a processor, it should be given the processor immediately so it can
make its next request for I/O. Processes that are interactive may require a high priority to ensure good
response time. System processes have a higher priority than user processes.

3.4.1 Scheduling Policy

The processes are placed in a priority queue according to a scheduling policy. Two of the scheduling

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03fig05

policies used by the UNIX/Linux systems are FIFO (First-In-First-Out) and round-robin (RR) policies.
Figure 3-6(a) shows the FIFO scheduling policy. With a FIFO scheduling policy, processes are
assigned a processor according to the arrival time in the queue. When a running process time slice has
expired, it is placed at the head of its priority queue. When a sleeping process becomes runnable, the
process is placed at the end of its priority queue. A process can make a system call and give up a
processor to another process with the same priority level. The process will be placed at the end of its
priority queue.

Figure 3-6. The behavior of the First-In-First-Out (FIFO) and round-robin (RR) scheduling policies. The FIFO
scheduling policy assigns processes to the processor according to its arrival time in the queue. The
process runs until completion. The RR scheduling policy assigns processes using FIFO scheduling but
when the time slice runs out the process is placed at the back of the ready queue.

In a round-robin scheduling policy, all processes are considered equal. Figure 3-6(b) depicts the RR
scheduling policy. RR scheduling is the same as FIFO scheduling with an exception: when the time
slice expires, the process is placed at the back of the queue and the next process in the queue is assigned
the processor.

3.4.2 Using the ps Utility

The ps utility generates a report that summarizes execution statistics for the current processes. This
information can be used to monitor the status of current processes. Table 3-2 lists the common headers

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03fig06

and the meaning of the output for the ps utility for the Solaris/Linux environments. In a multi-processor
environment, the ps utility is quite useful to monitor the state, CPU and memory usage, processor
utilized, priority, and start time of the current processes executing. Command options control which
processes are listed and what information is displayed about each process. In the Solaris environment,
by default (no command options used), information about processes with the same effective user id and
controlling terminal of the calling invoker is displayed. In the Linux environment, by default, the
processes with the same user id as the invoker are displayed. In both environments, the only
information that will be displayed is PID, TTY, TIME and COMMAND. These are some of the options
that control which processes are displayed:

-t
term

List the processes associated with the terminal specified by term

-e All current processes

-a (Linux) All processes with tty terminal except the session leaders

 (Solaris) Most frequently requested processes except group leaders and processes not
associated with a terminal

-d All current processes except session leaders

T (Linux) All processes in this terminal

a (Linux) All processes including those of other users

r (Linux) Only running processes

Table 3-2. Common Headers Used for ps Utility in the Solaris/Linux Environments

Headers Description

USER, UID Username of process owner

PID Process ID

PPID Parent process ID

PGID ID of process group leader

SID ID of session leader

Headers Description

%CPU Percentage of CPU time used by the process in the last minute

RSS Amount of real RAM currently used by the process in k

%MEM Percentage of real RAM used by the process in the last minute

SZ Size of virtual memory of the process's data and stack in k or pages

WCHAN Address of an event for which a process is sleeping

COMMAND CMD Command name and arguments

TT, TTY Process's controlling terminal

S, STAT Current state of the process

TIME Total CPU time used by the process (HH:MM:SS)

STIME, START Time or date the process started

NI Nice value of the process

PRI Priority of the process

C, CP Short-term CPU-use factor used by the scheduler to compute PRI

ADDR Memory address of a process

LWP ID of the lwp (thread)

NLWP The number of lwps

Synopsis
(Linux)
ps -[Unix98 options]
 [BSD-style options]
 --[GNU-style long options

(Solaris)
ps [-aAdeflcjLPy] [-o format] [-t termlist][-u userlist]
 [-G grouplist][-p proclist] [-g pgrplist] [-s sidlist]

The following list contains some of the command options used to control the information displayed
about the processes:

-f full listings

-l long format

-j jobs format

Below is an example of using the ps utility in Solaris/Linux environments:

ps -f

This will display information about the default processes in each environment. Figure 3-7 shows the
output in the Solaris environment. The command options can also be used in tandem. Figure 3-7 also
shows the output of using -l and -f together in the Solaris environment:

ps -lf

Figure 3-7 Output of ps -f and ps -lf in the Solaris environment.

//SOLARIS

$ ps -f
 UID PID PPID C STIME TTY TIME CMD
 cameron 2214 2212 0 21:03:35 pts/12 0:00 -ksh
 cameron 2396 2214 2 11:55:49 pts/12 0:01 nedit

$ ps -lf
F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD
8 S cameron 2214 2212 0 51 20 70e80f00 230 70e80f6c 21:03:35 pts/12 0:00 -ksh
8 S cameron 2396 2214 1 53 24 70d747b8 843 70152aba 11:55:49 pts/12 0:01 nedit

The l command option shows the additional headers: F, S, C, PRI, NI, ADDR, and WCHAN. The P
command option will display the PSR header. Under this header is the number of the processor to
which the process is assigned or bound.

Figure 3-8 shows the output of the ps utility using the Tux command options in the Linux environment.
The %CPU, %MEM, and STAT information is displayed for the processes. In a multiprocessor
environment, this information can be used to monitor which processes are dominating CPU and
memory usage. The STAT header shows the state or status of the process. Table 3-3 lists how the status
is encoded and their meanings. The STAT header can reveal additional information about the status of
the process:

D (BSD) Disk wait

P (BSD) Page wait

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03table03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03fig08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03fig07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03fig07

X (System V) Growing: waiting for memory

W (BSD) Swapped out

K (AIX) Available kernel process

N (BSD) Niced: execution priority lowered

> (BSD) Niced: execution priority artificially raised

< (Linux) High priority process

L (Linux) Pages are locked in memory

Figure 3-8 Output of ps Tux in the Linux environment.

//Linux

[tdhughes@colony]$ ps Tux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
tdhughes 19259 0.0 0.1 2448 1356 pts/4 S 20:29 0:00 -bash
tdhughes 19334 0.0 0.0 1732 860 pts/4 S 20:33 0:00 /home/tdhughes/pv
tdhughes 19336 0.0 0.0 1928 780 pts/4 S 20:33 0:00 /home/tdhughes/pv
tdhughes 19337 18.0 2.4 26872 24856 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19338 18.0 2.3 26872 24696 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19341 17.9 2.3 26872 24556 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19400 0.0 0.0 2544 692 pts/4 R 20:38 0:00 ps Tux
tdhughes 19401 0.0 0.1 2448 1356 pts/4 R 20:38 0:00 -bash

These codes will precede the status codes. If an N precedes the status, this means that the process is
running at a lower priority level. If a process has a status SW<, this means the process is sleep, swapped
out, and has a high priority level.

3.4.3 Setting and Returning the Process Priority

The priority level of a process can be changed by using the nice() function. Each process has a nice
value that is used to calculate the priority level of the calling process. A process inherits the priority of
the process that created it. The priority of a process can lowered by raising its nice value. Only
superuser and kernel processes can raise their priority levels.

Synopsis
#include <unistd.h>
int nice(int incr);

A low nice value raises the priority level of the process. The incr parameter is the value added to the
current nice value of the calling process. The incr can be negative or positive. The nice value is a non-
negative number. A positive incr value will raise the nice value, therefore lowering the priority level. A
negative incr value will lower the nice value, therefore raising the priority level. If the incr value raises
the nice value above or below its limits, the nice value of the process will be set to the highest or lowest
limit accordingly. If successful, the nice() function will return the new nice value of the process. If
unsuccessful, the function will return -1 and the nice value is not changed.

Synopsis
#include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int value);

The setpriority() function sets the nice value for a process, process group, or user. The getpriority()
returns the priority of a process, process group, or user. Example 3.1 shows the syntax to the functions
setpriority() and getpriority() to set and return the nice value of the current process.

Example 3.1 Using setpriority() and getpriority().

#include <sys/resource.h>

//...
id_t pid = 0;
int which = PRIO_PROCESS;
int value = 10;
int nice_value;
int ret;
nice_value = getpriority(which,pid);
if(nice_value < value) {
 ret = setpriority(which,pid,value);
}
//...

In Example 3.1, the priority of the calling process is being returned and set. If the calling process's nice
value is < 10, the nice value of the process is set to 10. The target process is determined by the values
stored in the which and who parameters. The which parameter can specify a process, process group, or
user. It can have the following values:

PRIO_PROCESS Indicates a process

PRIO_PGRP Indicates a process group

PRIO_USER Indicates a user

Depending on the value of which, the who parameter is the id number of a process, process group, or
effective user. In Example 3.1, which is assigned PRIO_PROCESS. A 0 value for who indicates the
current process, process group, or user. In Example 3.1, the who is set to 0, indicating the current
process. The value parameter for setpriority() shall be the new nice value for the specified process,
process group, or user. The range of nice value in the Linux environment is -20 to 19. In Example 3.1,

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec4.htm#ch03ex01

the value of nice is set to 10 if the current nice value is less than 10. Unlike the function nice(), the
value passed to setpriority() is the actual value of nice and not an offset to be added to the current nice
value.

In a process with multiple threads, the modification of the priority will affect the priority of all the
threads in that process. If successful, getpriority() will return the nice value of the specified process. If
successful, setpriority() will return 0. If unsuccessful, both functions will return -1. The return value -1
is a legitimate nice value for a process. To determine if an error has occurred, check the external
variable errno.

3.5 Context Switching

A context switch occurs when the use of the processor is switched from one process to another process.
When a context switch occurs, the system saves the context of the current running process and restores
the context of the next process selected to use the processor. The PCB of the preempted process is
updated. The process state field is changed from the running to the appropriate state (runnable, blocked,
zombied, etc.). The contents of the processor's registers, state of the stack, user and process
identification and privileges, and scheduling and accounting information are saved and updated.

The system must keep track of the status of the process's I/O and other resources, and any memory
management data structures. The preempted process is placed in the appropriate queue.

A context switch occurs when:

• a process is preempted

• a process voluntarily gives up the processor

• a process makes an I/O request or needs to wait for an event

• a process switches from user mode to kernel mode

When the preempted process is selected again to use the processor, its context is restored and execution
continues where it left off.

3.6 Creating a Process

To run any program the operating system must first create a process. When a new process is created, a
new entry is placed in the main process table. A new PCB is created and initialized and the process
identification portion of the PCB contains a unique process id number and the parent process id. The
program counter is set to point to the program entry point and the system stack pointers are set to define
the stack boundaries for the process. The process is initialized with any of the attributes requested. If
the process is not given a priority value, it is given the lowest priority value by default. The process
initially does not own any resources unless there is an explicit request for resources or they have been
inherited from the creator process. The state of the process is runnable and placed in the runnable or
ready queue. Address space is allocated for the process. How much space to be set aside can be
determined by default based on the type of process. The size can also be set as a request by the creator
of the process. The creator process can pass the size of the address space to the system at the time the
process is created.

3.6.1 Parent–Child Process Relationship

A process that creates or spawns another process is a parent process to the spawned child process. The
init process is the parent of all user processes. The init process is the very first process visible to the
UNIX system when booted up. The init process brings the system up, runs other programs when
necessary, and starts daemons. It has a PID of 1. The child process has its own unique PID, PCB, and a
separate entry in the process table. The child process can also spawn a process. An executing
application can create a tree of processes. For example, a parent process searches a hard drive for a
specified HTML document. The HTML document name is written to a global data structure like a list,
which contains all the request for documents. Once the document is located, it is removed from the
request list and the path is written to another global data structure, which contains the paths of located
documents. To ensure a good response to the user requests, the process has a limit of five requests
pending in the list. Once the limit has been reached, two new processes are spawned to handle to work
load. For each process that reaches its limits, two new processes are spawned. Figure 3-9 shows a tree
of processes created in this manner. A process has only one parent process, but a parent process can
have many children.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03fig09

Figure 3-9. A tree of processes. A process spawns two new processes if a certain condition is met.

A child process can be created with its own executable image or as a duplication of the parent process.
As a duplicate of the parent, the child inherits many of the attributes of the parent, including its
environment, priority and scheduling policy, resource limits, open files, and shared memory segments.
If the child process advances a file's position pointer, or closes the file, this will also be seen by the
parent process. If the parent allocates any additional resources after the child has been created, they are
not accessible to the child. In turn, if the child process allocates any resources, they are not accessible
by the parent.

Some attributes of the parent are not inherited by the child. As mentioned earlier, the child does not
inherit the parent's PID or PCB. Of course, each process will have different parents. The child does not
inherit any file locks created by the parent or any pending signals. Timing information such as
processor usage and creation time are reset for the child process. Although these processes have this
relationship, they function as separate processes. The program and stack counters operate separately.
Because the data segments are copied, not shared, the child can change the values of its variables
without affecting the parent's copy. The child and parent share the code segment and execute the
instructions immediately following the system call that creates the child process. They do not execute
those instructions in lock step because they compete for the processor with all the other processes
loaded in the memory.

Once created, the child process image can be replaced with another executable image. The code, data,
and stack segments as well as its heap is over-written with the new process image. The new process
preserves its PID and PPID. Table 3-3 lists the attributes preserved by the new process after its
executable image has been replaced. It also lists the system calls that return these attributes. The
environment variables are also preserved unless new environment variables were specified at time of
the executable was replaced. Files that were open before the executable was replaced will still be open
afterward. The new process will create files with the same file permissions. The CPU time will not be
reset.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03table03

Table 3-3. Attributes Preserved by the New Process After Its Process Image Has Been Replaced with a New Process
Image

Attributes preserved Description

Process ID getpid()

Parent Process ID getppid()

Process Group ID getpgid()

Session membership getsid()

Real User ID getuid()

Real Group ID getgid()

Supplementary Group IDs getgroups()

Time left on an alarm signal alarm()

Nice value nice()

Time used so far times()

Process signal mask sigprocmask()

Pending signals sigpending()

File size limit ulimit()

Resource limit getrlimit()

File mode creation mask umask()

Current working directory getcwd()

Root directory

3.6.1.1 The pstree Utility

The pstree utility in the Linux environment displays a tree of processes. It shows the running processes
in a tree structure. The root of the tree is the init process.

Synopsis
pstree [-a] [-c] [-h | -Hpid] [-l] [-n] [-p] [-u] [-G] | -U]
[pid | user]
pstree -V

These are some of the options that can be used with this utility:

-a Show command-line arguments

-h Highlight the current process and its ancestors

-H Like -h but highlight the specified process instead

-n Sort processes with the same ancestor by PID instead of by name

-p Show PIDs

Figure 3-10 shows the output of pstree -h in the Linux environment.

Figure 3-10 Output of pstree -h in the Linux environment.

ka:~ # pstree -h
init-+-applix
 |-atd
 |-axmain
 |-axnet
 |-cron
 |-gpm
 |-inetd
 |-9*[kdeinit]
 |-kdeinit -+-kdeinit
 | |-kdeinit---bash---gimp---script-fu
 | '-kdeinit---bash -+-man---sh---sh---less
 | '-pstree
 |-kdeinit---cat
 |-kdm-+-X
 | '-kdm---kde---ksmserver
 |-kflushd
 |-khubd
 |-klogd
 |-knotify
 |-kswapd
 |-kupdate
 |-login---bash
 |-lpd
 |-mdrecoveryd
 |-5*[mingetty]

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03fig10

 |-nscd---nscd---5*[nscd]
 |-sshd
 |-syslogd
 |-usbmgr
 '-xconsole

3.6.2 Using the fork() Function Call

The fork() call creates a new process that is a duplication of the calling process, the parent. The fork()
returns two values if it succeeds, one to the parent and one to the child process. It will return 0 to the
child process and return the PID of the child to the parent process. The parent and child processes
continue to execute from the instruction immediately following the fork() call. If not successful,
meaning no child process was created, -1 is returned to the parent process.

Synopsis
#include <unistd.h>

pid_t fork(void);

The fork() will fail if the system does not have the resources to create another process. If there is a limit
to the number of child processes the parent can spawn or the number of system-wide executing
processes and that limit has been exceeded, the fork() will fail. In that case, errno will be set to indicate
the error.

3.6.3 Using the exec Family of System Calls

The exec family of functions replaces the calling process image with a new process image. The fork()
call creates a new process that is a duplication of the parent process where the exec function replaces
the duplicate process image with a new one. The new process image is a regular executable file and is
immediately executed. The executable can be specified as a path or a file-name. These functions can
pass command-line arguments to the new process. Environment variables can also be specified. There
is no return value if the function is not successful because the process image that contained the call to
the exec is overwritten. If unsuccessful, -1 is returned to the calling process.

All of the exec() functions can fail under these conditions:

• Permissions are denied

Search permission is denied for the executable's file directory

Execution permission is denied for the executable file

• Files do not exist

Executable file does not exist

Directory does not exist

• File is not executable

File is not executable because it is open for writing by another process

File is not an executable file

• Problems with symbolic links

Loop exists when symbolic links are encountered while resolving the pathname to the
executable

Symbolic links cause the pathname to the executable to be too long

The exec functions are used with the fork(). The fork() creates and initializes the child process with the
duplicate of the parent. The child process then replaces its process image by calling an exec(). Example
3.2 shows an example of the fork-exec usage.

Example 3.2 Using the fork-exec system calls.

//...
RtValue = fork();
if(RtValue == 0){
 execl("/path/direct","direct",".");
}

In Example 3.2, the fork() function is called and the return value is stored in RtValue. If RtValue is 0,
then it is the child process. The execl() function is called. The first parameter is the path to the
executable module, the second parameter is the execution statement, and the third parameter is the
argument. direct is utility that lists all the directories and subdirectories from a given directory. There
are six versions of the exec functions, each having a different calling convention and use.

3.6.3.1 execl() Functions

The execl(), execle(), execlp() functions pass the command-line arguments as a list. The number of
command-line arguments should be known at compile time in order for these functions to be useful.

• int execl(const char *path,const char *arg0,.../*,
(char *)0 */);

path is the pathname to the program executable. It can be specified as an absolute pathname or a
relative pathname from the current directory. The next arguments are the list the command-line
arguments, from arg0 to argn. There can be n number of arguments. The list is to be followed by
a NULL pointer.

• int execle(const char *path,const char *arg0,.../*,
(char *)0 *, char *const envp[]*/);

This function is identical to execl() except it has an additional parameter, envp[]. This parameter
contains the new environment for the new process. envp[] is a pointer to a null-terminated array
of null-terminated strings. Each string has the form:

name=value

where name is the name of the environment variable and value is the string to be stored. envp[]
can be assigned in this manner:

char *const envp[] = {"PATH=/opt/kde2:/sbin",
"HOME=/home",NULL};

PATH and HOME are the environment variables in this case.

• int execlp(const char *file,const char *arg0,.../*,
(char *)0 */);

file is the name of the program executable. It uses the PATH environment variable to locate the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03ex02

executables. The remaining arguments list the command-line arguments as explained for execl()
function.

These are examples of the syntax of the execl() functions using these arguments:

char *const args[] = {"direct",".",NULL};
char *const envp[] = {"files=50",NULL};
execl("/path/direct","direct",".",NULL);
execle("/path/direct","direct",".",NULL,envp);
execlp("direct","direct",".",NULL);

Each shows the syntax of how each execl() function creates a process that executes the direct program.

Synopsis
#include <unistd.h>

int execl(const char *path,const char *arg0,.../*,(char *)0 */);
int execle(const char *path,const char *arg0,.../*,
 (char *)0 *,char *const envp[]*/);
int execlp(const char *file,const char *arg0,.../*,(char *)0 */);
int execv(const char *path,char *const arg[]);
int execve(const char *path,char *const arg[],
 char *const envp[]);
int execvp(const char *file,char *const arg[]);

3.6.3.2 execv() Functions

The execv(), execve(), and execvp() functions pass the command-line arguments in a vector of pointers
to null-terminated strings. The number of command-line arguments should be known at compile time in
order for these functions to be useful. argv[0] is usually the execution statement.

• int execv(const char *path,char *const arg[]);

path is the pathname to the program executable. It can be specified as an absolute pathname or
relative pathname to the current directory. The next argument is the null-terminated vector that
contains the command-line arguments as null-terminated strings. There can be n number of
arguments. The vector is to be followed by a NULL pointer. arg[] can be assigned in this
manner:

char *const arg[] = {"traverse",".", ">","1000",NULL};

This is an example of a function call:

execv("traverse",arg);

In this case, the traverse utility will list all files in the current directory larger than 1000 bytes.

• int execve(const char *path,char *const arg[],char
*const envp[]);

This function is identical to execv() except it has the additional parameter envp[], described
earlier.

• int execvp(const char *file,char *const arg[]);

file is the name of the program executable. The next argument is the null-terminated vector that
contains the command-line arguments as null-terminated strings. There can be n number of
arguments. The vector is to be followed by a NULL pointer.

These are examples of syntax of the execv() functions using these arguments:

char *const arg[] = {"traverse",".", ">","1000",NULL};
char *const envp[] = {"files=50",NULL};
execv("/path/traverse",arg);
execve("/path/traverse",arg,envp);
execvp("traverse",arg);

Each shows the syntax of how each execv() function creates a process that executes the traverse
program.

3.6.3.3 Determining Restrictions on exec() Functions

There is a limit on the size argv[] and envp[] can be when passed to the exec() functions. The sysconf()
can be used to determine the maximum size of command-line arguments plus the size of environment
variables for the exec() functions that accept the envp[] parameter. To return the size, name should have
the value _SC_ARG_MAX.

Synopsis
#include <unistd.h>

long sysconf(int name);

Another restriction when using exec() and the other functions used to create processes is the maximum
number of simultaneous processes allowed per user id. To return this number, name has the value
_SC_CHILD_MAX.

3.6.3.4 Reading and Setting Environment Variables

Environment variables are null-terminated strings that store system-dependent information such as
paths to directories that contain commands, libraries, functions, and procedures used by a process. They
can also be used to transmit any useful user-defined information between the parent and the child
processes. They provide a mechanism for providing specific information to a process without having it
hardcoded in the program code. System environment variables are predefined and common to all shells
and processes in that system. The variables are initialized by startup files. Below are the common
system variables:

$HOME The absolute pathname of your home directory

$PATH A list of directories to search for commands

$MAIL The absolute pathname of your mailbox

$USER Your user id

$SHELL The absolute pathname of your login shell

$TERM Your terminal type

They can be stored in a file or in an environment list. The environment list will contain pointers to null-
terminated strings. The variable:

extern char **environ

points to the environment list when the process begins to execute. These strings will have the form:

name=value

as explained earlier. Processes initialized with the functions execl(), execlp(), execv(), and execvp() will
inherit the environment of the parent process. Processes initialized with the functions execve() and
execle() set the environment for the new process.

There are functions and utilities that can be called to examine, add, or modify environment variables.
The getenv() is used to determine whether a specific variable has been set. The parameter name is the
environment variable in question. The function will return NULL if the specified variable has not been
set. If the variable has been set, the function will return a pointer to a string containing the value.

Synopsis
#include <stdlib.h>

char *getenv(const char *name);
int setenv(const char *name, const char *value,
 int overwrite);
void unsetenv(const char *name);

For example:

string Path;

Path = getenv("PATH");

the string Path is assigned the value contained in the predefined environment PATH.

The setenv() is used to change or add a variable to the environment of the calling process. The
parameter name contains the name of the environment variable to be changed or added. It is assigned
the value stored in value. If the name variable already exists, then the value is changed to value if the
overwrite parameter is nonzero. If overwrite is 0, the content of the specified environment variable is
not modified. setenv() return 0 if it is successful and -1 if unsuccessful. The unsetenv() removes the
environment variable specified by name.

3.6.4 Using system() to Spawn Processes

The system() is used to execute a command or executable program. The system() causes the execution
of fork-exec, and a shell. The system() function executes a fork() and the child process calls an exec()
with a shell that executes the given command or program.

Synopsis
#include <stdlib.h>

int system(const char *string);

The string parameter can be a system command or the name of an executable file. If successful, the
function returns the termination status of the command or return value (if any) of the program. Errors
can happen at several levels, the fork() or exec() functions may fail or the shell may not be able to
execute the command or program.

The function returns a value to the parent process. The function returns 127 if the exec() fails and -1 if
some other error occurs. The return code of the command is returned if the function succeeds. This
function does not affect the wait status of any of the children processes.

3.6.5 The POSIX Functions for Spawning Processes

Similar to the system() and fork-exec method of process creation, the posix_spawn() functions create
new child processes from specified process images. But the posix_spawn() functions create child
processes can be created with more fine-grained control. These functions control the attributes the child
process inherits from the parent process including:

• file descriptors

• scheduling policy

• process group id

• user and group id

• signal mask

They also control whether signals ignored by the parent will be ignored by the child or reset to a default
action. Controlling file descriptors allow the child process independent access to the data stream
independent opened by the parent. Being able to set the child's process group id affects how the child's
job control will relate to that of the parent. The child's scheduling policy can be set to be different from
the scheduling policy of the parent.

Synopsis
#include <spawn.h>

int posix_spawn(pid_t *restrict pid, const char *restrict path,
 const posix_spawn_file_actions_t *file_actions,
 const posix_spawnattr_t *restrict attrp,
 char *const argv[restrict],
 char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid, const char *restrict file,
 const posix_spawn_file_actions_t *file_actions,
 const posix_spawnattr_t *restrict attrp,
 char *const argv[restrict],
 char *const envp[restrict]);

The difference between these two functions is posix_spawn() has a path parameter and posix_spawnp()

has a file parameter. The path parameter in the posix_spawn() function is the absolute or relative
pathname to the executable program file. The file parameter in the posix_spawnp() function is the name
of the executable program. If the parameter contains a slash, then file will be used as a pathname. If not,
then the path to the executable is determined by the PATH environment variable.

The file_action parameter is a pointer to a posix_spawn_file_actions_t structure:

struct posix_spawn_file_actions_t{
{
 int __allocated;
 int __used;
 struct __spawn_action *actions;
 int __pad[16];
};

The posix_spawn_file_actions_t is a data structure that contains information about the actions to be
performed in the new process with respect to file descriptors. The file_action parameter is used to
modify the parent's set of open file descriptors to a set of file descriptors for the spawned child process.
This structure can contain several file action operations to be performed in the sequence in which they
were added to the spawn file action object. These file action operations are performed on the open file
descriptors of the parent process. These operations can duplicate, reset, add, delete or close a specified
file descriptors on behalf of the child process even before it's spawned. If the file_action parameter is a
null pointer, then the file descriptors opened by the parent process will remain open for the child
process without any modifications. Table 3-4 lists the functions used to add file actions to the
posix_spawn_file_actions object.

The attrp parameter points to a posix_spawnattr_t structure:

struct posix_spawnattr_t
{
 short int __flags;
 pid_t __pgrp;
 sigset_t __sd;
 sigset_t __ss;
 struct sched_param __sp;
 int __policy;
 int __pad[16];
};

This structure contains information about the scheduling policy, process group, signals and flags for the
new process. The descriptions of individual attributes are as follows:

__flags Used to indicate which process attributes are to be modified in the spawned process.

__pgrp The id of the process group to be joined by the new process.

__sd Represents the set of signals to be forced to use default signal handling by the new process.

__ss Represents the signal mask to be used by the new process.

__sp Represents the scheduling parameter to be assigned to the new process.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03table04

__policy Represents the scheduling policy to be used by the new process.

Table 3-4. Functions Used to Add File Actions to the posix_spawn_file_actions Object

File Action Attributes Functions Descriptions

int
posix_spawn_file_actions_addclose
 (posix_spawn_file_actions_t
 *file_actions, int fildes);

Adds a close() action to a spawn file action object
specified by file_actions. This causes the file descriptor
fildes to be closed when the new process is spawned using
this file action object.

int
posix_spawn_file_actions_addopen
 (posix_spawn_file_actions_t
 *file_actions, int fildes,
 const char *restrict path,
 int oflag, mode_t mode);

Adds an open() action to a spawn file action object
specified by file_actions. This causes the file named path
with the returned file descriptor fildes to be opened when
the new process is spawned using this file action object.

int
posix_spawn_file_actions_adddup2
 (posix_spawn_file_actions_t
 *file_actions, int fildes,
 int new fildes);

Adds a dup2() action to spawn a file action object specified
by file_actions. This causes the file descriptor fildes to be
duplicated with the file descriptor newfildes when the new
process is spawned using this file action object.

int
posix_spawn_file_actions_destroy
 (posix_spawn_file_actions_t
 *file_actions);

Destroys the specified file_actions object. This causes the
object to be uninitialized. The object can then become
reinitialized using posix_spawn_file_actions_init().

int
posix_spawn_file_actions_destroy
 (posix_spawn_file_actions_t
 *file_actions);

Initializes the specified file_actions object. Once
initialized, it will contain no file actions to be performed.

They are bitwise-inclusive OR of 0 or more of the following:

POSIX_SPAWN_RESETIDS

POSIX_SPAWN_SETPGROUP

POSIX_SPAWN_SETSIGDEF

POSIX_SPAWN_SETSIGMASK

POSIX_SPAWN_SETSCHEDPARAM

POSIX_SPAWN_SETSCHEDULER

Table 3-5 lists the functions used to set and retrieve the individual attributes contained in the
posix_spawnattr_t structure.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03table05

Table 3-5. Functions Used to Set and Retrieve the Individual Attributes Contained in the posix_spawnattr_t
Structure

Spawn Process Attributes functions Descriptions

int posix_spawnattr_getflags
(const posix_spawnattr_t *restrict
 attr, short *restrict flags);

Returns the value of the __flags attribute stored in the
specified attr object.

int posix_spawnattr_setflags
(posix_spawnattr_t *attr,
 short flags);

Sets the value of the __flags attribute stored in the
specified attr object to flags.

int posix_spawnattr_getpgroup
(const posix_spawnattr_t *restrict
 attr, pid_t *restrict pgroup);

Returns the value of the __pgroup attribute stored in the
specified attr object and stores it in the pgroup
parameter.

int posix_spawnattr_setpgroup
(posix_spawnattr_t *attr,
 pid_t pgroup);

Sets the value of the __pgroup attribute stored in the
specified attr object to the pgroup parameter if
POSIX_SPAWN_SETPGROUP is set in the __flags
attribute.

int posix_spawnattr_getschedparam
(const posix_spawnattr_t *restrict
 attr, struct sched_param *restrict
 schedparam);

Returns the value of the __sp attribute stored in the
specified attr object and stores it in the schedparam
parameter.

int posix_spawnattr_setschedparam
(posix_spawnattr_t *attr
 const struct sched_param *restrict
 schedparam);

Sets the value of the __sp attribute stored in the
specified attr object to the schedparam parameter if
POSIX_SPAWN_SETSCHEDPARAM is set in the
__flags attribute.

int posix_spawnattr_getschedpolicy
(const posix_spawnattr_t *restrict
 attr, int *restrict schedpolicy);

Returns the value of the __policy attribute stored in the
specified attr object and stores it in the schedpolicy
parameter.

int posix_spawnattr_setschedpolicy
(posix_spawnattr_t *attr,
 int schedpolicy);

Sets the value of the __policy attribute stored in the
specified attr object to the schedpolicy parameter if
POSIX_SPAWN_SETSCHEDULER is set in the
__flags attribute.

int posix_spawnattr_getsigdefault
(const posix_spawnattr_t *restrict
 attr, sigset_t *restrict
 sigdefault);

Returns the value of the __sd attribute stored in the
specified attr object and stores it in the sigdefault
parameter.

int posix_spawnattr_setsigdefault
(posix_spawnattr_t *attr,

Sets the value of the __sd attribute stored in the

Spawn Process Attributes functions Descriptions

const sigset_t *restrict
 sigdefault);

specified attr object to the sigdefault parameter if
POSIX_SPAWN_SETSIGDEF is set in the __flags
attribute.

int posix_spawnattr_getsigmask
(const posix_spawnattr_t *restrict
 attr, sigset_t *restrict sigmask);

Returns the value of the __ss attribute stored in the
specified attr object and stores it in the sigmask
parameter.

int posix_spawnattr_setsigmask
(posix_spawnattr_t *restrict attr,
 const sigset_t *restrict sigmask);

Sets the value of the __ss attribute stored in the specified
attr object to the sigmask parameter if
POSIX_SPAWN_SETSIGMASK is set in the __flags
attribute.

int posix_spawnattr_destroy
(posix_spawnattr_t *attr);

Destroys the specified attr object. The object can then
become reinitialized using posix_spawnattr_init().

int posix_spawnattr_init
(posix_spawnattr_t *attr);

Initializes the specified attr object with default values
for all of the attributes contained in the structure. The
object can then become reinitialized using
posix_spawnattr_init().

Example 3.3 shows how the posix_spawn() function can be used to create a process.

Example 3.3 Spawning a process, using the posix_spawn() function, that calls the ps utility.

#include <spawn.h>
#include <stdio.h>
#include <errno.h>
#include <iostream>
{

 //...
 posix_spawnattr_t X;
 posix_spawn_file_actions_t Y;
 pid_t Pid;
 char *const argv[] = {"/bin/ps","-lf",NULL};
 char *const envp[] = {"PROCESSES=2"};
 posix_spawnattr_init(&X);
 posix_spawn_file_actions_init(&Y);
 posix_spawn(&Pid,"/bin/ps",&Y,&X,argv,envp);
 perror("posix_spawn");
 cout << "spawned PID: " << Pid << endl;
 //...
 return(0);

}

In Example 3.3, the posix_spawnattr_t and posix_spawn_file_actions_t objects are initialized. The
posix_spawn() function is called with the arguments: PID, the path, Y, X, and argv, which contains the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03ex03

command as the first element and the argument as the second, and the envp, the environment list. If the
posix_spawn() function is successful, then the value stored in Pid will be the PID of the spawned
process. perror will display:

posix_spawn: Success

and the Pid is sent to output. The spawned process, in this case, executes:

/bin/ps -lf

These functions return the process id of the child process to the parent process in the pid parameter and
returns 0 as the return value. If the function is unsuccessful, no child process is created, thus no pid is
returned and an error value is returned as the return value of the function.

Errors can occur on three levels when using the spawn functions. An error can occur if the file_actions
or attr objects are invalid. If this occurs after the function has successfully returned (the child process
was spawned), then the child process may have an exit status of 127. If the spawn attribute functions
cause an error, then the error produced for that particular function (listed in Tables 3-4 and 3-5) is
returned. If the spawn function has already successfully returned, then the child process may have an
exit status of 127.

Errors can also occur when attempting to spawn the child process. These errors would be the same
errors produced by fork() or exec() functions. If they occur, they will be the return values for the spawn
functions. If the child process produces an error, it is not returned to the parent process. In order for the
parent process to be aware that the child has produced an error, other mechanisms would have to be
used since it will not be stored in the child's exit status. Interprocess communication can be used or the
child could set some flag visible to the parent.

3.6.6 Identifying the Parent and Child with Process Management Functions

There are two functions that return the calling process's PID and the parent process's PID .getpid()
returns the process id of the calling process. getppid() returns the parent id of the calling process. These
functions are always successful, therefore no errors are defined.

Synopsis
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03table05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec6.htm#ch03table04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_22061533.htm

3.7 Terminating a Process

When a process is terminated, the PCB is erased and the address space and resources used by the
terminated process are deallocated. An exit code is placed in its entry in the main process table. The
entry is removed once the parent has accepted the exit code. The termination of the process can occur
under several conditions:

• All instructions have executed.

• The process makes an explicit return or makes a system call that terminates the process.

• Child processes may automatically terminate when the parent has terminated.

• The parent sends a signal to terminate its child processes.

Abnormal termination of a process can occur when the process itself does something that it shouldn't:

• The process requires more memory than the system can provide.

• The process attempts to access resources it is not allowed to access.

• The process attempts to perform an invalid instruction or a prohibited computation.

The termination of a process can also be initiated by a user when the process is interactive.

The parent process is responsible for the termination/deallocation of its children. The parent process
should wait until all its child processes have terminated. When a parent process retrieves a child
process's exit code, the child process exits the system normally. The process is in a zombied state until
the parent accepts the signal. If the parent never accepts the signal because it has already terminated and
exited the system or because it is not waiting for the child process, the child remains in the zombied
state until the init process (the original system process) accepts its exit code. Many zombied processes
can negatively affect the performance of the system.

3.7.1 The exit(), kill() and abort() Calls

There are two functions a process can call for self termination, exit() and abort(). The exit() function
causes a normal termination of the calling process. All open file descriptors associated with the process
will be closed. The function will flush all open streams that contain unwritten buffered data, then the
open streams are closed. The status parameter is the process's exit status. It is returned to the waiting
parent process, which is then restarted. The value of status may be 0, EXIT_FAILURE, or
EXIT_SUCCESS. The 0 value means the process has terminated successfully. The waiting parent
process only has access to the lower 8 bits of status. If the parent process is not waiting for the process
to terminate, the zombied process is adopted by the init process.

The abort() function causes an abnormal termination of the calling process. An abnormal termination of
the process causes the same effect as fclose() on all open streams. A waiting parent process will receive
a signal that the child process aborted. A process should only abort when it encounters an error that it
cannot deal with programmatically.

Synopsis
#include <stdlib.h>

void exit(int status);
void abort(void);

The kill() function can be used to cause the termination of another process. The kill() function sends a
signal to the processes specified or indicated by the parameter pid. The parameter sig is the signal to be
sent to the specified process. The signals are listed in the header <signal.h>. To kill a process, sig has
the value SIGKILL. The calling process must have the appropriate privileges to send a signal to the
process, or it has a real or effective user id that matches the real or saved set user-ID of the process that
receives the signal. The calling process may have permission to send only certain signals to processes
and not others. If the function successfully sends the signal, 0 is returned to the calling process. If it
fails, -1 is returned.

The calling process can send the signal to one or several processes under these conditions:

pid >
0

The signal will be sent to the process whose PID is equal to the pid.

pid =
0

The signal will be sent to all the processes whose process group id is the same as the calling
process.

pid =
-1

The signal will be sent to all processes for which the calling process has permission to send
that signal.

pid <
-1

The signal will be sent to all processes whose process id group is equal to the absolute value
of pid and for which the calling process has permission to send that signal.

Synopsis
#include <signal.h>

int kill(pid_t pid, int sig);

3.8 Process Resources

In order for a process to perform whatever task it is instructed to perform, it may need to write data to a
file, send data to a printer, or display data to a screen. A process may need input from the user via the
keyboard or input from a file. Processes can also use other processes, such as a subroutine, as a
resource. Subroutines, files, semaphores, mutexes, keyboards, and display screens are all examples of
resources that can be utilized by a process. A resource is anything used by a process at any given time
as a source of data, a means to process, compute, or display data or information.

In order for a process to access a resource, it must first make a request to the operating system. If the
resource is available, the operating system allows the process to use the resource. The process uses the
resource, then releases it so it will be available to other processes. If the resource is not available, the
request is denied and the process must wait. When the resource becomes available, the process is
awakened. This is the basic approach to resource allocation. Figure 3-11 shows a resource allocation
graph, which shows which processes hold resources and which processes are requesting resources. In
Figure 3-11, process B makes a request for resource 2, which is held by process C. Process C makes a
request for resource 3, which is held by process D.

Figure 3-11. A resource-allocation graph that shows which processes hold resources and which processes are
requesting resources.

When more than one request to access a resource is granted, the resource is sharable, which is shown in
Figure 3-11 as well. Process A shares resource 1 with process D. A resource may allow many processes
concurrent access or may only allow one process limited time before allowing another process access.
An example of this type of shared resource is the processor. A process is assigned a processor for a
short interval and then another process is assigned the processor. When only one request to access a
resource is granted at a time and that occurs after the resource has been released by another process, the
resource is unshared and the process has exclusive access to the resource. In a multiprocessor
environment, it is important to know whether a shared resource can be accessed simultaneously or by
only one process at a time in order to avoid some of the pitfalls inherent in concurrency.

Some resources can be changed or modified by a process. Other resources will not allow a process to
change it. The behavior of shared modifiable or unmodifiable resources is determined by the resource
type.

S 3.1 Resource Allocation Graph
Resource allocation graphs are directed graphs that show how the resources in a system are
allocated. The graph consists of a set of vertices V and a set of edges E. The set of vertices is

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec8.htm#ch03fig11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec8.htm#ch03fig11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec8.htm#ch03fig11

partitioned into two types:

P = {P1, P2,..., Pn)

R = {R1, R2,..., Rm}

Set P is the set of all the processes in the system and set R is the set of all resources in the
system. A directed edge from a process to a resource is called a request edge and a directed
edge from a resource to a process is called an assignment edge. These directed edges are
denoted:

Pi Rj Request edge: Process Pi requests an instance of resource type Rj

Rj Pi Assignment egde : Instance of resource type Rj has been allocated to

Process Pi

Each process in the resource-allocation graph is depicted as a circle and each resource is
depicted as a square. Since there may be many instances of a resource type, each instance of
the resource type is represented as a dot within the square. A request edge points to the
perimeter of the resource square but an assignment edge originates from the dot to the
perimeter of the process circle.

The resource-allocation graph in Figure 3-11. depicts the following:

Sets P, R, and E

P = {Pa, Pb, Pc, Pd}

R = {R1, R2, R3}

E = {R1 Pa, R1 Pd, Pb R2, R2 Pc, Pc R3, R3 Pd}

3.8.1 Types of Resources

There are three basic types of resources: hardware, data, and software. Hardware resources are physical
devices connected to the computer. Examples of hardware resources are processors, main memory, and
all other I/O devices including printers, hard disk, tape, and zip drives, monitors, keyboards, sound,
network, graphic cards, and modems. All these devices can be shared by several processes.

Some hardware resources are preempted to allow different processes access. For example, a processor
is preempted to allow different processes time to run. RAM is another example of a shared, preemptible
resource. When a process is not executing, some of the physical page frames it occupies may be
swapped out to secondary storage in order for another process to be swapped in to occupy those now-
available page frames. A range of memory can only be occupied by the page frames of one process at
any given time. An example of a shared, nonpreemptible resource is a printer. When a printer is shared,
the jobs sent to the printer by each process is stored in a queue. Each job is printed to completion before
another job starts. The printer is not preempted by any waiting printer jobs unless the current job is

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec8.htm#ch03fig11

canceled.

Data resources such as objects; system data such as environment variables, files, and handles, and
globally defined variables such as semaphores and mutexes are all resources shared and modified by
processes. Regular files and files associated with physical devices such as the printer can be opened in
such a manner, restricting the type of access processes have to that file. Processes may be granted only
read or write access, or read/write access. A child process inherits the parent process's resources and
access rights to those resources existing at the time the child's process was created. The child process
can advance the file pointer, close, modify, or overwrite the contents of a file opened by the parent.
Shared memory and files with write permission require their access to be synchronized. Shared data
such as semaphores or mutexes can be used to synchronize access to other shared data resources.

Shared libraries are examples of software resources. Shared libraries provide a common set of services
or functions to processes. Processes can also share applications, programs, and utilities. In such a case,
only one copy of the program(s) code is brought into memory. There will be separate copies of the data,
one for each user (process). Program code that is not changed (also called reentrant) can be accessed by
several processes simultaneously.

3.8.2 POSIX Functions to Set Resource Limits

POSIX defines functions that restrict a process's ability to use certain resources. The operating system
sets limitations on a process's ability to utilize system resources. These resource limits affect the
following:

• size of the process's stack

• size of file and core file creation

• amount of CPU usage (size of time slice)

• amount of memory usage

• number of open file descriptors

The operating system sets a hard limit on resource usage by a process. The process can set or change
the soft limit of its resources but its value should not exceed the hard limit set by the operating system.
A process can lower its hard limit but this value should be greater than or equal to the soft limit. When
a process lowers its hard limit, it is irreversible. Only processes with special privileges can raise their
hard limit.

Synopsis
#include <sys/resource.h>

int setrlimit(int resource, const struct rlimit *rlp);
int getrlimit(int resource, struct rlimit *rlp);

int getrusage(int who, struct rusage *r_usage);

The setrlimit() function is used to set limits on the consumption of specified resources. This function
can set both hard and soft limits. The parameter resource represents the resource type. Table 3-6 lists
the values for resource with a brief description. The soft and hard limits of the specified resource are
represented by the rlp parameter. The rlp parameter points to a struct rlimit that contains two objects of
type rlim_t:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec8.htm#ch03table06

struct rlimit
{
 rlim_t rlim_cur;
 rlim_t rlim_max;
};

rlim_t is an unsigned integer type. rlim_cur contains the current or soft limit. rlim_max contains the
maximum or hard limit. rlim_cur and rlim_max can be assigned any value. They can also be assigned
these symbolic constants defined in the header <sys/resource.h>:

RLIM_INFINITY Indicates no limit

RLIM_SAVED_MAX Indicates an unrepresentable saved hard limit

RLIM_SAVED_CUR Indicates an unrepresentable saved soft limit

The soft or hard limit can be set to RLIM_INFINITY, which means the resource is unlimited.

Table 3-6. Values for resource

Resource
definitions

Descriptions

RLIMIT_CORE Maximum size of a core file in bytes that may be created by a process.

RLIMIT_CPU Maximum amount of CPU time in seconds that may be used by a process.

RLIMIT_DATA Maximum size of a process data segment in bytes.

RLIMIT_FSIZE Maximum size of a file in bytes that may be created by a process.

RLIMIT_NOFILE A number 1 greater than the maximum value that the system may assign to a
newly created file descriptor.

RLIMIT_STACK Maximum size of a process stack in bytes

RLIMIT_AS Maximum size of a process total available memory in bytes.

The getrlimit() returns the soft and hard limit of the specified resource in the rlp object. Both functions
return 0 if successful and -1 if unsuccessful. Example 3.4 contains an example of a process setting the
soft limit for file size in bytes.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec8.htm#ch03ex04

Example 3.4 Using setrlimit() to set the soft limit for file size.

#include <sys/resource.h>

//...
struct rlimit R_limit;
struct rlimit R_limit_values;

//...
R_limit.rlim_cur = 2000;
R_limit.rlim_max = RLIM_SAVED_MAX;
setrlimit(RLIMIT_FSIZE,&R_limit);
getrlimit(RLIMIT_FSIZE,&R_limit_values);
cout << "file size soft limit: " << R_limit_values.rlim_cur
 << endl;

//...

In Example 3.4, the file size soft limit is set to 2000 bytes and the hard limit is set to the hard limit
maximum. R_limit and the RLIMIT_FSIZE are passed to the setrlimit() function. getrlimit() are passed
RLIMIT_FSIZE and R_limit_value. The soft value is sent to cout.

The getrusage() function returns information about the measures of resources used by the calling
process. It also returns information about the terminated child process the calling process is waiting for.
The parameter who can have these values:

RUSAGE_SELF
RUSAGE_CHILDREN

If the value for who is RUSAGE_SELF, then the information returned will pertain to the calling
process. If the value for who is RUSAGE_CHILDREN, then the information returned is pertaining to
the calling process's children. If the calling process did not wait for its children, then the information
pertaining to the child process is discarded. The information is returned in the r_usage. r_usage points
to a struct rusage that contains information listed and described in Table 3-7. If the function is
successful, it returns 0, if unsuccessful, it returns -1.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec9.htm#ch03table07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec8.htm#ch03ex04

3.9 What are Asynchronous and Synchronous Processes?

Asynchronous processes execute independent of each other. Process A runs until completion without
any regard to process B. Asynchronous processes may or may not have a parent–child relationship. If
process A creates process B, they can both execute independently but at some point the parent retrieves
the exit status of the child. If they do not have a parent–child relationship, they may share the same
parent.

Table 3-7. Information Contained in struct rusage

struct rusage Attributes Description

struct timeval ru_utime User time used

struct timeval ru_sutime System time used

long ru_maxrss Maximum resident set size

long ru_maxixrss Shared memory size

long ru_maxidrss Unshared data size

long ru_maxisrss Unshared stack size

long ru_minflt Number of page claims

long ru_majflt Number of page faults

long ru_nswap Number of page swaps

long ru_inblock Block input operations

long ru_oublock Block output operations

long ru_msgsnd Number of messages sent

long ru_msgrcv Number of messages received

long ru_nsignals Number of signals received

long ru_nvcsw Number of voluntary context switches

struct rusage Attributes Description

long ru_nivcsw Number of involuntary context switches

Asynchronous processes may execute serially, simultaneously, or overlap. These scenarios are depicted
in Figure 3-12. In case 1, process A runs until completion, process B runs until completion, then
process C runs until completion. This is serial execution of these processes. Case 2 depicts
simultaneous execution of processes. Processes A and B are active processes. While process A is
running, process B is sleeping. At some point both processes are sleeping. Process B awakens before
process A, process A awakens, and now both processes are running at the same time. This shows that
asynchronous processes may execute simultaneously only during certain intervals of their execution. In
case 3, the execution of processes A and B overlaps.

Figure 3-12. Possible scenarios of asynchronous and synchronous processes.

Asynchronous processes may share resources like a file or memory. This may or may not require
synchronization or cooperation of the use of the resource. If the processes are executing serially (case
1), then they will not require any synchronization. For example, all three processes, A, B, and C, may
share a global variable. Process A writes to the variable before it terminates, then when process B runs,
it reads the data stored in the variable and before it terminates it writes to the variable. When it runs,

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec9.htm#ch03fig12

process C reads data from the variable. But in cases 2 and 3, the processes may attempt to modify the
variable at the same time, thus requiring synchronization of its use.

For our purposes, we define synchronous processes as processes with inter-leaved execution, one
process suspends its execution until another process finishes. For example, process A, the parent
process, executes and creates process B, the child process. Process A suspends its execution until
process B runs until completion. When process B terminates, its exit code is placed in the process table.
Process A is informed that process B has terminated. Process A can resume additional processing, then
terminate or it can immediately terminate. Process A and process B are synchronous processes. Figure
3-12 contrasts synchronous and asynchronous execution of processes A and B.

3.9.1 Synchronous and Asynchronous Processes Created with fork(), exec(), system(), and
posix_spawn() Functions

Processes created by fork(), fork-exec, and posix_spawn() functions will create asynchronous
processes. When using the fork() function, the parent process image is duplicated. Once the child
process has been created, the function returns to parent the child's PID and a return value of 0,
indicating process creation was successful. The parent does not suspend execution; both processes
continue to execute independently from the statement immediately preceding the fork(). Child
processes created using the fork-exec combination initializes the child's process image with a new
process image. The exec() functions do not return to the parent process unless the initialization was not
successful. The posix_spawn() functions create the child process images and initialize it within one
function call. The PID is returned to the posix_spawn() as well as a return value indicating if the
process was spawned successfully. After posix_spawn() returns, both processes are executing at the
same time. Processes created by the system() function will create synchronous processes. A shell is
created that executes the system command or executable file. The parent process is suspended until the
child process terminates and the system() call returns.

3.9.2 The wait() Function Call

Asynchronous processes can suspend execution until a child process terminates by executing the wait()
system call. After the child process terminates, a waiting parent process collects the child's exit status,
which prevents zombied processes. The wait() function obtains the exit status from the process table.
The status parameter points to a location that contains the exit status of the child process. If the parent
process has more than one child process and several of them have terminated, the wait() function only
retrieves the exit status for one child process from the process table. If the status information is
available before the execution of the wait() function, the function will return immediately. If the parent
process does not have any children, the function returns with an error code. The wait() function can also
be called when the calling process is to wait until a signal is delivered then perform some signal
handling action.

Synopsis
#include <sys/wait.h>

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

The waitpid() function is the same as wait() except it takes an additional parameter, pid. The pid
parameter specifies a set of child processes for which the exit status is retrieved. Which processes are in
the set is determined by the value of pid:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec9.htm#ch03fig12
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec9.htm#ch03fig12

pid > 0 A single child process.

pid = 0 Any child process whose group id is the same as the calling process.

pid < -1 Any child processes whose group id is equal to the absolute value of pid.

pid = -1 Any child processes.

The options parameter determines how the wait should behave and can have the value of the following
constants defined in the header <sys/wait.h>:

WCONTINUED Reports the exit status of any continued child process specified by pid) whose
status has not been reported since it continued.

WUNTRACED Reports the exit status of any child process (specified by pid) that has stopped
whose status has not been reported since they stopped.

WNOHANG The calling process is not suspended if the exit status for the specified child process
is not available.

These constants can be logically OR'ed and passed as the options parameter (e.g., WCONTINUED ||
WUNTRACED).

Both functions return the PID of the child process whose exit status was obtained. If the value stored in
status is 0, then the child process has terminated under these conditions:

• Process returned 0 from the function main()

• Process called some version of exit() with a 0 argument

• Process was terminated because the last thread of the process terminated

Table 3-8 lists the macros in which the value of the exit status can be evaluated.

Table 3-8. Macros in Which the Value of the Exit Status Can be Evaluated

Macros for evaulating
status

Description

WIFEXITED Evaluates to nonzero if status was returned by a normally terminated child
process.

WEXITSTATUS if WIFEXITED is nonzero, this evaluates to the low-order 8 bits of the status
argument the terminated child process passed to _exit(), exit(), or value
returned from main().

WIFSIGNALED Evaluates to nonzero if status was returned from a child process that

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec9.htm#ch03table08

Macros for evaulating
status

Description

terminated because it was sent a signal that was not caught.

WTERMSIG If WIFSIGNALED is nonzero, this evaluates to the number of the signal that
caused the child to terminate.

WIFSTOPPED Evaluates to nonzero if status was returned from a child process that
currently stopped.

WSTOPSIG If WIFSTOPPED is nonzero, this evaluates to the number of the signal that
caused the child process to stop.

WIFCONTINUED Evaluates to nonzero if status was returned from a child process that has
continued from a job control stop.

3.10 Dividing the Program into Tasks

When considering dividing your program into multiple tasks, you are introducing concurrency into your
program. In a single processor environment, concurrency is implemented with multitasking. This
accomplished by process switching. Each process executes for a short interval, then the processor is
given to another process. This occurs so quickly that it gives the illusion that the processes are
executing simultaneously. In a multiprocessor environment, processes belonging to a single program
can all be assigned to the same processor or different processors. If the processes are assigned to
different processors, then the processes will execute in parallel.Two levels for concurrent processing
within an application or system are the process level and the thread level. Concurrent processing on the
thread level is called multithreading, which will be discussed in the next chapter. The key to dividing
your program into concurrent tasks is identifying where concurrency occurs, and where you can take
advantage of it. Sometimes concurrency is not absolutely necessary. Your program may have a
concurrency interpretation yet serially execute just fine. The concurrency might benefit your program
with increased speed and less complexity. Some programs have natural parallelism, while others are
naturally sequential by nature. Some programs have dual interpretations. When decomposing your
program into functions or objects, the top-down approach is used to break down the program into
functions and the bottom-up approach is used to break down the program into objects. Once this is
done, it is necessary to determine which functions or objects are best served as separate programs or
subprograms while others will be executed by threads. These subprograms will be executed by the
operating system as processes. The separate or processes perform the tasks you have designated them to
do.

A program separated into tasks can execute simultaneously in three ways:

1. Divide the program into a main task that creates a number of subtasks.

2. Divide the program into a set of separate binaries.

3. Divide the program into several types of tasks in which each task type is responsible for creating
only certain tasks as needed.

These approaches are depicted in Figure 3-13.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec10.htm#ch03fig13

Figure 3-13. Approaches that can be used to divide a program up into separate tasks.

For example, a rendering program can use these approaches. Rendering describes the process of going
from a database representation of a 3D object to a shaded 2D projection on a view surface (computer
screen). The image is represented as shaded polygons that exact the form of the object. The stages of
the render process are shown in Figure 3-14. It can be broken down into separate tasks:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec10.htm#ch03fig14

Figure 3-14. The stages of the render process.

1. Set up the data structure for polygon mesh models.

2. Apply linear transformations.

3. Cull back-facing polygons.

4. Perform rasterization.

5. Apply hidden surface removal algorithm.

6. Shade the individual pixels.

The first task is representing the object as an array of polygons in which each vertex in the polygon uses
3D world coordinates. The second task is applying linear transformations to the polygon mesh model.
These transformations are used to position objects into a scene and to create the view point or view
surface (what is seen by the observer from the view point they are observing the scene or object). The
third task is culling back-facing surfaces of the objects in the scene. This means lines generated from
the back portion of objects not visible from the view point are removed. This is also called back-face
elimination. The fourth task is converting the vertex-based model to a set of pixel coordinates. The fifth
task is removing any hidden surfaces. If there are objects interacting in the seen, objects behind others,
for example, these surfaces are removed. The sixth task is shading the surfaces.

Each task is saved separately and compiled into standalone executable files. Task1, Task2, and Task3
are executed sequentially and Task4, Task5, and Task6 are executed simultaneously. In Example 3.5,
approach 1 is used to execute our rendering program.

Example 3.5 Using approach 1 to create processes.

#include <spawn.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>
#include <errno.h>
#include <unistd.h>

int main(void)
{
 posix_spawnattr_t Attr;
 posix_spawn_file_actions_t FileActions;

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec10.htm#ch03ex05

 char *const argv4[] = {"Task4",...,NULL};
 char *const argv5[] = {"Task5",...,NULL};
 char *const argv6[] = {"Task6",...,NULL};
 pid_t Pid;
 int stat;
 //...

 // execute first 3 tasks synchronously
 system("Task1 ...");
 system("Task2 ...");
 system("Task3 ...");

 // initialize structures
 posix_spawnattr_init(&Attr);
 posix_spawn_file_actions_init(&FileActions);

 // execute last 3 tasks asynchronously
 posix_spawn(&Pid,"Task4",&FileActions,&Attr,argv4,NULL);
 posix_spawn(&Pid,"Task5",&FileActions,&Attr,argv5,NULL);
 posix_spawn(&Pid,"Task6",&FileActions,&Attr,argv6,NULL);

 // like a good parent, wait for all your children
 wait (&stat);
 wait (&stat);
 wait (&stat);
 return(0);
}

In Example 3.5, from main() Task1, Task2, and Task3 are executed using the system() function. Each
of these tasks is performed synchronously to the parent process. Task4, Task5, and Task6 are
performed asynchronously to the parent process using posix_spawn() functions. The ellipse (...) is used
to indicate whatever files the tasks require. Parent process calls three wait() functions. Each waits for
one of the Task4, Task5, and Task6 to terminate.

Using approach 2, the rendering program can be launched from a shell script. The advantage of using a
shell script is all of the shell commands and operators can be used. For our render program, the & and
&& metacharacters are used to manage the execution of the task:

Task1 ... && Task2 ... && Task3
Task4 ... & Task5 ... & Task6

Here, Task1, Task2, and Task3 are executing sequentially under the condition the previous task
executed successfully by using the && metacharacter. Task4, Task5, and Task6 executed
simultaneously using the & metacharacter. The UNIX/Linux environments use metacharacters to
control the way commands are executed. These are some of the metacharacters that can be used to
control execution of several commands:

&
&

Commands separated by && tokens causes the next command to be executed only if the
previous command executes successfully.

|| Commands separated by || tokens causes the next command to be executed only if the previous
command fails to execute successfully.

; Commands separated by ; tokens causes the next command to be executed next in the sequence.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec10.htm#ch03ex05

& Commands separated by & tokens causes all the commands to be executed simultaneously.

Using approach 3, the tasks are categorized. When decomposing a program, it is a good technique to
see if there are categories of tasks present. For example, some tasks are concerned with the user
interface, creating it, extracting input from it, sending it to output, and so on. Other tasks perform
computations, manage data, and so on. This is a useful technique when designing a progam. It can also
be used in implementing a program. In our render-program, we can group tasks into several categories:

• Tasks that perform linear transformations

Viewing transformations

Scene transformations

• Tasks that perform rasterization

Line drawing

Solid area filling

Rasterizing polygons

• Tasks that perform surface removal

Hidden surface

Back-surface elimination

• Tasks that perform shading

Pixel

Scheme

Categorizing our tasks will allow our program to be more general. Processes only create other processes
of a certain category of work as needed. For example, if our program is to render a single object and not
a scene, then it would not be necessary to spawn a process that performs hidden surface removal; back-
surface elimination may be sufficient. If the object is not to be shaded, then it would not be necessary to
spawn a task that performs shading; only line drawing rasterization would be nesssary. A parent process
or a shell script can be used to launch our program using approach 3. The parent can determine what
type of rendering is necessary and pass that information to each of the dedicated processes so that they
will know which processes to spawn. The information can also be redirected to each of the dedicated
processes from the shell script. In Example 3.6, approach 3 is used.

Example 3.6 Using approach 3 to create processes. The tasks are launched from a parent process.

#include <spawn.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>
#include <errno.h>
#include <unistd.h>

int main(void)
{
 posix_spawnattr_t Attr;
 posix_spawn_file_actions_t FileActions;
 pid_t Pid;
 int stat;

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec10.htm#ch03ex06

 //...

 system("Task1 ..."); //performed regardless of the type
 rendering used

 // determine what type of rendering is needed, this can be
 // obtained from the user or by performing some other type
 // of analysis, communicate this to other tasks through
 // arguments

 char *const argv4[] = {"TaskType4",...,NULL};
 char *const argv5[] = {"TaskType5",...,NULL};
 char *const argv6[] = {"TaskType6",...,NULL};

 system("TaskType2 ...");
 system("TaskType3 ...");

 // initialize structures
 posix_spawnattr_init(&Attr);
 posix_spawn_file_actions_init(&FileActions);

 posix_spawn(&Pid,"TaskType4",&FileActions,&Attr,argv4,
 NULL);
 posix_spawn(&Pid,"TaskType5",&FileActions,&Attr,argv5,
 NULL);
 if(Y){
 posix_spawn(&Pid,"TaskType6",&FileActions,&Attr,
 argv6,NULL);

 }
 // like a good parent, wait for all your children
 wait(&stat);
 wait(&stat);
 wait(&stat);
 return(0);

}

 // Each TaskType will be similar

//...

int main(int argc, char *argv[])
{
 int Rt;

 //...

 if(argv[1] == X){

 // initialize structures
 //...
 posix_spawn(&Pid,"TaskTypeX",&FileActions,&Attr,...,
 NULL);
 }

 else{

 // initialize structures
 //...

 posix_spawn(&Pid,"TaskTypeY",&FileActions,&Attr,
 ...,NULL);
 }

 wait(&stat);
 exit(0);

}

In Example 3.6, each task type will determine what processes need to be spawned based on the
information passed to it from the parent or shell script.

3.10.1 Processes Along Function and Object Lines

Processes can be spawned from functions called from main(), as in Example 3.7.

Example 3.7 The mainline which calls the function.

int main(int argc, char *argv[])
{
 //...

 Rt = func1(X, Y, Z);

 //...
}

// This is the function definition

int func1(char *M, char *N, char *V)
{
 //...

 char *const args[] = {"TaskX",M,N,V,NULL};

 Pid = fork();
 if(Pid == 0)
 {
 exec("TaskX",args);

 }
 if(Pid > 0)
 {
 //...
 }

 wait(&stat);
}

In Example 3.7 func1() is called with three arguments. These arguments are passed to the spawned
process.

Processes can also be spawned from methods that belong to objects. The objects can be declared in any
process, as in Example 3.8.

Example 3.8 A process declaring an object.

//...

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec10.htm#ch03ex08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec10.htm#ch03ex07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec10.htm#ch03ex07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec10.htm#ch03ex06

my_object MyObject;

//...

// Class declaration and definition

class my_object
{
public:

 //...
 int spawnProcess(int X);
 //...

};

int my_object::spawnProcess(int X)
{

 //...

 // posix_spawn() or system()

 //...

}

In Example 3.8, the object can create any number of processes from whatever method necessary.

Summary

Concurrency in a C++ program is accomplished by factoring your program into either multiple
processes or multiple threads. A process is a unit of work created by the operating system. It is an
artifact of the operating system where programs are artifacts of the developer. A program may consist
of multiple processes that might not be associated with any particular program. Operating systems are
capable of managing hundreds even thousands of concurrently loaded processes.Some information and
attributes of a process are stored in the process control block (PCB) used by the operating system to
identify the process. This information is needed by the operating system to manage each process. The
operating system multitasks between processes by performing a context switch. It saves the current
state of the executing process and its context to the PCB save area in order to restart the process the
next time it is assigned to the CPU. When the process is utilizing a processor, it is in a running state.
When it is waiting to use the CPU, it is in a ready state. The ps utility can be used to monitor the
executing processes on the system.Processes that create other processes have a parent–child relationship
with the created process. The creator of the process is the parent and the created process is the child
process. Child processes inherit many attributes from the parent. The parent's key responsibility is to
wait for the child process so it can exit the system. There are several system calls that can be used to
create processes: fork(), fork-exec, system(), and posit_spawn(). fork(), fork-exec(), and posix_spawn()
creates processes that are asynchronous to the parent process where system() creates a child process that
is synchronous to the parent process. Asynchronous parents can call the wait() function and at that point
synchronously wait for child processes to terminate or retrieve exit codes for already terminated child
processes. A program can be divided into several processes. These processes can be spawned from a
parent process, or launched from a shell script as separate binaries. Dedicated processes can spawn
other processes as needed that only perform certain types of work. Processes can be spawned from
functions or from methods.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec10.htm#ch03ex08

Chapter 4. Dividing C++ Programs into Multiple Threads
"As our computer systems become more complicated, this kind of abstraction gives us hope
of being able to continue to manage them."

—Andrew Koening and Barbara Moo, Ruminations on C++

In this Chapter

• Threads: A Definition

• The Anatomy of a Thread

• Thread Scheduling

• Thread Resources

• Thread Models

• Introduction to the Pthread Library

• The Anatomy of a Simple Threaded Program

• Creating Threads

• Managing Threads

• Thread Safety and Libraries

• Dividing Your Program into Multiple Threads

• Summary

The work of a sequential program can be divided between routines within a program. Each routine is
assigned a specific task, and the tasks are executed one after another. The second task cannot start until
the first task finishes, the third task cannot start until the second task finishes, and so on. This scheme
works fine until performance and complexity boundaries are encountered. In some cases, the only
solution to a performance problem is to allow the program to do more than one task simultaneously. In
other situations the work that routines within a program have to do is so involved that it makes sense to
think of the routines as mini-programs within the main program. Each mini-program executes
concurrently within the main program. Chapter 3 presented methods for breaking a single process up
into multiple processes, where each process executes a separate program. This method allows an
application to do more than one thing at a time. However, each process has its own address space and
resources. Because each program is in a separate address space, communication between routines
becomes an issue. Interprocess communication techniques such as pipes, fifos, and environment
variables are needed to communicate between the separately executing parts. Sometimes it is desirable
to have a single program do more than one task at a time without dividing the program into multiple
programs. Threads can be used in these circumstances. Threads allow a single program to have
concurrently executing parts, where each part has access to the same variables, constants, and address
space. Threads can be thought of as mini-programs within a program. When a program is divided into
separate processes, as we did in Chapter 3, there is a certain amount of overhead associated with
executing each of the separate programs. Threads require less overhead to execute. Threads can be
thought of as lightweight processes, offering many of the advantages of processes without the
communication requirements that separate processes require. Threads provide a means to divide the
main flow of control into multiple, concurrently executing flows of control.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec12.htm#ch04lev1sec12
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04lev1sec11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec10#ch04lev1sec10
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04lev1sec9
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04lev1sec8
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec7.htm#ch04lev1sec7
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec6.htm#ch04lev1sec6
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec5.htm#ch04lev1sec5
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec4.htm#ch04lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec3.htm#ch04lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec2.htm#ch04lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec1.htm#ch04lev1sec1

4.1 Threads: A Definition

A thread is a stream of executable code within a UNIX or Linux process that has the ability to be
scheduled. A thread is a lighter burden on the operating system to create, maintain, and manage because
very little information is associated with a thread. This lighter burden suggests that a thread has less
overhead compared to a process. All processes have a main or primary thread. The main thread is a
process's flow of control or thread of execution. A process can have multiple threads and therefore have
as many flows of control as there are threads. Each thread will execute independently and concurrently
with its own sequence of instructions. A process with multiple threads is called multithreaded. Figure 4-
1 shows the multiple flows of control of a process with multiple threads.

Figure 4-1. The flows of control of a multithreaded process.

4.1.1 Thread Context Requirements

All threads within the same process exist in the same address space. All of the resources belonging to
the process are shared among the threads. Threads do not own any resources. Any resources owned by
the process are sharable among all of the threads of that process. Threads share file descriptors and file
pointers but each thread has its own program pointer, register set, state, and stack. The threads' stacks
are all within the stack segment of its process. The data segment of the process is shared with its thread.
A thread can read and write to the memory locations of its process and the main thread has access to the
data. When the main thread writes to memory, any of the child threads can have access to the data.
Threads can create other threads within the same process. All the threads in a single process are called
peers. Threads can also suspend, resume, and terminate other threads within its process.

Threads are executing entities that compete independently for processor usage with threads of the same
or different processes. In a multiprocessor system, threads within the same process can execute
simultaneously on different processors. The threads can only execute on processors assigned to that
particular process. If processors 1, 2, and 3 are assigned to process A, and process A has three threads,
then a thread will be assigned to each processor. In a single processor environment, threads compete for
processor usage. Concurrency is achieved through context switching. Context switches take place when
the operating system is multitasking between tasks on a single processor. Multitasking allows more than
one task to execute at the same time on a single processor. Each task executes for a designated time
interval. When the time interval has expired or some event occurs, the task is removed from the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec1.htm#ch04fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec1.htm#ch04fig01

processor and another task is assigned to it. When threads are executing concurrently within a single
process, then the process is multithreaded. Each thread executes a subtask allowing these subtasks of
the process to execute independently without regard to the process's main flow of control. With
multithreading, the threads can compete for a single processor or be assigned to different processors. In
any case, a context switch occurring between threads of the same process requires fewer resources than
a context switch occurring between threads of different processes. A process uses many system
resources to keep track of its information and a process context switch takes time to manage that
information. Most of the information contained in the process context describes the address space of the
process and resources owned by the process. When a switch occurs between threads in different address
spaces, a process context switch must take place. Since threads within the same process do not have
their own address space or resources, less information tracking is needed. The context of a thread only
consists of an id, a stack, a register set, and a priority. The register set contains the program or
instruction pointer and the stack pointer. The text of a thread is contained in the text segment of its
process. A thread context switch will take less time and use fewer system resources.

4.1.2 Threads and Processes: A Comparison

There are many aspects of a thread that are similar to a process. Threads and processes have an id, a set
of registers, a state, a priority, and adhere to a scheduling policy. Like a process, threads have attributes
that describe it to the operating system. This information is contained in a thread information block
similar to a process information block. Threads and child processes share the resources of its parent
process. The resources opened by the process (main thread) are immediately accessible to the threads
and child processes of the parent process. No additional initialization or preparation is needed. Threads
and child processes are independent entities from its parent or creator and compete for processor usage.
The creator of the process or thread exercises some control over the child process or thread. The creator
can cancel, suspend, resume, or change the priority of the child process or thread. A thread or process
can alter its attributes and create new resources but cannot access the resources belonging to other
processes. However, threads and processes differ in several ways.

4.1.2.1 Differences between Threads and Processes

The major difference between threads and processes is each process has its own address space and
threads don't. If a process creates multiple threads, all the threads will be contained in its address space.
This is why they share resources so easily and interthread communication is so simple. Child processes
have their own address space and a copy of the data segment. Therefore, when a child changes its
variables or data, it does not affect the data of its parent process. A shared memory area has to be
created in order for parent and child processes to share data. Interprocess communication mechanisms,
such as pipes and fifos, are used to communicate or pass data between them. Threads of the same
process can pass data and communicate by reading and writing directly to any data that is accessible to
the parent process.

4.1.2.2 Threads Controlling Other Threads

Whereas processes can only exercise control over other processes in which it has a parent–child
relationship, threads within a process are considered peers and are on an equal level regardless of who
created whom. Any thread that has access to the thread id of another thread in the same process can
cancel, suspend, resume, or change the priority of that thread. In fact, any thread within a process can
kill the process by canceling the main or primary thread. Canceling the main thread would result in
terminating all the threads of the process—killing the process. Any changes to the main thread may
affect all the threads of the process. When changing the priority of the process, all the threads within the
process that inherited that priority and have not changed its priorities would also be altered. Table 4-1

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec1.htm#ch04table01

summarizes the similarities and differences between threads and processes.

4.1.3 Advantages of Threads

There are several advantages of using multiple threads to manage the subtasks of an application as
compared to using multiple processes. These advantages include:

• Less system resources needed for context switching

• Increased throughput of an application

• No special mechanism required for communication between tasks

• Simplify program structure

Table 4-1. Similarities and Differences between Threads and Processes

Similarities Between Threads
and Processes

Differences Between Threads and Processes

• Both have an id, set of
registers, state, priority,
and scheduling policy.

• Both have attributes that
describe the entity to the
OS.

• Both have an information
block.

• Both share resources with
the parent process.

• Both function as
independent entities from
the parent process.

• The creator can exercise
some control over the
thread or process.

• Both can change their
attributes.

• Both can create new
resources.

• Neither can access the
resources of another
process.

• Threads share the address space of the process that created
it; processes have their own address.

• Threads have direct access to the data segment of its
process; processes have their own copy of the data
segment of the parent process.

• Threads can directly communicate with other threads of its
process; processes must use interprocess communication
to communicate with sibling processes.

• Threads have almost no overhead; processes have
considerable overhead.

• New threads are easily created; new processes require
duplication of the parent process.

• Threads can exercise considerable control over threads of
the same process; processes can only exercise control over
child processes.

• Changes to the main thread (cancellation, priority change,
etc.) may affect the behavior of the other threads of the
process; changes to the parent process does not affect
child processes.

4.1.3.1 Context Switches during Low Processor Availability

When creating a process, the main thread may be the only thread needed to carry out the function of the
process. If the process has many concurrent subtasks, multiple threads can provide asynchronous
execution of the subtasks with less overhead for context switching. When processor availability is low
or there is only a single processor, concurrently executing processes involve heavy overhead because of
the context switching required. Under the same condition using threads, a process context switch would
only occur when a thread from a different process is the next thread to be assigned the processor. Less
overhead means less system resources used and less time taken for context switching. Of course, if
there are enough processors to go around then context switching is not an issue.

4.1.3.2 Better Throughput

Multiple threads can increase the throughput of an application. With one thread, an I/O request would
halt the entire process. With multiple threads, as one thread waits for an I/O request, the application can
continue executing. As one thread is blocked, another can execute. The entire application does not wait
for each I/O request to be filled. Other tasks can be performed that does not depend on the blocked
thread.

4.1.3.3 Simpler Communication between Concurrently Executing Parts

Threads do not require special mechanisms for communication between subtasks. Threads can directly
pass and receive data from other threads. This also saves system resources that would have to be used in
the setup and maintenance of special communication mechanisms if multiple processes were used.
Threads communicate by using the memory shared within the address space of the process. Processes
can also communicate by shared memory but processes have separate address spaces and therefore the
shared memory exists outside the address space of both processes. This increases the time and space
used to maintain and access the shared memory. Figure 4-2 illustrates the communication between
processes and threads.

Figure 4-2. Communication between threads of a single process and communication between multiple processes.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec1.htm#ch04fig02

4.1.3.4 Simplify Program Structure

Threads can be used to simplify the program structure of an application. Each thread is assigned a
subtask or subroutine for which it is responsible. The thread will independently manage the execution
of the subtask. Each thread can be assigned a priority reflecting the importance of the subtask it is
executing to the application. This will result in more easily maintained code.

4.1.4 Disadvantages of Threads

The easy accessibility threads have to the memory of a process has its disadvantages. For example:

• Threads can easily pollute address space of a process.

• Threads will require synchronization for concurrent read/write access to memory.

• One thread can kill the entire process or program.

• Threads only exist within a single process and are therefore not reusable.

4.1.4.1 Threads Can Corrupt Process Data Easier

It's easier for threads to corrupt the data of a process through data race because multiple threads have
write access to the same piece of data. This is not so with processes. Each process has its own data and
other processes don't have access unless special programming is done. The separate address spaces of
processes protect the data. The fact that threads share the same address space exposes the data to
corruption. For example, a process has three threads, A, B, and C. Threads A and B write to a memory
location and Thread C reads the value and uses it in a calculation. Threads A and B may both attempt to
write to the memory location at the same time. Thread B overwrites the data written by Thread A before
Thread C gets a chance to read it. The threads need to be synchronized so that Thread C can read the
data deposited in the memory location by Thread A before Thread B overwrites it. Synchronization is
needed to prevent either thread from overwriting the values before the data is used. The issues of
synchronization between threads will be discussed in Chapter 5.

4.1.4.2 One Bad Thread Can Kill the Entire Program

Since threads don't have their own address space, they are not isolated. If a thread causes a fatal access
violation, this may result in the termination of the entire process. Processes are isolated. If one process
corrupts its address space, the problems are restricted to that process. A process can have an access
violation that causes the process to terminate and all of the other processes will continue executing if
the violation isn't too bad. Data errors can be restricted to a single process. Errors caused by a thread are
more costly than errors caused by processes. Threads can create data errors that affect the entire
memory space of all the threads. Processes can protect its resources from indiscriminate access by other
processes. Threads share resources with all the other threads in the process. A thread that damages a
resource affects the whole process or program.

4.1.4.3 Threads are Not as Reusable by Other Programs

Threads are dependent and cannot be separated from the process in which they reside. Processes are
more independent than threads. An application can divide tasks among many processes and those
processes can be packaged as modules that can be used in other applications. Threads cannot exist
outside the process that created it and therefore are not reusable. Table 4-2 lists the advantages and
disadvantages of threads.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec1.htm#ch04table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05.htm#ch05

Table 4-2. Advantages and Disadvantages of Threads

Advantages of Threads Disadvantages of Threads

• Less system resources needed for context
switching

• Increased throughput of an application

• No special mechanism required for
communication between tasks

• Simplification of program structure

• Require synchronization for concurrent
read/write access to memory

• Can easily pollute address space of its
process

• Only exist within a single process and
therefore not reusable

4.2 The Anatomy of a Thread

The layout of a thread is embedded in the layout of a process. As discussed in Chapter 3, a process has
a code, data, and stack segment. The thread shares the code and data segment with the other threads of
the process. Each thread has its own stack allocated in the stack segment of the process's address space.
The thread's stack size is set when the thread is created. If the creator of the thread does not specify the
size of the thread's stack, a default size is assigned by the system. The default size of the stack is system
dependent and will depend on the maximum number of threads a process can have, the allotted size of a
process's address space, and the space used by system resources. The thread's stack size must be large
enough for any functions called by the thread, any code that is external to the process like library code,
and local variable storage. A process with multiple threads should have a stack segment large enough
for all of its thread's stacks. The address space allocated to the process limits the stack size, thus
limiting the size possible for each thread's stack. Figure 4-3 shows the layout of a process that contains
multiple threads.

Figure 4-3. Layout of a process that contains multiple threads.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec2.htm#ch04fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03

In Figure 4-3, the process contains two threads and the thread's stacks are located in the stack segment
of the process. Each thread executes different functions: thread A executes function 1 and thread B
executes function 2.

4.2.1 Thread Attributes

The attributes of a process are what describe the process to the operating system. The operating system
uses this information to manage processes and distinguish one process from another. The process shares
almost everything with its thread including its resources and environment variables. The data segment,
text segment, and all resources are associated with the process and not the threads. Everything a thread
needs to operate is supplied and defined by the process. What distinguishes threads from one another is
the id, the set of registers that defines the state of the thread, its priority, and its stack. These attributes
are what give each thread their identity. Like the process, the information about a thread is stored in
data structures and returned by functions supplied by the operating system. Some information about a
thread is contained in a structure called the thread information block, created at the time the thread is
created.

The thread id is a unique value that identifies each thread during its lifetime in a process. The priority of
a thread determines which threads are given preferential access to an available processor at a given
time. The state of the thread is the condition a thread is in at any given time. The set of registers for a
thread includes the program counter and the stack pointer. The program counter contains the address of
the instruction the thread is to execute and the stack pointer points to the top of the thread's stack.

The POSIX thread library defines a thread attribute object that encapsulates the properties of the thread
accessible and modifiable to the creator of the thread. The thread attribute defines the following
attributes:

• scope

• stack size

• stack address

• priority

• detached state

• scheduling policy and parameters

A thread attribute object can be associated with one thread or multiple threads. When an attribute object
is used, it is a profile that defines the behavior of a thread or group of threads. All the threads that use
the attribute object take on all the properties defined by the attribute object. Figure 4-3 also shows the
attributes associated with each thread. As you can see, both threads A and B share an attribute object
but they maintain their separate thread ids and set of registers. Once the attribute object is created and
initialized, it can be referenced in any calls to the thread creation function. Therefore, a group of threads
can be created that has a "small stack, low priority" or "large stack, high priority and detached."
Detached threads are threads that are not synchronized with other threads in the process. In other words,
there are no threads waiting for the detached thread to exit. Therefore, once the thread exits, its
resources, namely thread id, can be instantly reused. Several methods can be invoked to set and retrieve
the values of these attributes. Once a thread is created, its attributes cannot be changed while the thread
is in use.

The scope attribute describes which threads a particular thread will compete with for resources. Threads
contend for resources within two contention scopes: process scope (threads of the same process) and
system scope (all threads in the system). Threads compete with threads within the same process for file
descriptors while threads with system-wide contention scope compete for resources that are allocated

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec2.htm#ch04fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec2.htm#ch04fig03

across the system (e.g., real memory). Threads compete with threads that have process scope and
threads from other processes for processor usage depending on the contention scope and the allocation
domains (the set of processors to which it is assigned). A thread that has system scope will be
prioritized and scheduled with respect to all of the system-wide threads. Table 4-3 lists the settable
properties for the POSIX thread attribute object with a brief description.

4.3 Thread Scheduling

When a process is scheduled to be executed, it is the thread that utilizes the processor. If the process has
only one thread, it is the primary thread assigned to a processor. If a process has multiple threads and
there are multiple processors, all of the threads are assigned to a processor. Threads compete for
processor usage either with all the threads from active processes in the system or just the threads from a
single process. The threads are placed in the ready queues sorted by their priority value. The threads in
the queue with the same priority are scheduled to processors according to a scheduling policy. When
there are not enough processors to go around, then a thread with a higher priority can preempt an
executing thread. If the newly active thread is of the same process as the preempted thread, then the
context switch is between threads. If the newly active thread is of another process, a process context
switch occurs and then the thread context switch is performed.

Table 4-3. Settable Properties for the Thread Attribute Object

Settable Thread
Attributes

Functions Description

detachstate int
pthread_attr_setdetachstat
e (pthread_attr_t *attr,int
detachstate);

The detachstate attribute controls whether the newly
created thread is detachable. If detached, the thread's
flow of control cannot be joined to any thread.

guardsize int
pthread_attr_setguardsize(
pthread_attr_t *attr,size_t
guardsize);

The guardsize attribute controls the size of the guard
area for the newly created thread's stack. It creates a
buffer zone the size of guardsize at the overflow end
of the stack.

inheritsched int
pthread_attr_setinheritsch
ed(pthread_attr_t *attr,int
inheritsched);

The inheritsched attribute determines how the
scheduling attributes of the newly created thread will
be set. It determines whether the new thread's
scheduling attributes are inherited from the creating
thread or set by an attribute object.

param int
pthread_attr_setschedpara
m(pthread_attr_t *restrict
attr,const struct
sched_param *restrict
param);

The param attribute is a structure that can be used to
set the priority of the newly created thread.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec3.htm#ch04table03

Settable Thread
Attributes

Functions Description

schedpolicy int
pthread_attr_setschedpoli
cy(pthread_attr_t *attr,int
policy);

The schedpolicy determines the scheduling policy of
the newly created thread.

contentionscope int
pthread_attr_setscope(pthr
ead_attr_t *attr,int
contentionscope);

The contentionscope attribute determines which set of
threads the newly created thread will compete with for
processor usage. A process scope means the thread
will compete with the set of threads of the same
process; system scope means the thread will compete
with system-wide threads (this includes threads from
other processes).

stackaddr
stacksize

int
pthread_attr_setstack(pthr
ead_attr_t *attr,void
*stackaddr,size_t
stacksize);

The stackaddr and stacksize attributes determine the
base address and minimum size in bytes of the stack
for the newly created thread.

stackaddr int
pthread_attr_setstackaddr(
pthread_attr_t *attr,void
*stackaddr);

The stackaddr attribute determines the base address of
the stack for the newly created thread.

stacksize int
pthread_attr_setstacksize(
pthread_attr_t *attr,size_t
stacksize);

The stacksize attribute determines the minimum size
in bytes of the stack for the newly created thread.

4.3.1 Thread States

Threads have the same states and transitions mentioned in Chapter 3 that processes have. Figure 4-4 is a
duplication of the state diagram 3.4 from Chapter 3. To review, there are four commonly implemented
states: runnable, running (active), stopped, and sleeping (blocked). A thread state is the mode or
condition a thread is in at any given time. A thread is in a runnable state when it is ready for execution.
All runnable threads are placed in a ready queue with other threads with the same priority that are ready
to be executed. When a thread is selected and assigned to a processor, the thread is in the running state.
A thread is preempted once it has executed for its time slice or when a thread of higher priority
becomes runnable. The thread is then placed back into the ready queue. A thread is in the sleeping state
if it is waiting for an event to occur or I/O request to complete. A thread is stopped when it receives a
signal to stop executing. It remains in that state until it receives a signal to continue. Once the signal is
received, the thread moves from the stopped to a runnable state. As the thread moves from one state to
another, it undergoes a state transition that signals some event has occurred. When a thread changes
from the runnable to the running state it is because the system has selected that thread to run—the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03lev1sec3.htm#ch03fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec3.htm#ch04fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03

thread has been dispatched. A thread is preempted if its makes an I/O request or some other request of
the kernel or for some external reason.

Figure 4-4. Thread states and transitions.

One thread can determine the state of an entire process. The state of a process with one thread is
synonymous with the state of its primary thread. If the primary thread is sleeping, the process is
sleeping. If the primary thread is running, the process is running. For a process that has multiple
threads, all threads of the process would have to be in a sleeping or stopped state in order to consider
the whole process sleeping or stopped. On the other hand, if one thread is active (runnable or running)
then the process is considered active.

4.3.2 Scheduling and Thread Contention Scope

The contention scope of the thread determines which set of threads a thread will compete with for
processor usage. If a thread has process scope, it will only compete with the threads of the same process
for processor usage. If the thread has system scope, it will compete with its peers and with threads of
other processes for processor usage. For example, in Figure 4-5, there are two processes in a
multiprocessor environment of three processors. Process A has four threads and Process B has three
threads. Process A has three threads that have process scope and one thread with system scope. Process
B has two threads with process scope and one thread with system scope. Process A's threads with
process scope competes for processor A and Process B's threads with process scope compete for
processor C. Process A and B's threads with system scope compete for processor B.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec3.htm#ch04fig05

Figure 4-5. Scheduling with process and system scope threads in a multiprocessor environment.

NOTE:

Threads should have system scope when modeling true real-time behavior in your application.

4.3.3 Scheduling Policy and Priority

The scheduling policy and priority of the process belong to the primary thread. Each thread can have its
own scheduling policy and priority separate from the primary thread. Threads have an integer priority
value that has a maximum and minimum value. A priority scheme is used to determine which thread is
assigned the processor. Each thread has a priority and the thread with the highest priority is executed
before the threads of lower priority. When threads are prioritized, tasks that require immediate
execution or response from the system are allotted the processor time it requires. In a preemptive
operating system, executing threads are preempted if a thread of higher priority and the same contention
scope is available. For example, in Figure 4-5, threads with process scope compete for the processor
with threads of the same process that also have process scope. Process A has two threads with priority 3
in which one is assigned the processor. Once the thread with priority 2 becomes runnable, the active
thread is preempted and the processor is given to the thread with higher priority. Yet, in Process B, it
has two process scope threads that have priority 1, a higher priority than 2. One thread is assigned the
processor. Although the other thread with priority 1 is runnable, it does not preempt Process A's thread
with priority 2. The thread with system scope and a lower priority is not preempted by any of the
threads of Process A or B. They only compete for processor usage with other threads that have system
scope.

As discussed in Chapter 3, the ready queues are organized as a sorted list in which each element is a
priority level. Each priority level in the list is a queue of threads with the same priority level. All
threads of the same priority level are assigned to the processor using a scheduling policy: FIFO, round-
robin, or other. With the FIFO (First-In, First-Out) scheduling policy, when the time slice expires the
thread is placed at the head of the queue of its priority level. Therefore, the thread will run until it
completes execution, it sleeps, or it receives a signal to stop. When a sleeping thread is awakened, it is

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec3.htm#ch04fig05

placed at the end of the queue of its priority level. Round-robin scheduling is similar to FIFO
scheduling except the thread is placed at the end of the queue when the time slice expires and the
processor is given to the next thread in the queue.

The round-robin scheduling policy considers all threads to be of equal priority and each thread is given
the processor for only a time slice. Task executions are interweaved. For example, a program that
searches files for specified keywords is divided into two threads. One thread, thread 1, searches for all
files with a specified file extension and places the path of the file into a container. Another thread,
thread 2, extracts the name of the files from the container, searches each file for the specified keywords,
then writes the name of the files that contains all the keywords to a file. If the threads used a round-
robin scheduling policy with a single processor, thread 1 would use its time slice to find files and insert
the paths into the container. Thread 2 would use its time slice to extract file names and then perform the
keyword search. In a perfect world, this interweaves the execution of threads 1 and 2. But thread 2 may
execute first when there are no files in the container or thread 1 may only get as far as finding a file, the
time slice expiring before it had a chance to insert the file name into the container. This situation
requires synchronization, which will be discussed briefly later in this chapter and in Chapter 5. The
FIFO scheduling policy allows each thread to run until execution is complete. Using the same example,
thread 1 would have time to locate all the files and insert the paths into the container. Thread 2 would
then extract the filenames and perform its keyword search on each file. In a perfect world, this would be
the end of the program. But thread 2 may be assigned to a processor before thread 1 and there would be
no files in the container to search. Thread 1 would then execute, locate, and insert file names into the
container but no keyword search would be performed. The program would fail. With FIFO scheduling,
there is no interweaving of the execution of these tasks. A thread assigned to a processor dominates the
processor until it completes execution. This scheduling policy can be used for applications where a set
of threads need to complete as soon as possible. The "other" scheduling policy can be user-defined
customization of a scheduling policy. For example, the FIFO scheduling policy can be customized to
allow random unblocking of threads.

4.3.3.1 Changing Thread Priority

The priorities of threads should be changed in order to speed up the execution of threads on which other
threads depend. They should not be changed in order for a specific thread to get more processor time.
This will affect the overall performance of the system. High-priority class threads receive more
processor time than threads of a lower class because they are executed more frequently. Threads of
higher priority will dominate the processor, preventing other threads of lower priority valuable
processor time. This is called starvation. Systems that use dynamic priority mechanisms respond to this
situation by assigning priorities that last for short periods of time. The system adjusts the priority of
threads in order for threads of lower priority execution time. This will improve the overall performance
of the system.

The temptation to ensure that a process or specific thread runs to completion is to give it the highest
priority but this will affect the overall performance of the system. Such threads may preempt
communications over networks, causing the loss of data. Threads that control the user interface may be
drastically affected, causing the keyboard, mouse, and screen response to be sluggish. Some systems
prevent user processes and threads from having a higher priority than system processes. Otherwise,
system processes or threads would be prevented from responding to critical system changes. Generally
speaking, most user processes and threads fall in the category of normal or regular priority.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05.htm#ch05

4.4 Thread Resources

Threads share most of its resources with other threads of the same process. Threads do own resources
that define the thread's context. This includes the thread id, set of registers including the stack pointer
and program counter, and stack. Threads must share other resources such as the processor, memory, and
file descriptors required in order for it to perform its task. File descriptors are allocated to each process
separately and threads of the same process compete for access to these descriptors. In memory, the
processor, and other globally allocated resources, threads contend with other threads of its process as
well as the threads of other processes for access to these resources.

A thread can allocate additional resources such as files or mutexes, but they are accessible to all the
threads of the process. There are limits on the resources that can be consumed by a single process.
Therefore, all the threads in combination must not exceed the resource limit of the process. If a thread
attempts to consume more resources than the soft resource limit defines, it is sent a signal that the
process's resource limit has been reached. Threads that allocate resources must be careful not to leave
resources in an unstable state when they are canceled. A thread that has opened a file or created a mutex
may be terminated, leaving the file open or the mutex locked. If the file has not been properly closed
and the application is terminated, this may result in damage to the file or loss of data. A thread
terminating after locking a mutex prevents access to whatever critical section that mutex is protecting.
Before it terminates, a thread should perform some cleanup, preventing these unwanted situations from
occurring.

4.5 Thread Models

The purpose of a thread is to perform work on behalf of the process. If a process has multiple threads,
each thread performs some subtask as part of the overall task to be performed by the process. Threads
are delegated work according to a specific strategy or approach that structures how delegation is
implemented. If the application models some procedure or entity, then the approach selected should
reflect that model. Some common models are:

• delegation (boss–worker)

• peer-to-peer

• pipeline

• producer-consumer

Each model has its own WBS (Work Breakdown Structure) that determines who is responsible for
thread creation and under what conditions threads are created. For example, there is a centralized
approach where a single thread creates other threads and delegates work to each thread. There is an
assembly-line approach where threads perform different work at different stages. Once the threads are
created, they can perform the same task on different data sets, different tasks on the same data set, or
different tasks on different data sets. Threads can be categorized to only perform certain types of tasks.
For example, there can be a group of threads that only perform computations, process input, or produce
output.

It may be true that what is to be modeled is not homogeneous throughout the process and it may be
necessary to mix models. In Chapter 3, we discussed a rendering process. Tasks 1, 2, and 3 were
performed sequentially and tasks 4, 5, and 6 can be performed simultaneously. Each task can be
executed by a different thread. If multiple images were to be rendered, threads 1, 2, and 3 can form the
pipeline of the process. As thread 1 finishes, the image is passed to thread 2 while thread 1 performs its
work on the next image. As these images are buffered, threads 4, 5, and 6 can use a workpile approach.
The thread model is a part of the structuring of parallelism in your application where each thread can be

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03

executing on a different processor. Table 4-4 lists the thread models with a brief description.

Table 4-4. Thread Models

Thread
Models

Description

Delegation
model

A central thread (boss) creates the threads (workers), assigning each worker a task.
Each worker is assigned a task by the boss thread. The boss thread may wait until
each thread completes that task.

Peer-to-peer
model

All the threads have an equal working status. Threads are called peer threads. A peer
thread creates all the threads needed to perform the tasks but performs no delegation
responsibilities. The peer threads can process requests from a single input stream
shared by all the threads or each thread may have its own input stream.

Pipeline An assembly-line approach to processing a stream of input in stages. Each stage is a
thread that performs work on a unit of input. When the unit of input has been through
all the stages, then the processing of the input has been completed.

Producer–
consumer
model

A producer thread produces data to be consumed by the consumer thread. The data is
stored in a block of memory shared by the producer and consumer threads.

4.5.1 Delegation Model

In the delegation model, a single thread (boss) creates the threads (workers) and assigns each a task. It
may be necessary for the boss thread to wait until each worker thread completes its task. The boss
thread delegates the task each worker thread is to perform by specifying a function. As each worker is
assigned its task, it is the responsibility of each worker thread to perform that task and produce output
or synchronize with the boss or other thread to produce output.

The boss thread can create threads as a result of requests made to the system. The processing of each
type of request can be delegated to a thread worker. In this case, the boss thread executes an event loop.
As events occur, thread workers are created and assigned their duties. A new thread is created for every
new request that enters the system. Using this approach may cause the process to exceed its resource or
thread limits. Alternatively, a boss thread can create a pool of threads that are reassigned new requests.
The boss thread creates a number of threads during initialization and then each thread is suspended until
a request is added to their queue. As requests are placed in the queue, the boss thread signals a worker
thread to process the request. When the thread completes, it dequeues the next request. If none are
available, the thread suspends itself until the boss signals the thread that more work is available in the
queue. If all the worker threads are to share a single queue, then the threads can be programmed to only
process certain types of requests. If the request in the queue is not of the type a particular thread is to
process, the thread can again suspend itself. The primary purpose of the boss thread is to create all the
threads, place work in the queue, and awaken worker threads when work is available. The worker
threads check the request in the queue, perform the assigned task, and suspend itself if no work is
available. All the worker threads and the boss thread execute concurrently. Figure 4-6 contrasts these
two approaches for the delegation model.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec5.htm#ch04fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec5.htm#ch04table04

Figure 4-6. The two approaches to the delegation model.

4.5.2 Peer-to-Peer Model

Where the delegation model has a boss thread that delegates tasks to worker threads, in the peer-to-peer
model all the threads have an equal working status. Although there is a single thread that initially
creates all the threads needed to perform all the tasks, that thread is considered a worker thread and
does no delegation. In this model, there is no centralized thread. The worker (peer) threads have more
responsibility. The peer threads can process requests from a single input stream shared by all the
threads or each thread may have its own input stream for which it is responsible. The input can also be
stored in a file or database. The peer threads may have to communicate and share resources. Figure 4-7
shows the peer-to-peer thread model.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec5.htm#ch04fig07

Figure 4-7. Peer-to-peer thread model.

4.5.3 Pipeline Model

The pipeline model is characterized as an assembly line in which a stream of items are processed in
stages. At each stage, work is performed on a unit of input by a thread. When the unit of input has been
through all the stages, then the processing of the input has been completed. This approach allows
multiple inputs to be processed simultaneously. Each thread is responsible for producing its interim
results or output, making them available to the next stage or next thread in the pipeline. The last stage
or thread produces the result of the pipeline.

As the input moves down the pipeline, it may be necessary to buffer units of input at certain stages as
threads process previous input. This may cause a slowdown in the pipeline if a particular stage's
processing is slower than other stages, causing a backlog. To prevent backlog, it may be necessary for
that stage to create additional threads to process incoming input. The stages of work in a pipeline
should be balanced where one stage does not take more time than the other stages. Work should be
evenly distributed throughout the pipeline. More stages and therefore more threads may also be added
to the pipeline. This will also prevent backlog. Figure 4-8 shows the pipeline model.

Figure 4-8. The pipeline model.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec5.htm#ch04fig08

4.5.4 Producer-Consumer Model

In the producer-consumer model, there is a producer thread that produces data to be consumed by the
consumer thread. The data is stored in a block of memory shared between the producer and consumer
threads. The producer thread must first produce data, then the consumer threads retrieve it. This process
will require synchronization. If the producer thread deposits data at a much faster rate than the
consumer thread consumes it, then the producer thread may at several times overwrite previous results
before the consumer thread retrieves it. On the other hand, if the consumer thread retrieves data at a
much faster rate than the producer deposits data, then the consumer thread may retrieve identical data or
attempt to retrieve data not yet deposited. Figure 4-9 shows the producer-consumer model. The
producer-consumer model is also called the client-server model for larger-scaled programs and
applications.

Figure 4-9. The producer–consumer model.

4.5.5 SPMD and MPMD for Threads

In each of the previous thread models, the threads are performing the same task over and over again on
different data sets or are assigned different tasks performed on different data sets. These thread models
utilize SIMD (Single Instruction Multiple Data) or MPMD (Multiple Programs Multiple Data). These
are two models of parallelism that classify programs by instruction and data streams. They can be used
to describe the type of work the thread models are implementing in parallel. For our purposes, MPMD
is better stated as MTMD (Multiple Threads Multiple Data). These models describe a system that
executes different threads processing different sets of data or data streams. SPMD means Single
Program Multiple Data or, for our purposes, STMD (Single Thread Multiple Data). This model
describes a system that executes a single thread that processes different sets of data or data streams.
This means several identical threads executing the same routine are given different sets of data to
process.

The delegation and peer-to-peer models can both use STMD or MTMD models of parallelism. As
described, the pool of threads can execute different routines processing different sets of data. This
utilizes the MTMD model. The pool of threads can also be given the same routine to execute. The
requests or jobs submitted to the system could be different sets of data instead of different tasks. In this
case, a set of threads implementing the same instructions but on different sets of data thus utilizes
STMD. The peer-to-peer model can be threads executing the same or different tasks. Each thread can
have its own data stream or several files of data that each thread is to process. The pipeline model uses
the MTMD model of parallelism. At each stage different processing is performed so multiple input
units are at different stages of completion. The pipeline metaphor would be useless if at each stage the
same processing was performed. Figure 4-10 contrasts the STMD and MTMD models of parallelism.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec5.htm#ch04fig10
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec5.htm#ch04fig09

Figure 4-10. The STMD and MTMD models of parallelism.

4.6 Introduction to the Pthread Library

The Pthread library supplies the API to create and manage the threads in your application. The Pthread
library is based on a standardized programming interface for the creation and maintenance of threads.
The thread interface has been specified by the IEEE standards committee in the POSIX 1003.1c
standard. Third-party vendors supply an implementation that adheres to the POSIX standard. Their
implementation is referred to as Pthreads or POSIX thread library.

The Pthread library contains over 60 functions that can be classified into the following categories:

I. Thread Management Functions

I. Thread configuration

II. Thread cancellation

III.Thread scheduling

IV.Thread specific data

V. Signals

VI.Thread attribute functions

a. Thread attribute configuration

b. Thread attribute stack configuration

c. Thread attribute scheduling configuration

II. Mutex Functions

I. Mutex configuration

II. Priority management

III.Mutex attribute functions

a. Mutex attribute configuration

b. Mutex attribute protocol

c. Mutex attribute priority management

III.Condition Variable Functions

I. Condition variable configuration

II. Condition variable attribute functions

a. Condition variable attribute configuration

b. Condition variable sharing functions

The Pthread library can be implemented in any language but in order to be compliant with the POSIX
standard, they must comply to the standardized interface and behave in the manner specified. The
Pthread library is not the only thread API implementation. Hardware and third-party vendors have
implemented their own proprietary thread APIs. For example, the Sun environment supports the
Pthread library and their own Solaris thread library. In this chapter, we discuss some Pthread functions
that implement thread management.

4.7 The Anatomy of a Simple Threaded Program

Any simple multithreaded program will consist of a main or creator thread and the functions that the
threads will execute. The thread models determine the manner in which the threads are created and
managed. They can be created all at once or under certain conditions. In Example 4.1 the delegation
model is used to show a simple multithreaded program.

Example 4.1 Using the delegation model in a simple threaded program.

#include <iostream>
#include <pthread.h>

void *task1(void *X) //define task to be executed by ThreadA
{
 //...
 cout << "Thread A complete" << endl;

}

void *task2(void *X) //define task to be executed by ThreadB

{
 //...
 cout << "Thread B complete" << endl;

}

int main(int argc, char *argv[])
{
 pthread_t ThreadA,ThreadB; // declare threads

 pthread_create(&ThreadA,NULL,task1,NULL); // create threads
 pthread_create(&ThreadB,NULL,task2,NULL);
 // additional processing
 pthread_join(ThreadA,NULL); // wait for threads
 pthread_join(ThreadB,NULL);
 return(0);
}

In Example 4.1, the main line of the example defines the set of instructions for the primary thread. The
primary thread, in this case, is also the boss thread. The boss thread declares two threads, ThreadA and
ThreadB. By using the pthread_create() function, these two threads are associated with the tasks they
are to execute. The two tasks, task1 and task2, are defined. They simply send a message to the standard
out but could be programmed to do anything. The pthread_create() function causes the threads to
immediately execute their assigned tasks. The pthread_join() function works the same way as wait() for
processes. The primary thread waits until both threads return. Figure 4-11 shows the layout of Example
4.1. It also shows what happens to the flow of controls as the pthread_create() and pthread_join()

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec7.htm#ch04ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec7.htm#ch04ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec7.htm#ch04fig11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec7.htm#ch04ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec7.htm#ch04ex01

functions are called.

Figure 4-11. The layout, output, and flow of control for Example 4.1.

In Figure 4-11, the pthread_create() function causes a fork in the flow of control in the main line or
primary thread. Two additional flows of control, one for each thread, are executing concurrently. The
pthread_create() function returns immediately after the threads are created. It is an asynchronous
function. As each thread executes its set of instructions, the primary thread executes its instructions.
The pthread_join() causes the primary thread to wait until each thread terminates and rejoins the main
flow of control.

4.7.1 Compiling and Linking Multithreaded Programs

All multithreaded programs using the POSIX thread library must include the header:

<pthread.h>

In order to compile and link multithreaded applications in the UNIX or Linux environments using the
g++ or gcc command-line compilers, be sure to link the Pthreads library to your application. Use the -l
option that specifies a library.

-lpthread

will cause your application to link to the library that is compliant with the multithreading interface
defined by POSIX 1003.1c standard. The Pthread library, libpthread.so, should be located in the
directory where the system stores its standard library, usually /usr/lib. If it is not located in a standard
location, use the -L option to make the compiler look in a particular directory first before searching the
standard locations.

g++ -o blackboard -L /src/local/lib blackboard.cpp -lpthread

tells the compiler to look in the /src/local/lib directory for the Pthread library before searching in the
standard locations.

The complete programs in this book are accompanied by a program profile. The program profile
contains implementation specifics such as headers and libraries required and compile and link

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec7.htm#ch04fig11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec7.htm#ch04ex01

instructions. The profile also includes a note section that will contain any special considerations that
need to be taken when executing the program.

4.8 Creating Threads

The Pthreads library can be used to create, maintain, and manage the threads of multithreaded programs
and applications. When creating a multithreaded program, threads can be created any time during the
execution of a process because they are dynamic. The pthread_create() function creates a new thread in
the address space of a process. The thread parameter points to a thread handle or thread id of the thread
that will be created. The new thread will have the attributes specified by the attribute object attr. The
thread parameter will immediately execute the instructions in start_routine with the arguments specified
by arg. If the function successfully creates the thread, it will return the thread id and store the value in
the thread parameter.

If attr is NULL, the default thread attributes will be used by the new thread. The new thread takes on
the attributes of attr when it is created. If attr is changed after the thread has been created, it will not
affect any of the thread's attributes. If start_routine returns, the thread returns as if pthread_exit() had
been called using the return value of start_routine as its exit status.

Synopsis
#include <pthread.h>

int pthread_create(pthread_t *restrict thread,
 const pthread_attr_t *restrict attr,
 void *(*start_routine)(void*),
 void *restrict arg);

If successful, the function will return 0. If the function is not successful, no new thread is created and
the function will return an error number. If the system does not have the resources to create the thread
or the thread limit for the process has been reached, the function will fail. The function will also fail if
the thread attribute is invalid or the caller thread does not have permission to set the necessary thread
attributes.

These are examples of creating two threads with default attributes:

pthread_create(&threadA,NULL,task1,NULL);
pthread_create(&threadB,NULL,task2,NULL);

These are the two pthread_create() function calls from Example 4.1. Both threads are created with
default attributes.

Program 4.1 shows a primary thread passing an argument from the command line to the functions
executed by the threads.

Program 4.1

#include <iostream>
#include <pthread.h>
#include <stdlib.h>

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec7.htm#ch04ex01

int main(int argc, char *argv[])
{
 pthread_t ThreadA,ThreadB;
 int N;

 if(argc != 2){
 cout << "error" << endl;
 exit (1);
 }

 N = atoi(argv[1]);
 pthread_create(&ThreadA,NULL,task1,&N);
 pthread_create(&ThreadB,NULL,task2,&N);
 cout << "waiting for threads to join" << endl;
 pthread_join(ThreadA,NULL);
 pthread_join(ThreadB,NULL);
 return(0);
}

Program 4.1 shows how the primary thread can pass arguments from the command line to each of the
thread functions. A number is typed in at the command line. The primary thread converts the argument
to an integer and passes it to each function as a pointer to an integer as the last argument to the
pthread_create() functions. Program 4.2 shows each of the thread functions.

Program 4.2

void *task1(void *X)
{
 int *Temp;
 Temp = static_cast<int *>(X);

 for(int Count = 1;Count < *Temp;Count++){
 cout << "work from thread A: " << Count << " * 2 = "
 << Count * 2 << endl;
 }
 cout << "Thread A complete" << endl;
}

void *task2(void *X)
{
 int *Temp;
 Temp = static_cast<int *>(X);

 for(int Count = 1;Count < *Temp;Count++){
 cout << "work from thread B: " << Count << " + 2 = "
 << Count + 2 << endl;
 }
 cout << "Thread B complete" << endl;

}

In Program 4.2, task1 and task2 executes a loop that is iterated the number of times as the value passed
to the function. The function either adds or multiplies the loop invariant by 2 and sends the results to
standard out. Once complete, each function outputs a message that the thread is complete. The
instructions for compiling and executing Programs 4.1 and 4.2 are contained in Program Profile 4.1.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04sb02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04prog01

Program Profile 4.1
Program Name

program4-12.cc

Description

Accepts an integer from the command line and passes the value to the thread functions. Each
function executes a loop that either adds or multiples the loop invariant by 2 and sends the
result to standard out. The main line or primary thread is listed in Program 4.1 and the
functions are listed in Program 4.2.

Libraries Required

libpthread

Headers Required

<pthread.h> <iostream> <stdlib.h>

Compile and Link Instructions

c++ -o program4-12 program4-12.cc -lpthread

Test Environment

SuSE Linux 7.1, gcc 2.95.2,

Execution Instructions

./program4-12 34

Notes

This program requires a command-line argument.

This is an example of passing a single argument to the thread function. If it is necessary to pass multiple
arguments to the thread function, create a struct or container containing all the required arguments and
pass a pointer to that structure to the thread function.

4.8.1 Getting the Thread Id

As mentioned earlier, the process shares all its resources with the threads in its address space. Threads
have very few resources of their own. The thread id is one of the resources unique to each thread. The
pthread_self() function returns the thread id of the calling thread.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04prog01

Synopsis
#include <pthread.h>

pthread_t pthread_self(void);

This function is similar to getpid() for processes. When a thread is created, the thread id is returned to
the creator or calling thread. The thread id will not know the created thread. Once the thread has its own
id, it can be passed to other threads in the process. This function returns the thread id with no errors
defined.

Here is an example of calling this function:

//...
pthread_t ThreadId;
ThreadId = pthread_self();

A thread calls this function and the function returns the thread id stored in the variable ThreadId of type
pthread_t.

4.8.2 Joining Threads

The pthread_join() function is used to join or rejoin flows of control in a process. The pthread_join()
causes the calling thread to suspend its execution until the target thread has terminated. It is similar to
the wait() function used by processes. This function can be called by the creator of a thread. The creator
thread waits for the new thread to terminate and return, thus rejoining flows of control. The
pthread_join() can also be called by peer threads if the thread handle is global. This will allow any
thread to join flows of control with any other thread in the process. If the calling thread is canceled
before the target thread returns, the target thread will not become a detached thread (discussed in the
next section). If different peer threads simultaneously call the pthread_join() function on the same
thread, this behavior is undefined.

Synopsis
#include <pthread.h>

int pthread_join(pthread_t thread, void **value_ptr);

The thread parameter is the thread (target thread) the calling thread is waiting on. If the function returns
successfully, the exit status is stored in value_ptr. The exit status is the argument passed to the
pthread_exit() function called by the terminated thread. The function will return an error number if it
fails. The function will fail if the target thread is not a joinable thread or, in other words, created as a
detached thread. The function will also fail if the specified thread thread does not exist.

There should be a pthread_join() function called for all joinable threads. Once the thread is joined, this
will allow the operating system to reclaim storage used by the thread. If a joinable thread is not joined
to any thread or the thread that calls the join function is canceled, then the target thread will continue to
utilize storage. This is a state similar to a zombied process when the parent process has not accepted the
exit status of a child process, the child process continues to occupy an entry in the process table.

4.8.3 Creating Detached Threads

A detached thread is a terminated thread that is not joined or waited upon by any other threads. When
the thread terminates, the limited resources used by the thread, including the thread id, are reclaimed
and returned to the system pool. There is no exit status for any thread to obtain. Any thread that
attempts to call pthread_join() for a detached thread will fail. The pthread_detach() function detaches
the thread specified by thread. By default, all threads are created as joinable unless otherwise specified
by the thread attribute object. This function detaches already existing joinable threads. If the thread has
not terminated, a call to this function does not cause it to terminate.

Synopsis
#include <pthread.h>

int pthread_detach(pthread_t thread thread);

If successful, the function will return 0. If not successful, it will return an error number. The
pthread_detach() function will fail if thread is already detached or the thread specified by thread could
not be found.

This is an example of detaching an already existing joinable thread:

//...
pthread_create(&threadA,NULL,task1,NULL);
pthread_detach(threadA);
//...

This causes threadA to be a detached thread. To create a detached thread, as opposed to dynamically
detaching a thread, requires setting the detachstate of a thread attribute object and using that attribute
object when the thread is created.

4.8.4 Using the Pthread Attribute Object

The thread attribute object encapsulates the attributes of a thread or group of threads. It is used to set
the attributes of threads during their creation. The thread attribute object is of type pthread_attr_t. This
structure can be used to set these thread attributes:

• size of the thread's stack

• location of the thread's stack

• scheduling inheritance, policy, and parameters

• whether the thread is detached or joinable

• the scope of the thread

The pthread_attr_t has several methods that can be invoked to set and retrieve each of these attributes.
Table 4-3 lists the methods used to set the attributes of the attribute object.

The pthread_attr_init() and pthread_attr_destroy() functions are used to initialize and destroy a thread
attribute object.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec3.htm#ch04table03

Synopsis
#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);

The pthread_attr_init() function initializes a thread attribute object with the default values for all the
attributes. The attr parameter is a pointer to a pthread_attr_t object. Once attr has been initialized, its
attribute values can be changed by using the pthread_attr_set functions listed in Table 4-3. Once the
attributes have been appropriately modified, attr can be used as a parameter in any call to the
pthread_create() function. If successful, the function will return 0. If not successful, the function will
return an error number. The pthread_attr_init() function will fail if there is not enough memory to create
the object.

The pthread_attr_destroy() function can be used to destroy a pthread_attr_t object specified by attr. A
call to this function deletes any hidden storage associated with the thread attribute object. If successful,
the function will return 0. If not successful, the function will return an error number.

4.8.4.1 Creating Detached Threads Using the Pthread Attribute Object

Once the thread object has been initialized, its attributes can be modified. The
pthread_attr_setdetachstate() function can be used to set the detachstate attribute of the attribute object.
The detachstate parameter describes the thread as detached or joinable.

Synopsis
#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr,
 int *detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t *attr,
 int *detachstate);

The detachstate can have one of these values:

PTHREAD_CREATE_DETACHED
PTHREAD_CREATE_JOINABLE

The PTHREAD_CREATE_DETACHED value will cause all the threads that use this attribute object to
be detached. The PTHREAD_CREATE_JOINABLE value will cause all the threads that use this
attribute object to be joinable. This is the default value of detachstate. If successful, the function will
return 0. If not successful, the function will return an error number. The pthread_attr_setdetachstate()
function will fail if the value of detachstate is not valid.

The pthread_attr_getdetachstate() function will return the detachstate of the attribute object. If
successful, the function will return the value of detachstate to the detachstate parameter and 0 as the
return value. If not successful, the function will return an error number. In Example 4.2, the threads
created in Program 4.1 are detached. This example uses an attribute object when creating one of the
threads.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec3.htm#ch04table03

Example 4.2 Using an attribute object to create a detached thread.

//...

int main(int argc, char *argv[])
{

 pthread_t ThreadA,ThreadB;
 pthread_attr_t DetachedAttr;
 int N;

 if(argc != 2){
 cout << "error" << endl;
 exit (1);

 }

 N = atoi(argv[1]);
 pthread_attr_init(&DetachedAttr);
 pthread_attr_setdetachstate(&DetachedAttr,PTHREAD_CREATE_DETACHED);
 pthread_create(&ThreadA,NULL,task1,&N);
 pthread_create(&ThreadB,&DetachedAttr,task2,&N);
 cout << "waiting for thread A to join" << endl;
 pthread_join(ThreadA,NULL);
 return(0);

}

Example 4.2 declares an attribute object DetachedAttr. The pthread_attr_init() function is used to
allocate the attribute object. Once initialized, the pthread_attr_detachstate() function is used to change
the detachstate from joinable to detached using the PTHREAD_CREATE_DETACHED value. When
creating ThreadB, the Detached-Attr is the second argument in the call to the pthread_create() function.
The pthread_join() call is removed for ThreadB because detached threads cannot be joined.

4.9 Managing Threads

When creating applications with multiple threads, there are several ways to control how threads
perform and how threads use and compete for resources. Part of managing threads is setting the
scheduling policy and priority of the threads. This contributes to the performance of the thread. Thread
performance is also determined by how the threads compete for resources, either on a process or system
scope. The scheduling, priority, and scope of the thread can be set by using a thread attribute object.
Because threads share resources, access to resources will have to be synchronized. This will briefly be
discussed in this chapter and fully discussed in Chapter 5. Thread synchronization also includes when
and how threads are terminated and canceled.

4.9.1 Terminating Threads

A thread's execution can be discontinued by several means:

• By returning from the execution of its assigned task with or without an exit status or return value

• By explicitly terminating itself and supplying an exit status

• By being canceled by another thread in the same address space

When a joinable thread function has completed executing, it returns to the thread calling pthread_join(),
for which it is the target thread. The pthread_join() returns the exit status passed to the pthread_exit()

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05.htm#ch05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec8.htm#ch04ex02

function called by the terminating thread. If the terminating thread did not make a call to pthread_exit(),
then the exit status will be the return value of the function, if it has one; otherwise, the exit status is
NULL.

It may be necessary for one thread to terminate another thread in the same process. For example, an
application may have a thread that monitors the work of other threads. If a thread performs poorly or is
no longer needed, to save system resources it may be necessary to terminate that thread. The
terminating thread may terminate immediately or defer termination until a logical point in its execution.
The terminating thread may also have to perform some cleanup tasks before it terminates. The thread
also has the option to refuse termination.

The pthread_exit() function is used to terminate the calling thread. The value_ptr is passed to the thread
that calls pthread_join() for this thread. Cancellation cleanup handler tasks that have not executed will
execute along with the destructors for any thread-specific data. No resources used by the thread are
released.

Synopsis
#include <pthread.h>

int pthread_exit(void *value_ptr);

When the last thread of a process exits, then the process has terminated with an exit status of 0. This
function cannot return to the calling thread and there are no errors defined.

The pthread_cancel() function is used to cancel the execution of another thread in the same address
space. The thread parameter is the thread to be canceled.

Synopsis
#include <pthread.h>

int pthread_cancel(pthread_t thread thread);

A call to the pthread_cancel() function is a request to cancel a thread. The request can be granted
immediately, at a later time, or ignored. The cancel type and cancel state of the target thread determines
when or if thread cancellation actually takes place. When the request is granted, there is a cancellation
process that occurs asynchronously to the returning of the pthread_cancel() function to the calling
thread. If the thread has cancellation cleanup handler tasks, they are performed. When the last handler
returns, the destructors for thread-specific data, if any, are called and the thread is terminated. This is
the cancellation process. The function returns 0 if successful and an error if not successful. The
pthread_cancel() function will fail if the thread parameter does not correspond to an existing thread.

Some threads may require safeguards against untimely cancellation. Installing safeguards in a thread's
function may prevent undesirable situations. Threads share data and depending on the thread model
used, one thread may be processing data that is to be passed to another thread for processing. While the
thread is processing data, it has sole possession by locking a mutex associated with the data. If a thread
has locked a mutex and is canceled before the mutex is released, this could cause deadlock. The data
may be required to be in some state before it can be used again. If a thread is canceled before this is
done, an undesirable condition may occur. To put it simply, depending on the type of processing a
thread is performing, thread cancellation should be performed when it is safe. A vital thread may
prevent cancellation entirely. Therefore, thread cancellation should be restricted to threads that are not

vital or points of execution that do not have locks on resources. Cancellations can also be postponed
until all vital cleanups have taken place.

The cancelability state describes the cancel condition of a thread as being cancelable or uncancelable. A
thread's cancelabilty type determines the thread's ability to continue after a cancel request. A thread can
act upon a cancel request immediately or defer the cancellation to a later point in its execution. The
cancelability state and type are dynamically set by the thread itself.

The pthread_setcancelstate() and pthread_setcanceltype() functions are used to set the cancelability
state and type of the calling thread. The pthread_setcancelstate() function sets the calling thread to the
cancelability state specified by state and returns the previous state in oldstate.

Synopsis
#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);

The values for state and oldstate are:

PTHREAD_CANCEL_DISABLE
PTHREAD_CANCEL_ENABLE

PTHREAD_CANCEL_DISABLE is a state in which a thread will ignore a cancel request.
PTHREAD_CANCEL_ENABLE is a state in which a thread will concede to a cancel request. This is
the default state of any newly created thread. If successful, the function will return 0. If not successful,
the function will return an error number. The pthread_setcancelstate() may fail if not passed a valid
state value.

The pthread_setcanceltype() function sets the calling thread to the cancelability type specified by type
and returns the previous state in oldtype. The values for type and oldtype are:

PTHREAD_CANCEL_DEFFERED
PTHREAD_CANCEL_ASYNCHRONOUS

PTHREAD_CANCEL_DEFFERED is a cancelability type in which a thread puts off termination until
it reaches its cancellation point. This is the default cancelability type for any newly created threads.
PTHREAD_CANCEL_ASYNCHRONOUS is a cancelability type in which a thread terminates
immediately. If successful, the function will return 0. If not successful, the function will return an error
number. The pthread_setcanceltype() may fail if not passed a valid type value.

The pthread_setcancelstate() and pthread_setcanceltype() functions are used together to establish the
cancelabililty of a thread. Table 4-5 list combinations of state and type and a description of what will
occur for each combination.

Table 4-5. Combinations of Cancelabililty State and Type

Cancelability
State

Cancelability Type Description

PTHREAD_CAN
CEL_ENABLE

PTHREAD_CANCEL_
DEFERRED

Deferred cancellation. The default cancellation state
and type of a thread. Thread cancellation takes places

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04table05

Cancelability
State

Cancelability Type Description

when it enters a cancellation point or when the
programmer defines a cancellation point with a call to
pthread_testcancel().

PTHREAD_CAN
CEL_ENABLE

PTHREAD_CANCEL_
ASYNCHRONOUS

Asynchronous cancellation. Thread cancellation takes
place immediately.

PTHREAD_CAN
CEL_DISABLE

Ignored Disabled cancellation. Thread cancellation does not
take place.

4.9.1.1 Cancellation Points

When a cancel request is deferred, the termination of the thread takes place later in the execution of the
thread's function. Whenever it occurs, it should be "safe" to cancel the thread because it is not in the
middle of executing critical code, locking a mutex, or leaving the data in some usable state. These safe
locations in the code's execution are good locations for cancellation points. A cancellation point is a
check point where a thread checks if there are any cancellation requests pending and, if so, concede to
termination.

Cancellation points can be marked by a call to pthread_testcancel(). This function checks for any
pending cancellation request. If a request is pending, then it causes the cancellation process to occur at
the location this function is called. If there are no cancellations pending, then the function continues to
execute with no repercussions. This function call can be placed at any location in the code where it is
considered safe to terminate the thread.

Synopsis
#include <pthread.h>

void pthread_testcancel(void);

Program 4.3 contains functions that use the pthread_setcancelstate(), pthread_setcanceltype(), and
pthread_testcancel() functions. Program 4.3 shows three functions setting their cancelability types and
states.

Program 4.3

#include <iostream>
#include <pthread.h>

void *task1(void *X)
{
 int OldState;

 // disable cancelability
 pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,&OldState);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog03

 for(int Count = 1;Count < 100;Count++)
 {
 cout << "thread A is working: " << Count << endl;

 }

}

void *task2(void *X)
{
 int OldState,OldType;

 // enable cancelability, asynchronous
 pthread_setcancelstate(PTHREAD_CANCEL_ENABLE,&OldState);
 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS,&OldType);

 for(int Count = 1;Count < 100;Count++)
 {
 cout << "thread B is working: " << Count << endl;
 }

}

void *task3(void *X)
{
 int OldState,OldType;

 // enable cancelability, deferred
 pthread_setcancelstate(PTHREAD_CANCEL_ENABLE,&OldState);
 pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED,&OldType);

 for(int Count = 1;Count < 1000;Count++)
 {
 cout << "thread C is working: " << Count << endl;
 if((Count%100) == 0){
 pthread_testcancel();
 }

 }

}

In Program 4.3, each task has set its cancelability condition. In task1, the cancelability of the thread has
been disabled. What follows is critical code that must be executed. In task2, the cancelability of the
thread is enabled. A call to the pthread_setcancelstate() is unnecessary because all new threads have an
enabled cancelability state. The cancelability type is set to PTHREAD_CANCEL_ASYNCHRONOUS.
This means whenever a cancel request is issued, the thread will start its cancellation process
immediately, regardless of where it is in its execution. Therefore, it should not be executing any vital
code once this type is activated. If it is making any system calls, they should be cancellation-safe
functions (discussed later). In task2, the loop iterates until the cancel request is issued. In task3, the
cancelability of the thread is also enabled and the cancellation type is
PTHREAD_CANCEL_DEFFERED. This is the default state and type of a newly created thread,
therefore, calls to the pthread_setcancelstate() and pthread_setcanceltype() are unnecessary. Critical
code can be executed after the state and type are set because the termination will not take place until the
pthread_testcancel() function is called. If there is no request pending, then the thread will continue
executing until, if any, calls to pthread_testcancel() are made. In task3, the pthread_cancel() function is
called whenever Count is evenly divisible by 100. Code between cancellation points should not be

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog03

critical because it may not execute.

Program 4.4 shows the boss thread that issues the cancellation request for each thread.

Program 4.4

int main(int argc, char *argv[])
{
 pthread_t Threads[3];
 void *Status;

 pthread_create(&(Threads[0]),NULL,task1,NULL);
 pthread_create(&(Threads[1]),NULL,task2,NULL);
 pthread_create(&(Threads[2]),NULL,task3,NULL);

 pthread_cancel(Threads[0]);
 pthread_cancel(Threads[1]);
 pthread_cancel(Threads[2]);

 for(int Count = 0;Count < 3;Count++)
 {
 pthread_join(Threads[Count],&Status);

 if(Status == PTHREAD_CANCELED){
 cout << "thread" << Count << " has been canceled" << endl;
 }
 else{
 cout << "thread" << Count << " has survived" << endl;
 }
 }

 return(0);
}

The boss thread in Program 4.4 creates three threads, then it issues a cancellation request for each
thread. The boss thread calls the pthread_join() function for each thread. The pthread_join() function
does not fail if it attempts to join with a thread that has already been terminated. The join function just
retrieves the exit status of the terminated thread. This is good because the thread that issues the
cancellation request may be a different thread than the thread that calls pthread_join(). Monitoring the
work of all the worker threads may be the sole task of a single thread that also cancels threads. Another
thread may examine the exit status of threads by calling the pthread_join() function. This type of
information may be used to statistically evaluate which threads have the best performance. In this
program, the boss thread joins and examines each exit thread's exit status in a loop. Thread[0] was not
canceled because its cancelability was disabled. The other two threads were canceled. A canceled
thread may return an exit status, for example, PTHREAD_CANCELED. Program Profile 4.2 contains
the profile for Programs 4.3 and 4.4.

Program Profile 4.2
Program Name

program4-34.cc

Description

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04sb12
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog04

Demonstrates the use of thread cancellation. Three threads have different cancellation types
and states. Each thread executes a loop. The cancellation state and type determines the
number of loop iterations or whether the loop is executed at all. The primary thread
examines the exit status of each thread.

Libraries Required

libpthread

Headers Required

<pthread.h> <iostream>

Compile and Link Instructions

c++ -o program4-34 program4-34.cc -lpthread

Test Environment

SuSE Linux 7.1, gcc 2.95.2,

Execution Instructions

./program4-34

Cancellation points marked by a call to the pthread_testcancel() function are used in user-defined
functions. The Pthread library defines the execution of other functions as cancellation points. These
functions block the calling thread and while blocked the thread is safe to be canceled. These are the
Pthread library functions that act as cancellation points:

pthread_testcancel()
pthread_cond_wait()
pthread_timedwait
pthread_join()

If a thread with a deferred cancelability state has a cancellation request pending when making a call to
one of these Pthread library functions, the cancellation process will be initiated. As far as system calls,
Table 4-6 lists some of the system calls required to be cancellation points.

While these functions are safe for deferred cancellation, they may not be safe for asynchronous
cancellation. An asynchronous cancellation during a library call that is not an asynchronously safe
function may cause library data to be left in an incompatible state. The library may have allocated
memory on behalf of the thread and when the thread is canceled, may still have a hold on that memory.
For other library and systems functions that are not cancellation safe (asynchronously or deferred), it
may be necessary to write code preventing a thread from terminating by disabling cancellation or
deferring cancellation until after the function call has returned.

4.9.1.2 Cleaning Up Before Termination

Once the thread concedes to cancellation, it may need to perform some final processing before it is
terminated. The thread may have to close files, reset shared resources to some consistent state, release
locks, or deallocate resources. The Pthread library defines a mechanism for each thread to perform last-

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04table06

minute tasks before terminating. A cleanup stack is associated with every thread. The stack contains
pointers to routines that are to be executed during the cancellation process. The pthread_cleanup_push()
function pushes a pointer to the routine onto the cleanup stack.

Table 4-6. POSIX System Calls Required to be Cancellation Points

POSIX System Calls (Cancellation Points)

accept() nanosleep() sem_wait()

aio_suspend() open() send()

clock_nanosleep() pause() sendmsg()

close() poll() sendto()

connect() pread() sigpause()

creat() pthread_cond_timedwait() sigsuspend()

fcntl() pthread_cond_wait() sigtimedwait()

fsync() pthread_join() sigwait()

getmsg() putmsg() sigwaitinfo()

lockf() putpmsg() sleep()

mq_receive() pwrite() system()

mq_send() read() usleep()

mq_timedreceive() readv() wait()

mq_timedsend() recvfrom() waitpid()

msgrcv() recvmsg() write()

msgsnd() select() writev()

POSIX System Calls (Cancellation Points)

msync() sem_timedwait()

Synopsis
#include <pthread.h>

void pthread_cleanup_push(void (*routine)(void *), void *arg);
void pthread_cleanup_pop(int execute);

The routine parameter is a pointer to the function to be pushed onto the stack. The arg parameter is
passed to the function. The function routine is called with the arg parameter when the thread exits by
calling pthread_exit(), when the thread concedes to a termination request, or when the thread explicitly
calls the pthread_cleanup_pop() function with a nonzero value for execute. The function does not
return.

The pthread_cleanup_pop() function removes routine's pointer from the top of the calling thread's
cleanup stack. The execute parameter can have a value of 1 or 0. If the value is 1, the thread executes
routine even if it is not being terminated. The thread continues execution from the point after the call to
this function. If the value is 0, the pointer is removed from the top of the stack without executing.

It is required for each push there be a pop within the same lexical scope. For example, funcA() requires
a cleanup handler to be executed when the function exits or cancels:

void *funcA(void *X)
{
 int *Tid;
 Tid = new int;
 // do some work
 //...
 pthread_cleanup_push(cleanup_funcA,Tid);
 // do some more work
 //...
 pthread_cleanup_pop(0);
}

Here, funcA() pushes cleanup handler cleanup_funcA() onto the cleanup stack by calling the
pthread_cleanup_push() function. The pthread_cleanup_pop() function is required for each call to the
pthread_cleanup_push() function. The pop function is passed 0, which means the handler is removed
from the cleanup stack but is not executed at this point. The handler will be executed if the thread that
executes funcA() is canceled.

The funcB() also requires a cleanup handler:

void *funcB(void *X)
{
 int *Tid;
 Tid = new int;
 // do some work
 //...
 pthread_cleanup_push(cleanup_funcB,Tid);

 // do some more work
 //...

 pthread_cleanup_pop(1);
}

Here, funcB() pushes cleanup handler cleanup_funcB() onto the cleanup stack. The difference in this
case is the pthread_cleanup_pop() function is passed 1, which means the handler is removed from the
cleanup stack but will execute at this point. The handler will be executed regardless of whether the
thread that executes funcA() is canceled or not. The cleanup handlers, cleanup_funcA() and
cleanup_funcB(), are regular functions that can be used to close files, release resources, unlock
mutexes, and so on.

4.9.2 Managing the Thread's Stack

The address space of a process is divided into the text and static data segments, free store, and the stack
segment. The location and size of the thread's stacks are cut out of the stack segment of the process. A
thread's stack will store a stack frame for each routine it has called but has not exited. The stack frame
contains temporary variables, local variables, return addresses, and any other additional information the
thread needs to find its way back to previously executing routines. Once the routine is exited, the stack
frame for that routine is removed from the stack. Figure 4-12 shows how stack frames are placed onto a
stack.

Figure 4-12. Stack frames generated from a thread.

In Figure 4-12, Thread A executes Task 1. Task 1 creates some local variables, does some processing,
then calls Task X. A stack frame is created for Task 1 and placed on the stack. Task X does some
processing, creates local variables, then calls Task C. A stack frame for Task X is placed on the stack.
Task C calls Task Y, and so on. Each stack must be large enough to accommodate the execution of each
thread's function along with the chain of routines that will be called. The size and location of a thread's
stack are managed by the operating system but they can be set or examined by several methods defined
by the attribute object.

The pthread_attr_getstacksize() function returns the default stack size minimum. The attr parameter is
the thread attribute object from which the default stack size is extracted. When the function returns, the
default stack size, expressed in bytes, is stored in the stacksize parameter and the return value is 0. If

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04fig12
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04fig12

not successful, the function returns an error number.

The pthread_attr_setstacksize() function sets the stack size minimum. The attr parameter is the thread
attribute object for which the stack size is set. The stacksize parameter is the minimum size of the stack
expressed in bytes. If the function is successful, the return value is 0. If not successful, the function
returns an error number. The function will fail if stacksize is less than PTHREAD_MIN_STACK or
exceeds the system minimum. The PTHREAD_STACK_MIN will probably be a lower minimum than
the default stack minimum returned by pthread_attr_getstacksize(). Consider the value returned by the
pthread_attr_getstacksize() before raising the minimum size of a thread's stack. A stack's size is fixed so
the stack's growth during runtime will only be within the fixed space of the stack set at compile time.

Synopsis
[View full width]

#include <pthread.h>

void pthread_attr_getstacksize(const pthread_attr_t *restrict attr,
 void **restrict stacksize);
void pthread_attr_setstacksize(pthread_attr_t *attr, void
 *stacksize);

The location of the thread's stack can be set and retrieved by the pthread_attr_setstackaddr() and
pthread_attr_getstackaddr() functions. The pthread_attr_setstackaddr() function sets the base location of
the stack to the address specified by the parameter stackattr for the thread created with the thread
attribute object attr. This address addr should be within the virtual address space of the process. The
size of the stack will be at least equal to the minimum stack size specified by
PTHREAD_STACK_MIN. If successful, the function will return 0. If not successful, the function will
return an error number.

The pthread_attr_getstackaddr() function retrieves the base location of the stack address for the thread
created with the thread attribute object specified by the parameter attr. The address is returned and
stored in the parameter stackaddr. If successful, the function will return 0. If not successful, the function
will return an error number.

Synopsis
[View full width]

#include <pthread.h>

void pthread_attr_setstackaddr(pthread_attr_t *attr, void
 *stackaddr);

void pthread_attr_getstackaddr(const pthread_attr_t *restrict attr,
 void **restrict stackaddr);

The stack attributes (size and location) can be set by a single function. The pthread_attr_setstack()
function sets both the stack size and stack location of a thread created using the specified attribute
object attr. The base location of the stack will be set to the stackaddr parameter and the size of the stack
will be set to the stacksize parameter. The pthread_attr_getstack() function retrieves the stack size and
stack location of a thread created using the specified attribute object attr. If successful, the stack
location will be stored in the stackaddr parameter and the stack size will be stored in the stacksize

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/noccc##PLID18
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/noccc##PLID17

parameter. If successful, these functions will return 0. If not successful, an error number is returned.
The pthread_setstack() function will fail if the stacksize is less than PTHREAD_STACK_MIN or
exceeds some implementation-defined limit.

Synopsis
[View full width]

#include <pthread.h>

void pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
 size_t stacksize);
void pthread_attr_getstack(const pthread_attr_t *restrict attr,
 void **restrict stackaddr, size_t
 stacksize);

Example 4.3 sets the stack size of a thread using a thread attribute object.

Example 4.3 Changing the stack size of a thread using an offset.

//...

pthread_attr_getstacksize(&SchedAttr,&DefaultSize);
if(DefaultSize < Min_Stack_Req){

 SizeOffset = Min_Stack_Req - DefaultSize;
 NewSize = DefaultSize + SizeOffset;
 pthread_attr_setstacksize(&Attr1,(size_t)NewSize);
}

In Example 4.3, the thread attribute object retrieves the default size from the attribute object then
determines whether the default size is less than the minimum stack size desired. If so, the offset is
calculated then added to the default stack size. This becomes the new minimun stack size for this
thread.

NOTE:

Setting the stack size and stack location may cause your program to be nonportable. The stack size and
location you set for your program on one platform may not match the stack size and location of another
platform.

4.9.3 Setting Thread Scheduling and Priorities

Like processes, threads execute independently. Each thread is assigned to a processor in order to
execute the task it has been given. Each thread is assigned a scheduling policy and priority that dictates
how and when it is assigned to a processor. The scheduling policy and priority of a thread or group of
threads can be set by an attribute object using these functions:

pthread_attr_setinheritsched()
pthread_attr_setschedpolicy()
pthread_attr_setschedparam()

These functions can be used to return scheduling information about the thread:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/noccc##PLID19

pthread_attr_getinheritsched()
pthread_attr_getschedpolicy()
pthread_attr_getschedparam()

Synopsis
#include <pthread.h>
#include <sched.h>

void pthread_attr_setinheritsched(pthread_attr_t *attr,
 int inheritsched);
void pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
void pthread_attr_setschedparam(pthread_attr_t *restrict
 attr, const struct sched_param
 *restrict param);

The pthread_attr_setinheritsched(), pthread_attr_setschedpolicy(), and pthread_attr_setschedparam()
are used together to set the scheduling policy and priority of a thread. The
pthread_attr_setinheritsched() function is used to determine how the thread's scheduling attributes will
be set, either by inheriting the scheduling attributes from the creator thread or from an attribute object.
The inheritsched parameter can have one of these values:

PTHREAD_INHERIT
_SCHED

Thread scheduling attributes shall be inherited from the creator thread and
any scheduling attributes of the attr parameter will be ignored.

PTHREAD_EXPLICIT
_SCHED

Thread scheduling attributes shall be set to the scheduling attributes of the
attribute object attr.

If the inheritsched parameter value is PTHREAD_EXPLICIT_SCHED, then the
pthread_attr_setschedpolicy() function is used to set the scheduling policy and the
pthread_attr_setschedparam() function is used to set the priority.

The pthread_attr_setschedpolicy() function sets the scheduling policy of the thread attribute object attr.
The policy parameter values can be one of the following defined in the <sched.h> header:

SCHED_FIFO First-In-First-Out scheduling policy where the executing thread runs to completion.

SCHED_RR Round-robin scheduling policy where each thread is assigned to a processor only for
a time slice.

SCHED_OTH
ER

Other scheduling policy (implementation-defined). By default, this is the scheduling
policy of any newly created thread.

The pthread_attr_setschedparam() function is used to set the scheduling parameters of the attribute
object attr used by the scheduling policy. The param parameter is a structure that contains the
parameters. The sched_param structure has at least this data member defined:

struct sched_param {
 int sched_priority;
 //...
};

It may also have additional data members along with several functions that return and set the priority
minimum, maximum, scheduler, paramaters, and so on. If the scheduling policy is either SCHED_FIFO
or SCHED_RR, then the only member required to have a value is sched_priority.

To obtain the maximum and minimum priority values, use the sched_get_priority_min() and
sched_get_priority_max() functions.

Synopsis
#include <sched.h>

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

Both functions are passed the scheduling policy policy for which the priority values are requested and
both will return either the maximum or minimum priority values for the scheduling policy.

Example 4.4 shows how to set the scheduling policy and priority of a thread by using the thread
attribute object.

Example 4.4 Using the thread attribute object to set the scheduling policy and priority of a thread.

//...
#define Min_Stack_Req 3000000

pthread_t ThreadA;
pthread_attr_t SchedAttr;
size_t DefaultSize,SizeOffset,NewSize;
int MinPriority,MaxPriority,MidPriority;
sched_param SchedParam;

int main(int argc, char *argv[])
{

 //...
 // initialize attribute object
 pthread_attr_init(&SchedAttr);

 // retrieve min and max priority values for scheduling policy
 MinPriority = sched_get_priority_max(SCHED_RR);
 MaxPriority = sched_get_priority_min(SCHED_RR);

 // calculate priority value
 MidPriority = (MaxPriority + MinPriority)/2;

 // assign priority value to sched_param structure
 SchedParam.sched_priority = MidPriority;

 // set attribute object with scheduling parameter
 pthread_attr_setschedparam(&Attr1,&SchedParam);

 // set scheduling attributes to be determined by attribute object
 pthread_attr_setinheritsched(&Attr1,PTHREAD_EXPLICIT_SCHED);

 // set scheduling policy
 pthread_attr_setschedpolicy(&Attr1,SCHED_RR);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04ex04

 // create thread with scheduling attribute object
 pthread_create(&ThreadA,&Attr1,task2,Value);
}

In Example 4.4, the scheduling policy and priority of ThreadA is set using the thread attribute object
SchedAttr. This is done in eight steps:

1. Initialize attribute object.

2. Retrieve min and max priority values for scheduling policy.

3. Calculate priority value.

4. Assign priority value to sched_param structure.

5. Set attribute object with sceduling parameter.

6. Set scheduling attributes to be determined by attribute object.

7. Set scheduling policy.

8. Create thread with scheduling attribute object.

With this method, the scheduling policy and priority is set before the thread is running. In order to
dynamically change the scheduling policy and priority, use the pthread_setschedparam() and
pthread_setschedprio() functions.

Synopsis
#include <pthread.h>

int pthread_setschedparam(pthread_t thread, int policy,
 const struct sched_param *param);
int pthread_getschedparam(pthread_t thread, int *restrict policy,
 struct sched_param *restrict param);
int pthread_setschedprio(pthread_t thread, int prio);

The pthread_setschedparam() function sets both the scheduling policy and priority of a thread directly
without the use of an attribute object. The thread parameter is the id of the thread, policy is the new
scheduling policy, and param contains the scheduling priority. The pthread_getschedparam() function
shall return the scheduling policy and scheduling parameters and store their values in policy and param
parameters, respectively, if successful. If successful, both functions will return 0. If not successful, both
functions will return an error number. Table 4-7 lists the conditions in which these functions may fail.

The pthread_setschedprio() function is used to set the scheduling priority of an executing thread whose
thread id is specified by the thread parameter. The scheduling priority of the thread will be changed to
the value specified by prio. If the function fails, the priority of the thread will not be changed. If
successful, the function will return 0. If not successful, an error number is returned. The conditions in
which this function fails are also listed in Table 4-7.

Table 4-7. Conditions in Which the Scheduling Policy and Priority Functions May Fail

Pthread Scheduling and Priority
Functions

Failure Conditions

int pthread_getschedparam • The thread parameter does not refer to an existing

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04table07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04table07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04ex04

Pthread Scheduling and Priority
Functions

Failure Conditions

(pthread_t thread,
 int *restrict policy,
 strct sched_param
 *restrict param) ;

thread.

int pthread_setschedparam
(pthread_t thread,
 int *policy,
 const struct sched_param
 *parm);

• The policy parameter or one of the scheduling
parameters associated with the policy parameter is
invalid.

• The policy parameter or one of the scheduling
paramaters has a value that is not supported.

• The calling thread does not have the appropriate
permission to set the scheduling parameters or policy of
the specified thread.

• The thread parameter does not refer to an existing
thread.

• The implementation does not allow the application to
change one of the parameters to the specified value.

int pthread_setschedprio
(pthread_t thread,
 int prio) ;

• The prio parameter is invalid for the scheduling policy
of the specified thread.

• The priority parameter has a value that is not supported.

• The calling thread does not have the appropriate
permission to set the scheduling priority of the specified
thread.

• The thread parameter does not refer to an existing
thread.

• The implementation does not allow the application to
change the priority to the specified value.

NOTE:

Remember to carefully consider why it is necessary to change the scheduling policy or priority of a
running thread. This may diversely affect the overall performance of your application. Threads with
higher priority preempt running threads with lower priority. This may lead to starvation, or a thread
constantly being preempted and therefore not able to complete execution.

4.9.3.1 Setting Contention Scope of a Thread

The contention scope of the thread determines which set of threads with the same scheduling policy and
priority, the thread will compete for processor usage. The contention scope of a thread is set by the
thread attribute object.

Synopsis
#include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);
int pthread_attr_getscope(const pthread_attr_t *restrict attr,
 int *restrict contentionscope);

The pthread_attr_setscope() function sets the contention scope attribute of the thread attribute object
specified by the parameter attr. The contention scope of the thread attribute object will be set to the
value stored in the contentionscope parameter. The contentionscope parameter can have the values:

PTHREAD_SCOPE_SYSTEM System scheduling contention scope

PTHREAD_SCOPE_PROCESS Process scheduling contention scope

The pthread_attr_getscope() function returns the contention scope attribute from the thread attribute
object specified by the parameter attr. If successful, the contention scope of the thread attribute object
will be returned and stored in the contentionscope parameter. Both functions return 0 if successful and
an error number otherwise.

4.9.4 Using sysconf()

It is important to know the thread resource limits of your system in order for your application to
appropriately manage its resources. For example, the maximum number of threads per process places
an upper bound on the number of worker threads that can be created for a process. The sysconf()
function is used to return the current value of configurable system limits or options.

Synopsis
#include <unistd.h>
#include <limits.h>

int sysconf(int name);

The name parameter is the system variable to be queried. What is returned is the POSIX IEEE Std.
1003.1-2001 values for the system variable queried. These values can be compared to the constants
defined by your implementation of the standard to see how compliant they are. There are several
variables and constant counterparts concerned with threads, processes, and semaphores, some of which
are listed in Table 4-8.

The sysconf() function will return -1 and set errno to indicate an error has occurred if the parameter
name is not valid. The variable may have no limit defined and may return -1 as a valid return value. In
that case, errno will not be set. No defined limit does not mean there is an infinite limit. It simply
indicates that no maximum limit is defined and higher limits are supported depending upon the system

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04table08

resources available.

Here is an example of a call to the sysconf() function:

if(PTHREAD_STACK_MIN == (sysconf(_SC_THREAD_STACK_MIN))){
 //...
}

The constant value of PTHREAD_STACK_MIN is compared to the _SC_THREAD_STACK_MIN
value returned by the sysconf() function.

Table 4-8. Systems Variables and Their Corresponding Symbolic Constants

Variable Name Value Description

_SC_THREADS _POSIX_THREADS Supports threads.

_SC_THREAD_ATTR_ST
ACKADDR

_POSIX_THREAD_ATTR_S
TACKADDR

Supports thread stack address attribute.

_SC_THREAD_ATTR_ST
ACKSIZE

_POSIX_THREAD_ATTR_S
TACKSIZE

Supports thread stack size attribute.

_SC_THREAD_STACK_
MIN

PTHREAD_STACK_MIN Minimum size of thread stack storage
in bytes.

_SC_THREAD_THREAD
S_MAX

PTHREAD_THREADS_MA
X

Maximum number of threads per
process.

_SC_THREAD_KEYS_M
AX

PTHREAD_KEYS_MAX Maximum number of keys per process.

_SC_THREAD_PRIO_INH
ERIT

_POSIX_THREAD_PRIO_IN
HERIT

Supports priority inheritance option.

_SC_THREAD_PRIO _POSIX_THREAD_PRIO_ Supports thread priority option.

_SC_THREAD_PRIORIT
Y_SCHEDULING

_POSIX_THREAD_PRIORIT
Y_SCHEDULING

Supports thread priority scheduling
option.

_SC_THREAD_PROCESS
_SHARED

_POSIX_THREAD_PROCES
S_SHARED

Supports process-shared
synchronization.

Variable Name Value Description

_SC_THREAD_SAFE_FU
NCTIONS

_POSIX_THREAD_SAFE_F
UNCTIONS

Supports thread-safe functions.

_SC_THREAD_DESTRUC
TOR_ITERATIONS

_PTHREAD_THREAD_DES
TRUCTOR_ITERATIONS

Determines the number of attempts
made to destroy thread-specific data on
thread exit.

_SC_CHILD_MAX CHILD_MAX Maximum number of processes
allowed to a UID.

_SC_PRIORITY_SCHEDU
LING

_POSIX_PRIORITY_SCHED
ULING

Supports process scheduling.

_SC_REALTIME_SIGNA
LS

_POSIX_REALTIME_SIGN
ALS

Supports real-time signals.

_SC_XOPEN_REALTIME
_THREADS

_XOPEN_REALTIME_THR
EADS

Supports X/Open POSIX real-time
threads feature group.

_SC_STREAM_MAX STREAM_MAX Determines the number of streams one
process can have open at a time.

_SC_SEMAPHORES _POSIX_SEMAPHORES Supports semaphores.

_SC_SEM_NSEMS_MAX SEM_NSEMS_MAX Determines the maximum number of
semaphores a process may have.

_SC_SEM_VALUE_MAX SEM_VALUE_MAX Determines the maximum value a
semaphore may have.

_SC_SHARED_MEMORY
_OBJECTS

_POSIX_SHARED_MEMOR
Y_OBJECTS

Supports shared memory objects.

4.9.5 Managing a Critical Section

Concurrently executing processes, or threads within the same process, can share data structures,
variables, or data. Sharing global memory allows the processes or threads to communicate or share
access to data. With multiple processes, the shared global memory is external to the processes that the
processes in question have access. This data structure can be used to transfer data or commands among
the processes. When threads need to communicate, they can access data structures or variables that are
part of the same process to which they belong.

Whether there are processes or threads accessing shared modifiable data, the data structures, variables,
or data is in a critical region or section of the processes' or threads' code. A critical section in the code is
where the thread or process is accessing and processing the shared block of modifiable memory.
Classifying a section of code as a critical section can be used to control race conditions. For example, in
a program two threads, thread A and thread B, are used to perform a multiple keyword search through
all the files located on a system. Thread A searches each directory for text files and writes the paths to a
list data structure TextFiles then increments a FileCount variable. Thread B extracts the filenames from
the list TextFiles, decrements the FileCount, then searches the file for the multiple keywords. The file
that contains the keywords is written to a file and another variable, FoundCount, is incremented.
FoundCount is not shared with thread A. Threads A and B can be executed simultaneously on separate
processors. Thread A executes until all directories have been searched while thread B searches each file
extracted from TextFiles. The list is maintained in sorted order and can be requested to display its
contents any time.

A number of problems can crop up. For example, thread B may attempt to extract a filename from
TextFiles before thread A has added a filename to TextFiles. Thread B may attempt to decrement
SearchCount before thread A has incremented SearchCount or both may attempt to modify the variable
simultaneously. Also TextFiles may be sorting its elements while thread A is simultaneously attempting
to write a filename to it or thread B is simultaneously attempting to extract a filename from it. These
problems are examples of race conditions in which two or more threads or processes are attempting to
modify the same block of shared memory simultaneously.

When threads or processes are simply simultaneously reading the same block of memory, race
conditions do not occur. Race conditions occur when multiple processes or threads are simultaneously
accessing the same block of memory with at least one of the threads or processes attempting to modify
the block of memory. The section of code becomes critical when there are simultaneous attempts to
change the same block of memory. One way to protect the critical section is to only allow exclusive
access to the block of memory. Exclusive access means one process or thread will have access to the
shared block of memory for a short period while all other processes or threads are prevented (blocked)
from entering their critical section where they are accessing the same block of memory.

A locking mechanism, like a mutex semaphore, can be used to control race condition. A mutex, short
for "mutual exclusion," is used to block off a critical section. The mutex is locked before entering the
critical section then unlocked when exiting the critical section:

lock mutex
 // enter critical section
 // access shared modifiable memory
 // exit critical section
unlock mutex

The pthread_mutex_t models a mutex object. Before the pthread_mutex_t object can be used, it must
first be initialized. The pthread_mutex_init() initializes the mutex. Once initialized the mutex can be
locked, unlocked, and destroyed with the pthread_mutex_lock(), pthread_mutex_unlock(), and
pthread_mutex_destroy() functions. Program 4.5 contains the function that searches a system for text
files. Program 4.6 contains the function that searches each text file for specified keywords. Each
function is executed by a thread. Program 4.7 contains the primary thread. These programs implement
the producer-consumer model for thread delegation. Program 4.5 contains the producer thread and
Program 4.6 contains the consumer thread. The critical sections are bolded.

Program 4.5

 1 int isDirectory(string FileName)
 2 {

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog05

 3 struct stat StatBuffer;
 4
 5 lstat(FileName.c_str(),&StatBuffer);
 6 if((StatBuffer.st_mode & S_IFDIR) == -1)
 7 {
 8 cout << "could not get stats on file" << endl;
 9 return(0);
10 }
11 else{
12 if(StatBuffer.st_mode & S_IFDIR){
13 return(1);
14 }
15 }
16 return(0);
17 }
18
19
20 int isRegular(string FileName)
21 {
22 struct stat StatBuffer;
23
24 lstat(FileName.c_str(),&StatBuffer);
25 if((StatBuffer.st_mode & S_IFDIR) == -1)
26 {
27 cout << "could not get stats on file" << endl;
28 return(0);
29 }
30 else{
31 if(StatBuffer.st_mode & S_IFREG){
32 return(1);
33 }
34 }
35 return(0);
36 }
37
38
39 void depthFirstTraversal(const char *CurrentDir)
40 {
41 DIR *DirP;
42 string Temp;
43 string FileName;
44 struct dirent *EntryP;
45 chdir(CurrentDir);
46 cout << "Searching Directory: " << CurrentDir << endl;
47 DirP = opendir(CurrentDir);
48
49 if(DirP == NULL){
50 cout << "could not open file" << endl;
51 return;
52 }
53 EntryP = readdir(DirP);
54 while(EntryP != NULL)
55 {
56 Temp.erase();
57 FileName.erase();
58 Temp = EntryP->d_name;
59 if((Temp != ".") && (Temp != "..")){
60 FileName.assign(CurrentDir);
61 FileName.append(1,'/');
62 FileName.append(EntryP->d_name);

63 if(isDirectory(FileName)){
64 string NewDirectory;
65 NewDirectory = FileName;
66 depthFirstTraversal(NewDirectory.c_str());
67 }
68 else{
69 if(isRegular(FileName)){
70 int Flag;
71 Flag = FileName.find(".cpp");
72 if(Flag > 0){
73 pthread_mutex_lock(&CountMutex);
74 FileCount++;
75 pthread_mutex_unlock(&CountMutex);
76 pthread_mutex_lock(&QueueMutex);
77 TextFiles.push(FileName);
78 pthread_mutex_unlock(&QueueMutex);
79 }
80 }
81 }
82
83 }
84 EntryP = readdir(DirP);
85 }
86 closedir(DirP);
87 }
88
89
90
91 void *task(void *X)
92 {
93 char *Directory;
94 Directory = static_cast<char *>(X);
95 depthFirstTraversal(Directory);
96 return(NULL);
97
98 }

Program 4.6 contains the consumer thread that performs the search.

Program 4.6

1 void *keySearch(void *X)
2 {
3 string Temp, Filename;
4 less<string> Comp;
5
6 while(!Keyfile.eof() && Keyfile.good())
7 {
8 Keyfile >> Temp;
9 if(!Keyfile.eof()){
10 KeyWords.insert(Temp);
11 }
12 }
13 Keyfile.close();
14
15 while(TextFiles.empty())
16 { }
17
18 while(!TextFiles.empty())

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog06

19 {
20 pthread_mutex_lock(&QueueMutex);
21 Filename = TextFiles.front();
22 TextFiles.pop();
23 pthread_mutex_unlock(&QueueMutex);
24 Infile.open(Filename.c_str());
25 SearchWords.erase(SearchWords.begin(),SearchWords.end());
26
27 while(!Infile.eof() && Infile.good())
28 {
29 Infile >> Temp;
30 SearchWords.insert(Temp);
31 }
32
33 Infile.close();
34 if(includes(SearchWords.begin(),SearchWords.end(),
 KeyWords.begin(),KeyWords.end(),Comp)){
35 Outfile << Filename << endl;
36 pthread_mutex_lock(&CountMutex);
37 FileCount--;
38 pthread_mutex_unlock(&CountMutex);
39 FoundCount++;
40 }
41 }
42 return(NULL);
43
44 }

Program 4.7 contains the primary thread for producer–consumer threads in Programs 4.5 and 4.6.

Program 4.7

 1 #include <sys/stat.h>
 2 #include <fstream>
 3 #include <queue>
 4 #include <algorithm>
 5 #include <pthread.h>
 6 #include <iostream>
 7 #include <set>
 8
 9 pthread_mutex_t QueueMutex = PTHREAD_MUTEX_INITIALIZER;
10 pthread_mutex_t CountMutex = PTHREAD_MUTEX_INITIALIZER;
11
12 int FileCount = 0;
13 int FoundCount = 0;
14
15 int keySearch(void);
16 queue<string> TextFiles;
17 set <string,less<string> >KeyWords;
18 set <string,less<string> >SearchWords;
19 ifstream Infile;
20 ofstream Outfile;
21 ifstream Keyfile;
22 string KeywordFile;
23 string OutFilename;
24 pthread_t Thread1;
25 pthread_t Thread2;
26
27 void depthFirstTraversal(const char *CurrentDir);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog07

28 int isDirectory(string FileName);
29 int isRegular(string FileName);
30
31 int main(int argc, char *argv[])
32 {
33 if(argc != 4){
34 cerr << "need more info" << endl;
35 exit (1);
36 }
37
38 Outfile.open(argv[3],ios::app||ios::ate);
39 Keyfile.open(argv[2]);
40 pthread_create(&Thread1,NULL,task,argv[1]);
41 pthread_create(&Thread2,NULL,keySearch,argv[1]);
42 pthread_join(Thread1,NULL);
43 pthread_join(Thread2,NULL);
44 pthread_mutex_destroy(&CountMutex);
45 pthread_mutex_destroy(&QueueMutex);
46
47 cout << argv[1] << " contains " << FoundCount
 << " files that contains all keywords." << endl;
48 return(0);
49 }

With mutexes, one thread at a time is permitted to read from or write to the shared memory. There are
other mechanisms and techniques that can be used to ensure thread safety for user-defined functions
implementing one of the PRAM models:

EREW (exclusive read and exclusive write)

CREW (concurrent read and exclusive write)

ERCW (exclusive read and concurrent write)

CRCW (concurrent read and concurrent write)

Mutexes are used to implement EREW algorithms, which will be discussed in Chapter 5.

4.10 Thread Safety and Libraries

According to Klieman, Shah, and Smaalders (1996): "A function or set of functions is said to be thread
safe or reentrant when the functions may be called by more than one thread at a time without requiring
any other action on the caller's part." When designing a multithread application, the programmer must
be careful to ensure that concurrently executing functions are thread safe. We have already discussed
making user-defined functions thread safe but an application often calls functions defined by the
system- or a third-party-supplied library. Some of these functions and/or libraries are thread safe where
others are not. If the functions are not thread safe, then this means the functions contain one or more of
the following: static variables, accesses global data, and/or is not reentrant.

If the function contains static variables, then those variables maintain their values between invocations
of the function. The function requires the value of the static variable in order to operate correctly. When
concurrent multiple threads invoke this function, then a race condition occurs. If the function modifies a
global variable, then multiple threads invoking that function may each attempt to modify that global
variable. If multiple concurrent accesses to the global variable are not synchronized, then a race
condition can occur here as well. For example, multiple concurrent threads can execute functions that
set errno. With some of the threads, the function fails and errno is set to an error message while other
threads execute successfully. Depending on the compiler implementation, errno is thread safe. If not,

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05.htm#ch05

when a thread checks the state of errno, which message will it report?

A block of code is considered reentrant if the code cannot be changed while in use. Reentrant code
avoids race conditions by removing references to global variables and modifiable static data. Therefore,
the code can be shared by multiple concurrent threads or processes without a race condition occurring.
The POSIX standard defines several functions as reentrant. They are easily identified by a _r attached
to the function name of the nonreentrant counterpart. Some are listed below:

getgrgid_r()
getgrnam_r()
getpwuid_r()
sterror_r()
strtok_r()
readdir_r()
rand_r()
ttyname_r()

If the function accesses unprotected global variables; contains static, modifiable variables; or is not
reentrant, then the function is considered thread unsafe.

System- or third-party-supplied libraries may have different versions of their standard libraries. One
version is for single-threaded applications and the other version for multithreaded applications.
Whenever a multithreaded environment is anticipated, the programmer should link to these
multithreaded versions of the library. Other environments do not require multithreaded applications to
be linked to the multithreaded version of the library but only require macros to be defined in order for
reentrant versions of functions to be declared. The application will then be compiled as thread safe.

It is not possible in all cases to use multithreaded versions of functions. In some instances,
multithreaded versions of particular functions are not available for a given compiler or environment.
Some function's interface cannot be simply made thread safe. In addition, the programmer may be faced
with adding threads to an environment that uses functions that were only meant to be used in a single-
threaded environment. Under these conditions, in general use mutexes to wrap all such functions within
the program. For example, a program has three concurrently executing threads. Two of the threads,
thread1 and thread2, both concurrently execute funcA(), which is not thread safe. The third thread,
thread3, executes funcB(). To solve the problem of funcA(), the solution may be to simply wrap access
to funcA() by thread1 and thread2 with a mutex:

thread1 thread2 thread3
{ { {
 lock() lock() funcB()
 funcA() funcA() }
 unlock() unlock()
} }

If this is done then only one thread accesses funcA() at a time. But there is still a problem. If funcA()
and funcB() are both thread-unsafe functions, they may both modify a global or static variable.
Although thread1 and thread2 are using mutexes with funcA(), thread3 will be executing funcB()
concurrently with either of these threads. In this situation, a race condition occurs because funcA() and
funcB() may both modify the same global or static variable.

To illustrate another type of race condition when dealing with the iostream library, let's say we have
two threads, thread A and thread B, sending output to the standard output stream, cout. cout is an object
of type ostream. Using inserters, (>>), and extractors, (<<), invokes the methods of the cout object. Are
these methods thread safe? If thread A is sending the message "We are intelligent beings" to stdout and
thread B is sending the message "Humans are illogical beings," will the output be interleaved and
produce a message "We are Humans are illogical beings intelligent beings"? In some cases, thread-safe

functions are implemented as atomic functions. Atomic functions are functions that once they begin to
execute cannot be interrupted. In the case of cout, if the inserter operation is implemented as atomic,
then this interweaving cannot take place. When there are multiple calls to the inserter operation, they
will be executed as if they were in serial order. Thread A's message will be displayed, then thread B's,
or vice versa, although they invoked the function simultaneously. This is an example of serializing a
function or operation in order to make it thread safe. This may not be the only way to make a function
thread safe. A function may interweave operations if it has no adverse effect. For example, if a method
adds or removes elements to or from a structure that is not sorted and two different threads invoke that
method, interweaving their operations will not have an adverse effect.

If it is not known which functions from a library are thread safe and which are not, the programmer has
three choices:

• Restrict use of all thread-unsafe functions to a single thread.

• Do not use any of the thread-unsafe functions.

• Wrap all potential thread-unsafe functions within a single set of synchronization mechanisms.

An additional approach is to create interface classes for all thread-unsafe functions that will be used in a
multithreaded application. The unsafe functions are encapsulated within an interface class. The
interface class can be combined with the appropriate synchronization objects through inheritance or
composition. The interface class can be used by the host class through inheritance or composition. The
approach eliminates the possibility of race conditions.

4.11 Dividing Your Program into Multiple Threads

Earlier in this chapter we discussed the delegation of work according to a specific strategy or approach
called a thread model. Those thread models were:

• delegation (boss–worker)

• peer-to-peer

• pipeline

• producer–consumer

Each model has its own WBS (Work Breakdown Structure) that determines who is responsible for
thread creation and under what conditions threads are created. In this section we will show an example
of a program for each model using Pthread library functions.

4.11.1 Using the Delegation Model

We discussed two approaches that can be used to implement the delegation approach to dividing a
program into threads. To recall, in the delegation model, a single thread (boss) creates the threads
(workers) and assigns each a task. The boss thread delegates the task each worker thread is to perform
by specifying a function. With one approach, the boss thread creates threads as a result of requests
made to the system. The boss thread processes each type of request in an event loop. As events occur,
thread workers are created and assigned their duties. Example 4.5 shows the event loop in the boss
thread and the worker threads in pseudocode.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex05

Example 4.5 Approach 1: Skeleton program of boss and worker thread model.

//...
pthread_mutex_t Mutex = PTHREAD_MUTEX_INITIALIZER
int AvailableThreads
pthread_t Thread[Max_Threads]
void decrementThreadAvailability(void)
void incrementThreadAvailability(void)
int threadAvailability(void);

// boss thread
{
 //...
 if(sysconf(_SC_THREAD_THREADS_MAX) > 0){
 AvailableThreads = sysconf(_SC_THREAD_THREADS_MAX)
 }
 else{
 AvailableThreads = Default
 }

 int Count = 1;

 loop while(Request Queue is not empty)
 if(threadAvailability()){
 Count++
 decrementThreadAvailability()
 classify request
 switch(request type)
 {
 case X : pthread_create(&(Thread[Count])...taskX...)
 case Y : pthread_create(&(Thread[Count])...taskY...)
 case Z : pthread_create(&(Thread[Count])...taskZ...)
 //...
 }
 }
 else{
 //free up thread resources
 }
 end loop
}

void *taskX(void *X)
{
 // process X type request
 incrementThreadAvailability()
 return(NULL)
}

void *taskY(void *Y)
{
 // process Y type request
 incrementThreadAvailability()
 return(NULL)
}

void *taskZ(void *Z)
{
 // process Z type request

 decrementThreadAvailability()
 return(NULL)
}

//...

In Example 4.5, the boss thread dynamically creates a thread to process each new request that enters the
system, but there are a maximum number of threads that will be created. There are n number of tasks to
process n request types. To be sure the maximum number of threads per process will not be exceeded,
these additional functions can be defined:

threadAvailability()
incrementThreadAvailability()
decrementThreadAvailability()

Example 4.6 shows pseudocode for these functions.

Example 4.6 Functions that manage thread availability count.

void incrementThreadAvailability(void)
{
 //...
 pthread_mutex_lock(&Mutex)
 AvailableThreads++
 pthread_mutex_unlock(&Mutex)
}

void decrementThreadAvailability(void)
{
 //...
 pthread_mutex_lock(&Mutex)
 AvailableThreads—
 pthread_mutex_unlock(&Mutex)
}

int threadAvailability(void)
{
 //...
 pthread_mutex_lock(&Mutex)
 if(AvailableThreads > 1)
 return 1
 else
 return 0
 pthread_mutex_unlock(&Mutex)
}

The threadAvailability() function will return 1 if the maximum number of threads allowed per process
has not been reached. This function accesses a global variable ThreadAvailability that stores the
number of threads still available for the process. The boss thread calls the
decrementThreadAvailability() function, which decrements the global variable before the boss thread
creates a thread. The worker threads call incrementThreadAvailability(), which increments the global
variable before a worker thread exits. Both functions contain a call to pthread_mutex_lock() before
accessing the variable and a call to pthread_mutex_unlock() after accessing the global variable. If the
maximum number of threads are exceeded, then the boss thread can cancel threads if possible or spawn
another process, if necessary. taskX(), taskY(), and taskZ() execute code that processes their type of
request.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex05

The other approach to the delegation model is to have the boss thread create a pool of threads that are
reassigned new requests instead of creating a new thread per request. The boss thread creates a number
of threads during initialization and then each thread is suspended until a request is added to the queue.
The boss thread will still contain an event loop to extract requests from the queue. But instead of
creating a new thread per request, the boss thread signals the appropriate thread to process the request.
Example 4.7 shows the boss thread and the worker threads in pseudocode for this approach to the
delegation model.

Example 4.7 Approach 2: Skeleton program of boss and worker thread model.

//...

pthread_t Thread[N]

// boss thread
{

 pthread_create(&(Thread[1]...taskX...);
 pthread_create(&(Thread[2]...taskY...);
 pthread_create(&(Thread[3]...taskZ...);
 //...

 loop while(Request Queue is not empty
 get request
 classify request
 switch(request type)
 {
 case X :
 enqueue request to XQueue
 signal Thread[1]

 case Y :
 enqueue request to YQueue
 signal Thread[2]

 case Z :
 enqueue request to ZQueue
 signal Thread[3]
 //...
 }

 end loop
}

void *taskX(void *X)
{
 loop
 suspend until awaken by boss
 loop while XQueue is not empty
 dequeue request
 process request

 end loop
 until done
{

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex07

void *taskY(void *Y)
{
 loop
 suspend until awaken by boss
 loop while YQueue is not empty
 dequeue request
 process request
 end loop
 until done
}

void *taskZ(void *Z)
{
 loop
 suspend until awaken by boss
 loop while (ZQueue is not empty)
 dequeue request
 process request
 end loop
 until done
}

//...

In Example 4.7, the boss thread creates N number of threads, one thread for each task to be executed.
Each task is associated with processing a request type. In the event loop, the boss thread dequeues a
request from the request queue, determines the request type, enqueues the request to the appropriate
request queue, then signals the thread that processes the request in that queue. The functions also
contain an event loop. The thread is suspended until it receives a signal from the boss that there is a
request in its queue. Once awakened, in the inner loop, the thread processes all the requests in the queue
until it is empty.

4.11.2 Using the Peer-to-Peer Model

In the peer-to-peer model, a single thread initially creates all the threads needed to perform all the tasks
called peers. The peer threads process requests from their own input stream. Example 4.8. shows a
skeleton program of the peer-to-peer approach of dividing a program into threads.

Example 4.8 Skeleton program using the peer-to-peer model

//...

pthread_t Thread[N]

// initial thread
{

 pthread_create(&(Thread[1]...taskX...);
 pthread_create(&(Thread[2]...taskY...);
 pthread_create(&(Thread[3]...taskZ...);
 //...

 }

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex07

void *taskX(void *X)
{
 loop while (Type XRequests are available)
 extract Request
 process request
 end loop
 return(NULL)
}

//...

In the peer-to-peer model, each thread is responsible for its own stream of input. The input can be
extracted from a database, file, and so on.

4.11.3 Using the Pipeline Model

In the pipeline model, there is a stream of input processed in stages. At each stage, work is performed
on a unit of input by a thread. The input continues to move to each stage until the input has completed
processing. This approach allows multiple inputs to be processed simultaneously. Each thread is
responsible for producing its interim results or output, making them available to the next stage or next
thread in the pipeline. Example 4.9 shows the skeleton program for the pipeline model.

Example 4.9 Skeleton program using the pipeline model.

//...

 pthread_t Thread[N]
 Queues[N]

 // initial thread
 {
 place all input into stage1's queue
 pthread_create(&(Thread[1]...stage1...);
 pthread_create(&(Thread[2]...stage2...);
 pthread_create(&(Thread[3]...stage3...);
 //...
 }

void *stageX(void *X)
{
 loop
 suspend until input unit is in queue
 loop while XQueue is not empty
 dequeue input unit
 process input unit
 enqueue input unit into next stage's queue
 end loop
 until done
 return(NULL)
}

//...

In Example 4.9, N queues are declared for N stages. The initial thread enqueues all the input into stage
1's queue. The initial thread then creates all the threads needed to execute each stage. Each stage has an
event loop. The thread sleeps until an input unit has been enqueued. The inner loop continues to iterate
until its queue is empty. The input unit is dequeued, processed, then that unit is then enqueued into the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex09
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex09

queue of the next stage.

4.11.4 Using the Producer–Consumer Model

In the producer-consumer model, the producer thread produces data consumed by the consumer thread
or threads. The data is stored in a block memory shared between the producer and consumer threads.
This model was used in Programs 4.5, 4.6, and 4.7. Example 4.10 shows the skeleton program for the
producer-consumer model.

Example 4.10 Skeleton program using the producer–consumer model.

pthread_mutex_t Mutex = PTHREAD_MUTEX_INITIALIZER
pthread_t Thread[2]
Queue

// initial thread
{
 pthread_create(&(Thread[1]...producer...);
 pthread_create(&(Thread[2]...consumer...);
 //...
 }

void *producer(void *X)
{
 loop
 perform work
 pthread_mutex_lock(&Mutex)
 enqueue data
 pthread_mutex_unlock(&Mutex)
 signal consumer
 //...
 until done
}

void *consumer(void *X)
{
 loop
 suspend until signaled
 loop while(Data Queue not empty)
 pthread_mutex_lock(&Mutex)
 dequeue data
 pthread_mutex_unlock(&Mutex)
 perform work
 end loop
 until done
}

In Example 4.9, an initial thread creates the producer and consumer threads. The producer thread
executes a loop in which it performs work then locks a mutex on the shared queue in order to enqueue
the data it has produced. The producer unlocks the mutex then signals the consumer thread that there is
data in the queue. The producer iterates through the loop until all work is done. The consumer thread
also executes a loop in which it suspends itself until it is signaled. In the inner loop, the consumer
thread processes all the data until the queue is empty. It locks the mutex on the shared queue before it
dequeues any data and unlocks the mutex after the data has been dequeued. It then performs work on
that data. In Program 4.6, the consumer thread enqueues its results to a file. The results could have been
inserted into another data structure. This is often done by consumer threads in which it plays both the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex09
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex10a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog05

role of consumer and producer. It plays the role of consumer of the unprocessed data produced by the
producer thread, then it plays the role of producer when it processes data stored in another shared queue
consumed by another thread.

4.11.5 Creating Multithreaded Objects

The delegation, peer-to-peer, pipeline. and producer–consumer models demonstrate approaches to
dividing a program into multiple threads along function lines. When using objects, member functions
can create threads to perform multiple tasks. Threads can be used to execute code on behalf of the
object: free-floating functions and other member functions.

In either case, the threads are declared within the object and created by one of the member functions
(e.g., the constructor). The threads can then execute some free-floating functions (function defined
outside the object), which invokes member functions of the object that are global. This is one approach
to making an object multithreaded. Example 4.10 contains an example of a multithreaded object.

Example 4.10 Declaration and definition of multithreading an object.

#include <pthread.h>
#include <iostream>
#include <unistd.h>

void *task1(void *);
void *task2(void *);

class multithreaded_object
{
 pthread_t Thread1,Thread2;
public:

 multithreaded_object(void);
 int c1(void);
 int c2(void);
 //...
};

multithreaded_object::multithreaded_object(void)
{

 //...
 pthread_create(&Thread1,NULL,task1,NULL);
 pthread_create(&Thread2,NULL,task2,NULL);
 pthread_join(Thread1,NULL);
 pthread_join(Thread2,NULL);
 //...

}

int multithreaded_object::c1(void)
{
 // do work
 return(1);
}

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex10b

int multithreaded_object::c2(void)
{
 // do work
return(1);
}

multithreaded_object MObj;

void *task1(void *)
{
 //...
 MObj.c1();
 return(NULL);
}

void *task2(void *)
{
 //...
 MObj.c2();
 return(NULL);
}

In Example 4.10, the class multithread_object declares two threads. From the constructor of the class,
the threads are created and joined. Thread1 executes task1 and Thread2 executes task2. task1 and task2,
then invokes member functions of the global object MObj.

Summary

In a sequential program, work can be divided between routines within a program where one task
finishes then another task can perform work. With other programs, work is executed as mini-programs
within the main program where the mini-programs execute concurrently with the main program. These
mini-programs can be executed as processes or threads. With processes, each process has its own
address space and requires interprocess communication if the processes are to communicate. Threads
sharing the address space of the process do not require special communication techniques between
threads of the same process. Synchronization mechanisms such as mutexes are needed to protect share
memory in order to control race conditions.

There are several models that can be used to delegate work among threads and manage when threads
are created and canceled. In the delegation model, a single thread (boss) creates the threads (workers)
and assigns each a task. The boss thread waits until each worker thread completes its task. With the
peer-to-peer model, there is a single thread that initially creates all the threads needed to perform all the
tasks; that thread is considered a worker thread and does no delegation. All threads have equal status.
The pipeline model is characterized as an assembly line in which a stream of items are processed in
stages. At each stage, a thread executes work performed on the unit of input. The input moves from one
thread to the next, processing it until completion. The last stage or thread produces the result of the
pipeline. In the producer–consumer model, there is a producer thread that produces data to be consumed
by the consumer thread. The data is stored in a block of memory shared between the producer and
consumer threads. Objects can be made to be multithreaded. The threads are declared within the object.
A member function can create a thread that executes a free-floating function that in turn invokes one of
the member functions of the object.

The Pthread library can be used to create and manage the threads of a multithreaded application. The
Pthread library is based on a standardized programming interface for the creation and maintenance of
threads. The thread interface has been specified by the IEEE standards committee in the POSIX
1003.1c standard. Third-party vendors supply an implementation that adheres to the POSIX standard.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec11.htm#ch04ex10b

Chapter 5. Synchronizing Concurrency between Tasks
"The relation of these mechanisms to time demands careful study. ... We are scarcely ever
interested in the performance of a communication-engineering machine for a single input.
To function adequately, it must give a satisfactory performance for a whole class of inputs,
and this means a statistically satisfactory performance for the class of input which it is
statistically expected to receive . . ."

—Norbert Wiener, Cybernetics

In this Chapter

• Coordinating Order of Execution

• Synchronizing Access to Data

• What are Semaphores?

• Synchronization: An Object-Oriented Approach

• Summary

With any computer system, resources are limited. There is only so much memory, I/O devices and
ports, hardware interrupts, and processors. In an environment of limited hardware resources, an
application consisting of multiple processes and threads must compete for memory locations, peripheral
devices, and processor time. It is the job of the operating system to determine when the process or
thread utilizes system resources and for how long. With preemptive scheduling, the operating system
can interrupt the process or thread in order to accommodate all the processes and threads competing for
the system resources. Processes and threads must also compete for software and data resources. An
example of software resources is shared libraries that provide a common set of services or functions to
processes and threads. Other shareable software resources are applications, programs, and utilities.
When sharing software resources, only one copy of the program(s) code is brought into memory. Data
resources are objects, system data (e.g., environment variables) files, globally defined variables, and
data structures. With data resources, it is possible for processes and threads to have their own copy. In
other cases, it is desirable and maybe necessary that data is shared. Some processes and threads work
together to use the system's limited resources while other processes and threads work independently and
asynchronously, competing for the use of the shareable resource. There are several techniques and
mechanisms that can be used by the programmer to manage competing processes and threads to share
data resources.

Synchronization is also needed to coordinate the order of execution of concurrent tasks. The producer-
consumer model discussed in Chapter 4 is a prime example. It is necessary for the producer to execute
before the consumer, not necessarily finish before the consumer. Synchronization is required to
coordinate these tasks in order for work to progress. Data (access synchronization) and task
synchronization (sequence synchronization) are two types of synchronization required when executing
multiple concurrent tasks.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04.htm#ch04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec5.htm#ch05lev1sec5
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec4.htm#ch05lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec2.htm#ch05lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec1.htm#ch05lev1sec1

5.1 Coordinating Order of Execution

Let's say we have three threads executing concurrently labeled thread A, thread B, and thread C. All
three threads are involved in list processing. The list is to be sorted and searched and the results
displayed. Each thread is assigned a task; thread A is to display the results of the search, thread B is to
sort the list, and thread C is to search the list. First, the list has to be sorted then multiple concurrent
searches can occur on the list. The results of the searches are then displayed. If these threads' tasks are
not synchronized properly, thread A may attempt to display results not yet generated that violates the
postcondition of the process. The precondition in the list must be sorted prior to searching. If searches
start before the list is sorted, the search may generate the wrong results. The three threads require task
synchronization. Task synchronization enforces preconditions and postconditions of logical processes.
Figure 5-1 shows a UML activity diagram for this process.

Figure 5-1. Activity diagram for sorting, searching, and displaying the contents of a list.

The thread B's sort must occur first, then forking to the multiple searches spawned by thread C takes
place. The threads are then joined and thread A displays the results.

5.1.1 Relationships between Synchronized Tasks

There are four basic synchronization relationships between any two threads in a single process or
between any two processes within a single application: start-to-start (SS), finish-to-start (FS), start-to-
finish (SF), and finish-to-finish (FF). These four basic relationships characterize the coordination of
work between threads and processes. Figure 5-2 shows activity diagrams for each synchronization
relationship.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec1.htm#ch05fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec1.htm#ch05fig01

Figure 5-2. The synchronization relationships that can exist between tasks A and B.

5.1.2 Start-to-Start (SS) Relationship

In a start-to-start synchronization relationship, one task cannot start until another task starts. One task
may start before the other but never after. For example, let's say we have a program that implements an
avatar. The avatar is a computer-generated talking head. The avatar provides a kind of personality for
the software. The program that implements the avatar has several threads. Here, we will focus on thread
A, which controls the animation of the mouth and thread B, which controls the sound or voice. We want
to give the illusion that the sound and mouth animation are synchronized. Ideally, they should execute
at the same precise moment. If multiple processors are involved, both threads may start simultaneously.
The threads have a start-to-start relationship. Because of timing conditions, it is allowed that thread A
start slightly before thread B (not much before for illusion's sake) but thread B cannot start before
thread A. The voice has to wait for the animation. It is not desirable to hear a voice before the mouth
animates (unless it is simulating voice dubbing).

5.1.3 Finish-to-Start (FS) Relationship

In a finish-to-start synchronization relationship, task A cannot finish until task B starts. This type of
relationship is common with parent–child processes. The parent process cannot complete execution of
some operation until it spawns a child process or it receives a communication from the child process
that it has started its operation. The child process continues to execute once it has signaled the parent or
supplied the needed information. The parent process is then free to complete its operation.

5.1.4 Start-to-Finish Relationship

A start-to-finish synchronization relationship is the reverse of the finish-to-start relationship. In a start-
to-finish synchronization relationship, one task cannot start until another task finishes. Task A cannot
start execution until task B finishes executing or completes a certain operation. If process A is reading
from a pipe connected to process B, process B must first write to the pipe before process A reads from
it. Process B must at least complete one operation, writing a single element to the pipe before process A
starts. The producer-consumer threads in Chapter 4 are another example of a finish-to-start relationship.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04.htm#ch04

The sort-search threads in Figure 5-1 also demonstrate this relationship. The sort thread had to complete
its work before the search threads were to search the list. In all these cases, one thread or process has to
complete an operation before another thread or process attempts to execute its operation. Unless this
work is coordinated, the goal of the process, thread, or application would fail or give inaccurate results.

The finish-to-start relationship usually suggests there is an information dependency between the tasks.
With information dependency, interthread or interprocess communication is required from one or more
tasks in order for a thread or process to operate correctly. The search would produce incorrect results
unless the sort was performed. The consumer thread would have no files to process unless the producer
thread produced the files to be searched.

5.1.5 Finish-to-Finish Relationship

In a finish-to-finish synchronization relationship, one task cannot finish until another task finishes. Task
A cannot finish until task B finishes. This again can describe the relationship between parent and child
processes discussed in Chapter 3. The parent process must wait until all its child processes have
terminated before it is allowed to terminate. If the parent process terminates before its child processes,
those terminated child processes become zombied. Parent processes should not finish (exit the system
in this case) until all its child processes have finished executing. The parent process achieves this by
either calling a wait() function for each of its child processes, or waiting for a mutex or condition
variable that can be broadcast by child threads. Another example of a finish-to-finish relationship is the
boss–worker model. The boss thread's job is to delegate work to the worker threads. It would be
undesirable for the boss thread to terminate before the worker threads. New requests to the system
would not be processed, existing threads would have no work to perform, and no new threads would be
created. If the boss thread is the primary thread and it terminates, the process would terminate along
with all the worker threads. In a peer-to-peer model, if thread A dynamically allocates an object passed
to thread B and thread A terminates, the object is destroyed along with thread A. If this is done before
thread B has had a chance to use it, a segmentation fault or data access violation will occur. In order to
prevent these kinds of errors with threads, termination of threads is synchronized by using the
pthread_join() function. A call to this function causes the calling thread to wait on the target thread until
it finishes. This creates finish-to-finish synchronization.

5.2 Synchronizing Access to Data

There is a difference between data shared between processes and data shared between threads. Threads
share the same address space. Processes have separate address spaces. If there are two processes, A and
B, then data declared in process A is not available to process B and vice versa. Therefore, one method
used by processes to share data is to create a block of memory that is then mapped to the address space
of the processes that are to share the memory. Another approach is to create a block of memory that
exists outside the address space of both processes. These are types of IPC (interprocess communication)
that include: pipes, files, and message passing.

It is the block of memory shared between threads within the same address space and the block of
memory shared between processes outside both address spaces that requires data synchronization.
Figure 5-3 contrasts memory shared between threads and processes.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec2.htm#ch05fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec1.htm#ch05fig01

Figure 5-3. The memory shared between threads and processes.

Data synchronization is needed in order to control race conditions and allow concurrent threads or
processes to safely access a block of memory. Data synchronization controls when a block of memory
can be read or modified. Concurrent access to shared memory, global variables, and files must be
synchronized in a multithreaded environment. Data synchronization is needed at the location in a task's
code when it attempts to access the block of memory, global variable, or file shared with other
concurrently executing processes or threads. This block of code is called the critical section. The critical
section can be any block of code that changes the file pointer's position, writes to the file, closes the
file, and reads or writes global variables or data structures. Classifying the tasks as read or write tasks is
one step in managing concurrent access to the shared memory.

5.2.1 PRAM Model

The PRAM (Parallel Random-Access Machine) is a simplified theoretical model where there are N
processors, labeled as P1, P2, P3, ... Pn, share one global memory. All the processors have simultaneous

read and write access to shared global memory. Each of these theoretical processors can access the
global shared memory in one uninterruptible unit of time. The PRAM model has concurrent read and
write algorithms and exclusive read and write algorithms. Concurrent read algorithms are allowed to
read the same piece of memory simultaneously with no data corruption. Concurrent write algorithms
allow multiple processors to write to the shared memory. Exclusive read algorithms are used to ensure
that no two processors ever read the same memory location at the same time. Exclusive write ensures
that no two processors write to the same memory at the same time. The PRAM model can be used to
characterize concurrent access to shared memory by multiple tasks.

5.2.1.1 Concurrent and Exclusive Memory Access

The concurrent and exclusive read-write algorithms can be combined into the following types of
algorithm combinations that are possible for read-write access:

EREW (exclusive read and exclusive write)

CREW (concurrent read and exclusive write)

ERCW (exclusive read and concurrent write)

CRCW (concurrent read and concurrent write)

These algorithms can be viewed as the access policy implemented by the tasks sharing the data. Figure
5-4 illustrates these access policies. EREW means access to the shared memory is serialized. Only one
task at a time is given access to the shared memory. An example of EREW access policy is the
producer-consumer example discussed in Chapter 4. Access to the queue that contained the filenames
was restricted to exclusive write by the producer and exclusive read by the consumer. Only one task
was allowed access to the queue at any given time. CREW access policy allows multiple reads of the
shared memory and exclusive writes. This means there are no restrictions on how many tasks can read
the shared memory concurrently but only one task can write to the shared memory. Concurrent reads
can occur while an exclusive write is taking place. With this type of access policy, each reading task
may read a different value. As a task reads the shared memory, another task modifies it. The next task
that reads the shared memory will see different data. The ERCW access policy is the direct reverse of
CREW. With ERCW, concurrent writes are allowed but only one task at a time is allowed to read the
shared memory. CRCW access policy allows concurrent reads and concurrent writes.

Figure 5-4. EREW, CREW, ERCW, and CRCW access policies.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04.htm#ch04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec2.htm#ch05fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec2.htm#ch05fig04

Each of these four algorithm types requires different levels and types of synchronization. They can be
analyzed on a continuum with the access policy that requires the least amount of synchronization to
implement on one end and the access policy that requires the most amount of synchronization at the
other end. The goal is to implement these policies and maintain data integrity and satisfactory system
performance. EREW is the policy that is the simplest to implement. This is because EREW essentially
forces sequential processing. At first blush, you may consider CRCW is the simplest but it presents the
most challenges. It may appear as if it has no policy. The memory can be accessed without restriction.
But this is the furthest from the truth. This is the most difficult to implement and requires the most
synchronization in order to meet our goal.

5.3 What are Semaphores?

A semaphore is a synchronization mechanism that can be used to manage synchronization relationships
and implement the access policies. A semaphore is a special kind of variable that can only be accessed
by very specific operations. The semaphore is used to help threads and processes synchronize access to
shared modifiable memory or manage access to a device or other resource. The semaphore is used as a
key to access the resource. This key can only be owned by one process or thread at a time. Whichever
task owns the key or semaphore locks the resource for its exclusive use. Locking the resource causes
any other task that wishes to use the resource to wait until the resource has been unlocked, making it
available again. Once unlocked, the next task waiting for the semaphore is given the semaphore, thus
accessing the resource. The next task is determined by the scheduling policy in effect for that thread or
process.

5.3.1 Semaphore Operations

As mentioned earlier, a semaphore can only be accessed by specific operations like an object. There are
two operations that can be performed on a semaphore. The P() operation is a decrement operation and
the V() operation is an increment operation. If Mutex is the semaphore, then here are the logical
implementations of the P(Mutex) and V(Mutex) operations:

P(Mutex)

if(Mutex > 0) {
 Mutex--;
}
else {
 Block on Mutex;
}

V(Mutex)
if(Blocked on Mutex N processes) {
 pass on Mutex;
}
else{
 Mutex++;
}

The actual implementation will be system dependent. These operations are indivisible, meaning once
the operation is in progress, it cannot be preempted. If several tasks attempt to make a call to the P()
operation, only one task will be allowed to proceed. If the Mutex has already been decremented, then
the task will block and be placed in a queue. The V() operation is called by the task that has the Mutex.
If other tasks are waiting on the Mutex, it is given to the next task in the queue. If no tasks are waiting,
then the Mutex is incremented.

Semaphore operations can go by other names:

P() operation: V() operation:

lock() unlock()

The value of the semaphore will depend on the type of semaphore it is. There are several types of
semaphores. A binary semaphore will have the value 0 or 1. A counting semaphore will have some non-
negative integer value.

The POSIX standard defines several types of semaphores. These semaphores are used by processes or
threads. Table 5-1 lists the types of semaphores. The table also lists some of their basic operations.

Table 5-1. Semaphore Types Defined by the POSIX Standard and Their Use by Threads and/or Processes

Types of Semaphores Processes/Thre
ads

Description

Mutex semaphores Processes or
threads

Mechanism used to implement mutual exclusion in a
critical section of code.

Read–write locks Processes or
threads

Mechanism used to implement read-write access policy
between threads.

Condition variables Processes or
threads

Mechanism used to broadcast a signal between threads that
an event has taken place.

 When a thread locks an event mutex, it blocks until it
receives the broadcast.

Multiple condition
variables

Processes or
threads

Same as an event mutex but includes multiple events or
conditions.

Any operating system that is compliant with the Single UNIX Specification or POSIX Standard will
supply an implementation of these semaphores. They are a part of the libpthread library and the
functions are declared in the pthread.h header.

5.3.2 Mutex Semaphores

The POSIX standard defines a mutex semaphore used by threads and processes of type
pthread_mutex_t. This mutex provides the basic operations necessary to make it a practical
synchronization mechanism:

• initialization

• request ownership

• release ownership

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05table01

• try ownership

• destruction

Table 5-2 lists the pthread_mutex_t functions that are used to perform these basic operations. The
initialization process allocates memory required to hold the mutex semaphore and give the memory
some initial values. For a binary semaphore, its initial value will be 0 or 1. If it's a counting semaphore,
its initial value is a non-negative number that represents the number of resources available. It can be
used to represent the request limit a program is capable of processing in a single session. Unlike regular
variables, there is no guarantee that the initialization operation of a mutex will occur. After calling the
initialization operation, take precautions to ensure that the mutex was initialized (i.e., checking the
return value or checking the errno value). The system shall fail to create the mutex if the space set aside
for mutexes has been used, the number of allowable semaphores will be exceeded, the named
semaphore already exists, or there is some other memory allocation problem.

Table 5-2. pthread_mutex_t Functions

Mutex Operations Function Prototypes/Macros #include <pthread.h>

Initialization int pthread_mutex_init(pthread_mutex_t *restrict
mutex, const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Request ownership <time.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_timedlock(pthread_mutex_t
*restrict mutex, const struct tiemspec *restrict
abs_timeout);

Release ownership int pthread_mutex_unlock(pthread_mutex_t *mutex);

Try ownership int pthread_mutex_trylock(pthread_mutex_t *mutex);

Destruction int pthread_mutex_destroy(pthread_mutex_t *mutex);

Similar to a thread, the Pthread mutex has an attribute object that encapsulates all the attributes of the
mutex. This mutex attribute will be discussed later. It can be passed to the initialization function,
creating a mutex with attributes of those set in the mutex object. If no attribute object is used, the mutex
will be intialized with default values. The pthread_mutex_t is initialized as unlocked and private. A
private mutex is shared between threads of the same process. A shared mutex is shared between threads
of multiple processes. If default attributes are to be used, the mutex can be initialized statically for
statically allocated mutex objects by using the macro:

pthread_mutext Mutex = PTHREAD_MUTEX_INITIALIZER;

This method uses less overhead but performs no error checking.

A mutex can be owned or unowned. The request ownership operation grants ownership of the mutex to

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05table02

the calling process or thread. Once the mutex is owned, the thread or process has exclusive access to the
resource. If there is any attempt to own the mutex (by calling this operation) by any other processes or
threads, they are blocked until the mutex is made available. Releasing the mutex causes the next
process or thread that has blocked on this mutex to unblock and obtain ownership of the mutex. With
pthread_mutex_lock(), the thread granted ownership of a given mutex is the only thread that can release
the mutex. A timed version of this function is also available. In that case, if the mutex is owned the
process or thread will wait for some specified period of time. If the mutex is not released in that time
interval, the process or thread will continue executing.

The try ownership operation tests the mutex to see if it is already owned. If owned, the function returns
some value indicating that. The advantage of this operation is the thread or process is not blocked if the
mutex is owned. It will be able to continue executing. If the mutex is not owned, then ownership is
granted.

The destruction operation frees the memory associated with the mutex. The memory cannot be
destroyed or closed if it is owned or a thread or process is waiting for the mutex.

5.3.2.1 Using the Mutex Attribute Object

The pthread_mutex_t has an attribute object used in a similar way as the thread attribute. The attribute
object encapsulates all the attributes of a mutex object. Once initialized, it can be used by multiple
mutex objects when passed to the pthread_mutex_init() function. The mutex attribute defines several
functions used to set these attributes: priority ceiling, protocol, and type. These functions and other
attribute functions are listed in Table 5-3 with a brief description.

Table 5-3. pthread_mutex_t Attribute Object Functions

pthread_mutex_t Attribute Object
Function Prototypes #include
<pthread.h>

Description

int pthread_mutexattr_init
(pthread_mutexattr_t * attr);

Initializes a mutex attribute object specified by the
parameter attr with default values for all of the attributes
defined by the implementation.

int pthread_mutexattr_destroy
(pthread_mutexattr_t * attr);

Destroys a mutex attribute object specified by the
parameter attr, which causes the mutex attribute object to
become uninitialized. Can be reinitialized by calling the
pthread_mutexattr_init() function.

int pthread_mutexattr_
setprioceiling
(pthread_mutexattr_t * attr,
 int prioceiling);

int pthread_mutexattr_
getprioceiling
(const pthread_mutexattr_t *
 restrict attr, int *restrict
prioceiling);

Sets and returns the priority ceiling attribute of the mutex
specified by the parameter attr. The parameter prioceiling
contains the priority ceiling of the mutex. The prioceiling
attribute defines the minimum priority level at which the
critical section guarded by the mutex is executed. The
values are within the maximum range of priorities defined
by SCHED_FIFO.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05table03

pthread_mutex_t Attribute Object
Function Prototypes #include
<pthread.h>

Description

int pthread_mutexattr_
setprotocol
(pthread_mutexattr_t * attr,
 int protocol);

Sets and returns the protocol of the mutex attribute
specified by the parameter attr. The protocol parameter
contains the value of the protocol attribute:

int pthread_mutexattr_
getprotocol
(const pthread_mutexattr_t *
 restrict attr,
 int *restrict protocol);

PTHREAD_PRIO_NONE

The priority and scheduling of the thread is not affected
by the ownership of the mutex.

 PTHREAD_PRIO_INHERIT

Thread blocking other threads of higher priority due to
ownership of such a mutex, shall execute at the highest
priority of any of the threads waiting on any of the
mutexes owned by this thread with such a protocol.

 PTHREAD_PRIO_PROTECT

Threads owning such a mutex shall execute at the highest
priority ceilings of all mutexes owned by this thread with
such a protocol, regardless of whether other threads are
blocked on any of these mutexes.

int pthread_mutexattr_
setpshared
(pthread_mutexattr_t * attr,
 int pshared);

Sets or returns the process-shared attribute of the mutex
attribute object specified by the parameter attr. The
pshared parameter contains a value:

int pthread_mutexattr_
getpshared
(const pthread_mutexattr_t *
 restrict attr, int *restrict
pshared);

PTHREAD_PROCESS_SHARED

Permits a mutex to be shared by any threads that have
access to the allocated memory of the mutex even if the
threads are in different processes.

 PTHREAD_PROCESS_PRIVATE

Mutex is shared between threads of the same process as
the initialized mutex.

int pthread_mutexattr_
settype
(pthread_mutexattr_t * attr,

Sets and returns the type mutex attribute of the mutex
attribute specified by the parameter attr. The mutex type

pthread_mutex_t Attribute Object
Function Prototypes #include
<pthread.h>

Description

 int type); attribute is used to describe the behavior of the mutex,
which includes whether the mutex will determine
deadlock, perform error checking, etc. The type parameter
contains a value:

int pthread_mutexattr_
gettype
(const pthread_mutexattr_t *
 restrict attr,
 int *restrict type);

PTHREAD_MUTEX_DEFAULT

PTHREAD_MUTEX_RECURSIVE

PTHREAD_MUTEX_ERRORCHECK

PTHREAD_MUTEX_NORMAL

The most interesting of the attributes is setting whether the mutex will be private or shared. Private
mutexes are only shared among threads of the same process. It can be declared as global or a handle can
be passed between threads. Shared mutexes are used by any threads that have access to the memory in
which the mutex is located. This includes threads of different processes. Figure 5-5 contrasts the idea of
private and shared mutexes between different processes. If threads of different processes are to share a
mutex, it must be allocated in memory shared between processes. POSIX defines several functions used
to allocate shared memory between objects using memory-mapped files and shared memory objects.
Mutexes between processes can be used to protect critical sections that access files, pipes, shared
memory, and devices.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05fig05

Figure 5-5. Private and shared mutexes.

5.3.2.2 Using Mutex Semaphores to Manage Critical Sections

Mutexes can be used to manage critical sections of processes and threads in order to control race
conditions. Mutexes avoid race conditions by serializing access to the critical section. Example 5.1
shows two threads. Mutexes are used to protect their critical sections.

Example 5.1 Using mutexes to protect critical sections of threads.

// ...
pthread_t ThreadA,ThreadB;
pthread_mutex_t Mutex;
pthread_mutexattr_t MutexAttr;

void *task1(void *X)
{
 pthread_mutex_lock(&Mutex);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex01

 // critical section of code
 pthread_mutex_unlock(&Mutex);
 return(0);
}

void *task2(void *X)
{
 pthread_mutex_lock(&Mutex);
 // critical section of code
 pthread_mutex_unlock(&Mutex);
 return(0);
}

int main(void)
{
 //...
 pthread_mutexattr_init(&MutexAttr);
 pthread_mutex_init(&Mutex,&MutexAttr);
 //set mutex attributes
 pthread_create(&ThreadA,NULL,task1,NULL);
 pthread_create(&ThreadB,NULL,task2,NULL);
 //...
 return(0);
}

In Example 5.1, ThreadA and ThreadB have critical sections protected by their use of Mutex.

Example 5.2 shows how mutexes can be used to protect the critical sections of currently executing
processes.

Example 5.2 Mutexes used to protect critical sections.

//...
int Rt;
pthread_mutex_t Mutex1;
pthread_mutexattr_t MutexAttr;

int main(void)
{
 //...
 pthread_mutexattr_init(&MutexAttr);
 pthread_mutexattr_setpshared(&MutexAttr,
 PTHREAD_PROCESS_SHARED);
 pthread_mutex_init(&Mutex1,&MutexAttr);

 if((Rt = fork()) == 0){ // child process
 pthread_mutex_lock(&Mutex1);
 //critical section
 pthread_mutex_unlock(&Mutex1);
 }
 else{ // parent process
 pthread_mutex_lock(&Mutex1);
 //critical section
 pthread_mutex_unlock(&Mutex1);
 }
 //...
 return(0);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex01

}

In Example 5.2, it is important to note that the mutex has been initialized as shared by calling:

pthread_mutexattr_setpshared(&MutexAttr,PTHREAD_PROCESS_SHARED);

This allows Mutex to be shared by threads of different processes. Once fork() is called, the child
process and parent process can protect their critical section with Mutex. Their critical sections will
contain some resource shared by both processes.

5.3.3 Read–Write Locks

Mutex semaphores are used to manage a critical section by serializing entry to that section. Only one
thread or process is permitted to enter the critical section at a time. With read-write locks, multiple
threads are allowed to enter the critical section if they are to read the shared memory only. Therefore,
any number of threads can own a read-write lock for reading. But if multiple threads are to write or
modify the shared memory, only one thread is given access. No other threads are allowed to enter the
critical section if one thread is given exclusive access to write to the shared memory. This can be used
when applications more often read data than write data. If the application has multiple threads, mutex
exclusion can be extreme. The performance of the application can benefit by allowing multiple reads.
The POSIX standard defines a read-write lock of type pthread_rwlock_t.

Similar to mutex semaphores, the read-write locks have the same operations. Table 5-4 lists the read-
write lock operations.

The difference between regular mutexes and read-write mutexes is their locking request operations.
Instead of one locking operation there are two:

pthread_rwlock_rdlock()
pthread_rwlock_wrlock()

pthread_rwlock_rdlock() obtains a read-lock and pthread_rwlock_wrlock() obtains a write lock. If a
thread requests a read lock, it is granted the lock as long as there are no threads that hold a write lock. If
so, the calling thread is blocked. If a thread request a write lock, it is granted as long as there are no
threads that hold a read lock or a write lock. If so, the calling thread is blocked.

The read-write lock is of type pthread_rwlock_t. This type also has an attribute object that encapsulates
its attributes. The attribute functions are listed in Table 5-5.

Table 5-4. Read–Write Lock Operations

Read–write Lock Operations Function Prototypes #include <pthread.h>

Initialization int pthread_rwlock_init(pthread_rwlock_t *restrict
rwlock, const pthread_rwlockattr_t *restrict attr);

Request ownership #include <time.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_timedrdlock(pthread_rwlock_t
*restrict rwlock, const struct timespec *restrict
abs_timeout);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05table05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05table04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex02

Read–write Lock Operations Function Prototypes #include <pthread.h>

int pthread_rwlock_timedwrlock(pthread_rwlock_t |
*restrict rwlock, const struct timespec *restrict
abs_timeout);

Release ownership int pthread_rwlock_unlock(pthread_rwlock_t
*rwlock);

Try ownership int pthread_rwlock_tryrdlock(pthread_rwlock_t
*rwlock);

int pthread_rwlock_trywrlock(pthread_rwlock_t
*rwlock);

Destruction int pthread_rwlock_destroy(pthread_rwlock_t
*rwlock);

The pthread_rwlock_t can be private between threads or shared between threads or different processes.

5.3.3.1 Using Read-Write Locks to Implement Access Policy

Read-write locks can be used to implement an access policy, namely CREW. Several tasks can be
granted concurrent reads but only one task is granted write access. Using read-write locks will not
permit concurrent reads to occur with the exclusive write. Example 5.3 contains tasks using read-write
locks to protect critical sections.

Table 5-5. Attribute Object Functions for pthread_rwlock_t

pthread_rwlock_t Attribute Object Function
Prototypes #include <pthread.h>

Description

int pthread_rwlockattr_init
(pthread_rwlockattr_t * attr);

Initializes a read-write lock attribute object
specified by the parameter attr with default values
for all of the attributes defined by the
implementation.

int pthread_rwlockattr_destroy
(pthread_rwlockattr_t * attr);

Destroys a read-write lock attribute object specified
by the parameter attr. Can be reinitialized by
calling the pthread_rwlockattr_init() function.

int pthread_rwlockattr_
setpshared
(pthread_rwlockattr_t * attr,
 int pshared);

Sets or returns the process-shared attribute of the
read-write lock attribute object specified by the
parameter attr. The pshared parameter contains a
value:

int pthread_rwlockattr_
getpshared

PTHREAD_PROCESS_SHARED

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex03

pthread_rwlock_t Attribute Object Function
Prototypes #include <pthread.h>

Description

(const pthread_rwlockattr_t *
 restrict attr,
 int *restrict pshared); Permits a read-write lock to be shared by any

threads that have access to the allocated memory of
the read-write lock even if the threads are in
different processes.

 PTHREAD_PROCESS_PRIVATE

The read-write lock is shared between threads of
the same process as the initialized rwlock.

Example 5.3 Threads using read-write locks.

//...
pthread_t ThreadA,ThreadB,ThreadC,ThreadD;
pthread_rwlock_t RWLock;

void *producer1(void *X)
{
 pthread_rwlock_wrlock(&RWLock);
 //critical section
 pthread_rwlock_unlock(&RWLock);
 return(0);
}

void *producer2(void *X)
{
 pthread_rwlock_wrlock(&RWLock);
 //critical section
 pthread_rwlock_unlock(&RWLock);
}

void *consumer1(void *X)
{
 pthread_rwlock_rdlock(&RWLock);
 //critical section
 pthread_rwlock_unlock(&RWLock);
 return(0);
}

void *consumer2(void *X)
{
 pthread_rwlock_rdlock(&RWLock);
 //critical section
 pthread_rwlock_unlock(&RWLock);
 return(0);
}

int main(void)
{

 pthread_rwlock_init(&RWLock,NULL);
 //set mutex attributes
 pthread_create(&ThreadA,NULL,producer1,NULL);
 pthread_create(&ThreadB,NULL,consumer1,NULL);
 pthread_create(&ThreadC,NULL,producer2,NULL);
 pthread_create(&ThreadD,NULL,consumer2,NULL);
 //...
 return(0);
}

In Example 5.3, four threads are created. Two threads are producers, ThreadA and ThreadC, and two
threads are consumers, ThreadB and ThreadD. All the threads have a critical section and each section is
protected with the read–write lock RWLock. As mentioned, ThreadB and ThreadD can enter their
critical sections concurrently or serially but neither thread can enter their critical sections if either
ThreadA or ThreadC is in theirs. ThreadA and ThreadC cannot enter their critical sections concurrently.
Table 5-6 shows part of the decision table for Example 5.3.

Table 5-6. Part of the Decision Table for Example 5.3

Thread A (writer) Thread B (reader) Thread C (writer) Thread D (reader)

N N N Y

N N Y N

N Y N N

N Y N Y

Y N N N

5.3.4 Condition Variables

A condition variable is a semaphore used to signal an event has occurred. One or more processes or
threads can wait for the signal sent by other processes or threads once the event has taken place. Some
make a distinction between condition variables and the mutex semaphores discussed. The purpose of
the mutex semaphore and read–write locks is to synchronize data access whereas condition variables
are typically used to synchronize the sequence of operations. W. Richard Stevens, in his book UNIX
Network Programming, states it best: "Mutexes are for locking and cannot be used for waiting."

In Program 4.6, our consumer thread contained a busy loop:

15 while(TextFiles.empty())
16 {}

The consumer thread looped until there were items in the TextFiles queue. This can be replaced by a
condition variable. The producer can signal the consumer that items have been inserted into the queue.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04lev1sec9.htm#ch04prog06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05table06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex03

The consumer can wait until it receives the signal then continue to process the queue.

The condition variable is of type pthread_cond_t. These are the types of operations it can perform:

• initialize

• destroy

• wait

• timed wait

• signal

• broadcast

The initialize and destroy operations work in a similar manner as the other mutexes. Table 5-7 lists the
functions for the pthread_cond_t that implement these operations.

Table 5-7. Functions for the pthread_cond_t that Implement Condition Variables Operations

Condition Variables Operations Function Prototypes/Macros #include <pthread.h>

Initialization int pthread_cond_init(pthread_cond_t *restrict
cond, const pthread_condattr_t *restrict attr);

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Waiting int pthread_cond_wait(pthread_cond_t * restrict cond,
pthread_mutex_t *restrict mutex);

int pthread_cond_timedwait(pthread_cond_t * restrict
cond, pthread_mutex_t *restrict mutex, const struct
timespec *restrict abstime);

Signaling int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

Destruction int pthread_cond_destroy(pthread_cond_t *cond);

Condition variables are used in conjunction with mutexes. If a thread or process attempts to lock a
mutex, we know that it will block until the mutex is released. Once unblocked, it obtains the mutex then
continues. If a condition variable is used, it must be associated with a mutex.

//...
pthread_mutex_lock(&Mutex);
pthread_cond_wait(&EventMutex,&Mutex);
//...
pthread_mutex_unlock(&Mutex);

A task attempts to lock a mutex. If the mutex is already locked then the task will block. Once
unblocked, the task will release the mutex, Mutex, while it waits on the signal for the condition
variable, EventMutex. If the mutex is not locked, it will release the mutex and wait indefinitely. With a
timed wait, the task will only wait for a specified period of time. If the time expires before the task is
signaled, the function will return an error. It will then reacquire the mutex.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05table07

The signal operation causes a task to signal to another thread or process that an event has occurred. If a
task is waiting for that condition variable, it will be unblocked and given the mutex. If there are several
tasks waiting for the condition variable, only one will be unblocked. The tasks will be waiting in a
queue and unblocked according to the scheduling policy. The broadcast operation signals all the task
waiting for the condition variable. If multiple tasks are unblocked, the tasks shall compete for the
ownership of the mutex according to a scheduling policy. In contrast to the wait operation, the signaling
task is not required to own the mutex, although it is recommended.

The condition variable also has an attribute object. Table 5-8 lists the functions of the attribute object
with a brief description.

5.3.4.1 Using Condition Variables to Manage Synchronization Relationships

The condition variable can be used to implement the synchronization relationships mentioned earlier:
start-to-start (SS), finish-to-start (FS), start-to-finish (SF), and finish-to-finish (FF). These relationships
can exist between threads of the same processes or different processes. Examples 5.4 and 5.5 contain
examples of how to implement an FS and FF synchronization relationship. There are two mutexes used
in each example. One mutex is used to synchronize access to the shared data and the other mutex is
used to synchronize execution of code.

Example 5.4 FS synchronization relationship between two threads.

//...
float Number;
pthread_t ThreadA,ThreadB;
pthread_mutex_t Mutex,EventMutex;
pthread_cond_t Event;

void *worker1(void *X)
{
 for(int Count = 1;Count < 100;Count++){
 pthread_mutex_lock(&Mutex);
 Number++;
 pthread_mutex_unlock(&Mutex);
 cout << "worker1: number is " << Number << endl;
 if(Number == 50){
 pthread_cond_signal(&Event);
 }
 }
 cout << "worker 1 done" << endl;
 return(0);
}

void *worker2(void *X)
{
 pthread_mutex_lock(&EventMutex);
 pthread_cond_wait(&Event,&EventMutex);
 pthread_mutex_unlock(&EventMutex);
 for(int Count = 1;Count < 50;Count++){
 pthread_mutex_lock(&Mutex);
 Number = Number + 20;
 pthread_mutex_unlock(&Mutex);
 cout << "worker2: number is " << Number << endl;
 }
 cout << "worker 2 done" << endl;
 return(0);
}

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05table08

int main(int argc, char *argv[])
{
 pthread_mutex_init(&Mutex,NULL);
 pthread_mutex_init(&EventMutex,NULL);
 pthread_cond_init(&Event,NULL);
 pthread_create(&ThreadA,NULL,worker1,NULL);
 pthread_create(&ThreadB,NULL,worker2,NULL);
 //...
 return(0);
}

Table 5-8. Functions of the Attribute Object for the Condition Variable of Type pthread_cond_t

pthread_cond_t Attribute Object
Function Prototypes #include
<pthread.h>

Description

int pthread_condattr_init
(pthread_condattr_t * attr);

Initializes a condition variable attribute object specified
by the parameter attr with default values for all of the
attributes defined by the implementation.

int pthread_condattr_destroy
(pthread_condattr_t * attr);

Destroys a condition variable attribute object specified
by the parameter attr. Can be reinitialized by calling the
pthread_condattr_init() function.

int pthread_condattr_
setpshared
(pthread_condattr_t * attr,
 int pshared);

Sets or returns the process-shared attribute of the
condition variable attribute object specified by the
parameter attr. The pshared parameter contains a value:

int pthread_condattr_
getpshared
(const pthread_condattr_t
 * restrict attr,
 int *restrict pshared);

PTHREAD_PROCESS_SHARED

Permits a read–write lock to be shared by any threads
that have access to the allocated memory of the condition
variable even if the threads are in different processes.

 PTHREAD_PROCESS_PRIVATE

The condition variable is shared between threads of the
same process as the initialized condition.

int pthread_condattr_
setclock
(pthread_condattr_t
 * attr, clockid_t clock_id);

int pthread_condattr_
getclock
(const pthread_condattr_t

Sets and returns the clock attribute for the condition
variable attribute object specified by the parameter attr.
The clock attribute is the clock id of the clock used to
measure the timeout service of the
pthread_cond_timedwait() function. The default value of

pthread_cond_t Attribute Object
Function Prototypes #include
<pthread.h>

Description

 * restrict attr,
 clockid_t *
 restrict clock_id);

the clock attribute is the system clock.

In Example 5.4, the FS synchronization relationship is implemented. ThreadA cannot finish until
ThreadB starts. ThreadA signals to ThreadB once Number has a value of 50. It can now continue
execution until finished. ThreadB cannot start its computation until it gets a signal from ThreadA.
ThreadB uses the EventMutex with the condition variable Event. Mutex is used to synchronize write
access to the shared data Number. A task can use several mutexes to synchronize different critical
sections and synchronize different events.

Example 5.5 contains an implementation of a FF synchronization relationship.

Example 5.5 FF synchronization relationship between two threads.

//...
float Number;
pthread_t ThreadA,ThreadB;
pthread_mutex_t Mutex,EventMutex;
pthread_cond_t Event;

void *worker1(void *X)
{
 for(int Count = 1;Count < 10;Count++){
 pthread_mutex_lock(&Mutex);
 Number++;
 pthread_mutex_unlock(&Mutex);
 cout << "worker1: number is " << Number << endl;
 }
 pthread_mutex_lock(&EventMutex);
 cout << "worker1 done now waiting " << endl;
 pthread_cond_wait(&Event,&EventMutex);
 pthread_mutex_unlock(&EventMutex);
 return(0);
}

void *worker2(void *X)
{
 for(int Count = 1;Count < 100;Count++){
 pthread_mutex_lock(&Mutex);
 Number = Number * 2;
 pthread_mutex_unlock(&Mutex);
 cout << "worker2: number is " << Number << endl;
 }
 pthread_cond_signal(&Event);
 cout << "worker2 done now signalling " << endl;
 return(0);
}

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex04

int main(int argc, char *argv[])
{
 pthread_mutex_init(&Mutex,NULL);
 pthread_mutex_init(&EventMutex,NULL);
 pthread_cond_init(&Event,NULL);
 pthread_create(&ThreadA,NULL,worker1,NULL);
 pthread_create(&ThreadB,NULL,worker2,NULL);
 //...
 return(0);
}

In Example 5.5, ThreadA cannot finish until ThreadB finishes. ThreadA must iterate through the loop
10 times, where ThreadB must iterate through the loop only 100 times. ThreadA will complete its
iterations before ThreadB but will wait until ThreadB signals that it is done.

SS and SF can be implemented in a similar manner. These techniques can easily be used to synchronize
order of execution between processes.

5.4 Synchronization: An Object-Oriented Approach

One of the advantages of object-oriented programming is the protection encapsulation provides for the
data component of an object. Encapsulation can provide "object-access policies and usage guidelines"
(Hughes & Hughes, 1997) for the user of the object. In the examples presented in this chapter, access
policies were the responsibility of the user of the data. With objects and encapsulation, the
responsibility has switched from the user of the data to the data itself. This approach creates data, not
unlike functions, which are thread safe.

In order to accomplish this, the data (wherever possible) of the multithreaded application should be
encapsulated using the C++ class or struct constructs. Then encapsulate the synchronization mechanism
such as semaphores, read-write locks, and event mutexes. If the data or synchronization mechanisms
are already objects, create an interface class for them. Lastly, combine the data object with the
synchronization objects through inheritance or composition, to create data objects that are thread safe.
This approach is discussed in detail in Chapter 11.

Summary

Synchronization can be used to coordinate the order of execution of processes and threads called task
synchronization as well as access the shared data called data synchronization. There are four basic task
synchronization relationships. A start-to-start relationship means task A cannot start until task B starts.
A finish-to-start relationship means task A cannot finish until task B starts. A start-to-finish relationship
means task A cannot start until task B finishes. A finish-to-finish (FF) relationship means task A cannot
finish until task B finishes. The POSIX standard defines a condition variable of type pthread_cond_t
that can be used to implement these task synchronization relationships.

The algorithm types of the PRAM model can be used to describe data synchronization. EREW
(exclusive read exclusive write) access policy can be implemented with a mutex semaphore. The mutex
semaphore protects the critical section by serializing entry into the critical section. Either read access or
write access is allowed. The POSIX standard defines a mutex semaphore of type pthread_mutex_t that
can be used to implement an EREW access policy. Read–write locks can be used to implement the
CREW access policy. CREW access policy describes multiple concurrent reads of data but an exclusive
write to that data. The POSIX standard defines a read–write lock of type pthread_rwlock_t. An object-
oriented approach to data synchronization embeds synchronization inside the data object.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11.htm#ch11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05lev1sec3.htm#ch05ex05

Chapter 6. Adding Parallel Programming Capabilities to C++
Through the PVM
"We have thus divided our problem into two parts. The child-programme and the education
process. These two remain very closely connected. We cannot expect to find a good child-
machine at the first attempt. One must experiment with teaching one such machine, and see
how well it learns . . ."

—Alan Turing, Can A Machine Think?

In this Chapter

• The Classic Parallelism Models Supported by PVM

• The PVM Library for C++

• The Basic Mechanics of the PVM

• Accessing Standard Input (stdin) and Standard Output (stdout) within PVM Tasks

• Summary

The PVM (Parallel Virtual Machine) is a software system that provides the software developer with the
facilities to write and run programs that exploit parallelism. The PVM presents a collection of
networked computers to the developer as a single logical machine with parallel capabilities. The
collection of computers can all have the same architecture or the collection can consist of computers
with different architectures. The PVM can even be connected to computers that fall into the MPP
(Massively Parallel Processor) class. Although PVM programs can be developed for a single computer,
the real advantages come when there are two or more computers connected.

The PVM supports the message passing model as a means of communication between concurrently
executing tasks. An application interacts with the PVM through a library that consists of APIs for
process control, sending messages, receiving messages, signaling processes, and so on. A C++ program
interfaces with the PVM library in the same way that it interacts with any other function library. While
a program that accesses PVM library calls does require certain functions to be called to initialize the
environment, there is nothing that forces any particular form or architecture on a C++ program. This
means that the C++ programmer can combine PVM capabilities with other styles of C++ programming
(e.g., object-oriented, parameterized programming, agent-oriented programming, and structured
programming). The use of libraries to provide additional functionality to C++ is considered one of its
advantages. Through the use of libraries such as PVM, MPI, or Linda, a C++ developer can use
different models of parallelism, whereas other languages are restricted to whatever parallel primitives
are built into the language. The PVM library is perhaps the easiest way to add parallel programming
capabilities to the C++ language.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec5.htm#ch06lev1sec5
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec4.htm#ch06lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec3.htm#ch06lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec1.htm#ch06lev1sec1

6.1 The Classic Parallelism Models Supported by PVM

The PVM system supports the MIMD (Multiple Instruction Multiple Data) and SPMD (Single Program
Multiple Data) models of parallelism. Actually, SPMD is a variation on the SIMD (Single Instruction
Multiple Data) model. The models classify programs by instruction streams and data streams. In the
MIMD model, a program consists of two or more concurrently executing instruction streams, each with
its own local data stream. Essentially, each processor has its own memory. In the PVM environment the
MIMD is considered a distributed memory model, which is in contrast to a shared memory model. In
shared memory models each processor can see the same memory locations. In the distributed model
memory values must be communicated through message passing. On the other hand, the SPMD model
consists of a single program (the same set of instructions) concurrently executing on two or more
machines with the program on each machine processing a different data stream. In other words, the
same program on each machine is working with different pieces of data. The PVM environment
supports both the MIMD and SIMD or a combination of these two models. Figure 6-1 shows the four
classic models and where PVM programs are classified.

Figure 6-1. Four classic models of parallelism and the classification of PVM programs.

Notice in Figure 6-1 that the SISD and MISD models are not applicable to the PVM. The SISD model
describes a uniprocessor machine and the MISD model has not yet been practically applied. The two
models in Figure 6-1 that can be used with PVMs determine how a C++ program interacts with
computers. The software developer sees one logical virtual computer as allowing either two or more
different concurrently executing tasks, each with access to its own data, or the same task executing as a
set of concurrent clones, with each clone accessing some different piece of data. For our purposes the
Multiple Instructions and Single Program in Figure 6-1 refer to PVM tasks.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec1.htm#ch06fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec1.htm#ch06fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec1.htm#ch06fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec1.htm#ch06fig01

6.2 The PVM Library for C++

The PVM functionality is accessed by C++ through a collection of library routines provided by the
PVM environment. The routines are typically divided into seven categories:

• Process Management and Control

• Messaging Packing and Sending

• Message Unpacking and Receiving

• Task Signaling

• Message Buffer Management

• Information and Utility Functions

• Group Operations

The library routines are easy to integrate into the C++ environment. The pvm_ prefix to each function
helps to keep the namespace clear. To use the PVM library routines, your programs must include the
pvm3.h header file and link to libpvm. Programs 6.1 and 6.2 show how a simple PVM program works.
The instructions for compiling and executing Program 6.1 are contained in Program Profile 6.1.

Program 6.1

#include "pvm3.h"
#include <iostream>
#include <string.h>

int main(int argc,char *argv[])
{
 int RetCode,MessageId;
 int PTid, Tid;
 char Message[100];
 float Result[1];
 PTid = pvm_mytid();
 RetCode = pvm_spawn("program6-2",NULL,0," ",1,&Tid);
 if(RetCode == 1){
 MessageId = 1;
 strcpy(Message,"22");
 pvm_initsend(PvmDataDefault);
 pvm_pkstr(Message);
 pvm_send(Tid,MessageId);
 pvm_recv(Tid,MessageId);
 pvm_upkfloat(Result,1,1);
 cout << Result[0] << endl;
 pvm_exit();
 return(0);
 }
 else{
 cerr << "Could not spawn task " << endl;
 pvm_exit();
 return(1);
 }
}

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06sb01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog01

Program Profile 6.1
Program Name

program6-1.cc

Description

Uses pvm_send to send a number to another PVM task that is executing (Program 6.2) and pvm_recv
to receive a number from that task.

Libraries Required

libpvm3

Headers Required

<pvm3.h> <iostream> <string.h>

Compile and Link Instructions

[View full width]

c++ -o program6-1 -I $PVM_ROOT/include -L $PVM_ROOT/lib/
 $PVM_ARCH -l pvm3

Test Environment

Solaris 8, PVM 3.4.3, SuSE Linux 7.1, gcc 2.95.2,

Execution Instructions

./program6-1

Notes

pvmd must be running.

Program 6.1 calls eight commonly used PVM routines: pvm_mytid(), pvm_spawn(), pvm_initsend(),
pvm_pkstr(), pvm_send(), pvm_recv(), pvm_upkfloat(), and pvm_exit(). The pvm_mytid() routine
returns the task identifier of the calling process. The PVM system associates a task identifier with each
process that it creates. The task identifier is used to send messages between tasks, to receive messages
from other tasks, to signal tasks, to interrupt tasks, and so on. Any PVM task may communicate with
any other PVM task as long as it has access to the task identifier of the task it wants to communicate
with. The pvm_spawn() routine is used to start new PVM processes. Program 6.1 uses the
pvm_spawn() process to start a new process to execute Program 6.2. The task identifier for the new task
is returned in the &Tid parameter of the pvm_spawn() call. The PVM environment uses message
buffers to pass data between tasks. Each task can have one or more message buffers. However, only one
buffer is considered the active message buffer. Prior to sending each message the pvm_initsend()
routine is called to prepare or initialize the active message buffer. The pvm_pkstr() routine is used to

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/noccc##PLID4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog02

pack the string contained in the message variable. This packing encodes the string for transport to
another task in another process possibly on another machine with a different machine architecture. The
PVM environment handles the details of the architecture-to-architecture conversions. The PVM
environment requires the use of a packing routine prior to sending and an unpacking routine during
receiving to make the message readable by the receiver. However, there is an exception to this, which
we will discuss later. The pvm_send() and pvm_recv() are used to send and receive messages. The
MessageId simply identifies which message the caller or sender is working with. Notice in Program 6.1
that the pvm_send() and pvm_receive() routines contain the task identifier of the task receiving the data
and the task identifier of the task sending the data. The pvm_upkfloat() routine takes the message it
retrieves from the active message buffer and unpacks it into an array of type float. Program 6.1 spawns
a PVM task to execute Program 6.2.

Notice that Programs 6.1 and 6.2 both contain a call to the routine pvm_exit(). It's important that this
function is called when the PVM processing for a task is finished. Although this routine does not kill
the process or stop the process, it does PVM cleanup for the task and disconnects the task from the
PVM. Notice that Programs 6.1 and 6.2 are self-contained, standalone programs that contain the main()
function. Program Profile 6.2 has the implementation details for Program 6.2.

Program 6.2

#include "pvm3.h"
#include "stdlib.h"

int main(int argc, char *argv[])
{
 int MessageId, Ptid;
 char Message[100];
 float Num,Result;
 Ptid = pvm_parent();
 MessageId = 1;
 pvm_recv(Ptid,MessageId);
 pvm_upkstr(Message);
 Num = atof(Message);
 Result = Num / 7.0001;
 pvm_initsend(PvmDataDefault);
 pvm_pkfloat(&Result,1,1);
 pvm_send(Ptid,MessageId);
 pvm_exit();
 return(0);
}

Program Profile 6.2
Program Name

program6-2.cc

Description

This program receives a number from its parent process and divides that number by 7. It sends the
result to its parent process.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06sb02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog01

Libraries Required

libpvm3

Headers Required

<pvm3.h> <stdlib.h>

Compile and Link Instructions

[View full width]

c++ -o program6-2 -I $PVM_ROOT/include program6-2.cc -L $PVM_ROOT
/lib/PVM_ARCH -lpvm3

Test Environment

SuSE Linux 7.1 gnu C++ 2.95.2, Solaris 8 Workshop 6, PVM 3.4.3

Execution Instructions

This program is spawned by Program 6.1.

Notes

pvmd must be running.

6.2.1 Compiling and Linking a C++/PVM Program

Version 3.4.x of the PVM environment packages the routines in a single library, libpvm3.a. To compile
a PVM program include the pvm3.h header file and link with libpvm3.a:

$ c++ -o mypvm_program -I $PVM_ROOT/include mypvm_program.cc
-I$PVM_ROOT/lib -lpvm3

The $PVM_ROOT environment variable points to the PVM installed directory. This command will
produce a binary called mypvm_program.

To execute Programs 6.1 and 6.2, you must have the PVM environment properly installed. Three basic
methods can be used to execute a PVM program: as a standalone binary, using the PVM console, or
using XPVM.

6.2.2 Executing a PVM Program as a Standalone

The pvmd program must be started and each host involved in the PVM must have the correctly
compiled programs in the appropriate directory. The default directory for the compiled programs
(binaries) is:

$HOME/pvm3/bin/$PVM_ARCH

where the PVM_ARCH contains the name of the machine's architecture. See Table 6-2 and items 1 and
2 from Section 6.1.5. The binaries should have the proper file permissions set to allow them to be
accessed and executed. The pvmd program can be started as:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/noccc##PLID10

pvmd &

or:

pvmd hostfile &

where hostfile is a configuration file that has special options to be passed to the pvmd program. See
item 5 from section 6.1.5. After the pvmd program has been started on one of the computers involved in
the PVM, a PVM program can then be started simply by:

$MyPvmProgram

If this program spawns any other tasks they will be started automatically.

6.2.2.1 Starting PVM Programs Using the PVM Console

To execute the programs using the PVM console, type the following at the PVM console. Start the
PVM console by typing:

$pvm

and at the pvm> prompt, type the name of the program to be executed:

pvm> spawn -> MyPvmProgram

6.2.2.2 Start PVM Programs Using XPVM

Besides starting the programs using the terminal-based PVM console, XPVM graphical interface for X
Windows can be used. Figure 6-2 shows what to type in the tasks dialog of a XPVM session.

Figure 6-2. The XPVM task dialog.

The PVM library does not force any particular structure on a C++ program. The first PVM routine
called by a program enrolls that program into the PVM. It is good practice to always call pvm_exit() for
every program that is part of the PVM. If this routine is not called for every PVM task, the system will
hang. It is a good rule of thumb to call pvm_mytid() and pvm_parent() early in the processing of the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06fig02

task. Table 6-1 contains the library routines broken down into the seven commonly used categories.

Table 6-1. Seven Categories of PVM Library Routines

Categories of PVM
Library Routines

Description

Process Management and
Control

Routines used to manage and control PVM processes.

Message Packing and
Sending

Routines used to pack messages into a send buffer and send messages
from one PVM process to another.

Message Unpacking and
Receiving

Routines used to receive messages and unpack the data from the active
buffer.

Task Signaling Routines used to signal and notify PVM processes about the occurrence
of an event.

Message Buffer
Management

Routines used to initialize, empty, dispose, and otherwise manage buffers
used to receive and send messages between PVM processes.

Information and Utility
Functions

Routines used to return information about a PVM process and perform
other important tasks.

Group Operations Routines used joining, leaving, and otherwise managing processes in a
group.

6.2.3 A PVM Preliminary Requirements Checklist

In addition to obtaining and properly installing a PVM distribution, there are a few other minor
considerations. When the PVM environment is implemented as a network of computers, the following
items must be handled before your C++ program can interact with the PVM environment.

Item 1

The environment variable PVM_ROOT and PVM_ARCH should be set. The environment variable
PVM_ROOT should be set to the directory where PVM is installed.

Using the Bourne Shell (bash) Using the C Shell

$ PVM_ROOT=/usr/lib/pvm3 setenv PVM_ROOT /usr/lib/pvm3

$ export PVM_ROOT

The PVM_ARCH environment variable identifies the architecture of the machine. Each machine

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06table01

involved in the PVM must be identified by architecture. For example, our Ultrasparcs have the
designation SUN4SOL2 and our Linux machines have the designation LINUX. Table 6-2 shows the
most commonly used architectures for the PVM environment. Check with your distribution of PVM if
an appropriate architecture for your machines is not contained in Table 6-2.

Table 6-2 shows the name and machine type associated with the name. Set your PVM_ARCH
environment variable to one of the names in Table 6-2. For instance:

Table 6-2. Most Commonly Used Architectures for the PVM Environment

PVM_ARCH Computer

AFX8 Alliance

ALPHA DEC Alpha

BAL Sequent Balance

BFLY BBN Butterfly TC2000

BSD386 80386/486 PC Running UNIX

CM2 Thinking Machine CM2

CM5 Thinking Machine CM5

CNVX Convex C-series

CNVXN Convex C-series

CRAY C-90, YMP, T3D port available

CRAY2 Cray-2

CRAYSIMP Cray S-MP

DGAV Data General Aviion

E88K Encore 88000

HP300 HP-9000 Model 300

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06table02

PVM_ARCH Computer

HPPA HP-9000 PA-RISC

I860 Intel iPSC/860

IPSC2 Intel iPSC/2 386 Host

KSRI Kendall Square KSR-1

LINUX 80386/486 PC Running UNIX

MASPAR Maspar

MIPS MIPS 4680

NEXT NeXT

PGON Intel Paragon

PMAX DECstation 3100,5100

RS6K IBM/RS6000

RT IBM RT

SGI Silicon Graphics IRIS

SGI5 Silicon Graphics IRIS

SGIMP SGI Multiprocessor

SUN3 Sun 3

SUN4 Sun 4, SPARCstation

SUN2SOL2 Sun 4, SPARCstation

SUNMP SPARC Multiprocessor

PVM_ARCH Computer

SYMM Sequent Symmetry

TITN Stardent Titan

U370 IBM 370

UVAX DEC Licro VAX

Using the Bourne Shell (bash) Using the C Shell

$PVM_ARCH=LINUX setenv PVM_ARCH LINUX

$export PVM_ARCH

Item 2

The binaries (executables) for any programs participating in the PVM have to be either located on all
machines involved or accessible by all machines involved in the PVM. In addition to availability, each
program must be compiled to work for the architecture it will run on. This means if we have
UltraSparcs, PowerPCs, and Intel processors involved in the PVM, then we must have a version of the
program compiled for each architecture. That version must be located in a place that the PVM is aware
of. The location is often $HOME/pvm3/bin. However, the location can be specified in a PVM
configuration file usually referred to as the hostfile or .xpvm_hosts if the XPVM environment is used.
The hostfile would contain an entry such as:

ep=/usr/local/pvm3/bin

This specifies any user binaries needed by the PVM can be found in the /usr/local/pvm3/bin directory.

Item 3

The user initiating the PVM program must have network access to each machine involved in the PVM.
This access is typically rsh or ssh access. See the main pages for more details on the rsh and ssh
programs. By default, the PVM accesses each machine using the login name of the user initiating the
PVM program or the account name of the machine starting the PVM program. If another account
besides the initiating login account is required, an entry must be added to the host file or .xpvm_hosts.
For example:

lo=flashgordon

Item 4

Create a .rhosts file on each host listing all the hosts you wish to use. These are the computers that have
the potential to be involved in the PVM. Depending on the setting in the .xpvm_hosts file or the
pvm_hosts file, these computers will automatically be added to the PVM when the pvmd is started.

Computers listed in these files can also be dynamically added to the PVM at runtime.

Item 5

Create a $HOME/.xpvm_hosts and/or a $HOME/pvm_hosts file listing all the hosts you wish to use
prepended by an &. The & means don't automatically ad the host. Not using & will cause the host to be
automatically added. The pvm_hostfile is a user-created file. The name is arbitrary. However,
.xpvm_hosts is the required name when using the XPVM environment. Figure 6-3 shows an example of
a PVM hostfile. The same format would be used for the PVM console hostfile or for .xpvm_hosts.

Figure 6-3. An example of a PVM host file.

The primary thing to keep in mind is network access of the user running the PVM program. The owner
of the PVM program should have account access to every computer involved in the pool of processors
that will be executing parts of the program. This access will use either the rsh or rlogin commands or
ssh. The program to be executed must be available on each host and the PVM environment must be
aware of what the hosts are and where the binaries will be installed.

6.2.4 Combining the C++ Runtime Library and the PVM Library

Since access to the PVM is provided through a collection of library routines, a C++ program treats the
PVM as any other library. Keep in mind that each PVM program is a standalone C++ program with its
own main() function. This means that each PVM program has its own address space. When a PVM task
is spawned, a new process is created. Each PVM program will have its own process and process id. The
PVM processes are visible to the ps utility. Although two or more PVM tasks may be working together
to solve some problem, they will have their own copies of the C++ runtime library. Each program has
its own iostream, template library, algorithms, and so on. The scope of global C++ variables do not
cross address space. This means global variables in one PVM task will be invisible to the other PVM
tasks involved in the processing. Message passing is used to communicate between these separate tasks.
Notice that this is in contrast to multithreaded programs where threads share the same address space
and may communicate through parameter passing and global variables. If the PVM programs are
executing on a single computer that has multiple processors, then the programs may share a file system
and can use pipes, fifos, shared memory, and files as additional means to communicate. While message
passing is the premier method of communicating between PVM tasks, nothing prevents the use of
shared file systems, clipboards, or even command-line arguments as supplemental methods of
communication between tasks. The PVM library adds to rather than restricts the capabilities of the C++
runtime library.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06fig03

6.2.5 Approaches to Using PVM Tasks

The work a C++ program performs can be distributed between functions, objects, or combinations of
functions and objects. The units of work in a program usually fall into logical categories: input/output,
user interface, database processing, signal processing, error handling, numerical computation, and so
on. Also, we try to keep user interface code separated from file processing code and printing routine
code separated from the numerical computation code. Therefore, not only do we divide up the work our
program does between functions or objects, we try to keep categories of functionality together. These
logical groupings are organized into libraries, modules, object patterns, components, and frameworks.
We maintain this type of organization when introducing PVM tasks into a C++ program. We can arrive
at the WBS (Work Breakdown Structures) using either a bottom-up or top-down approach. In either
case, the parallelism should naturally fit within the work that a function, module, or object has to do.

It is not a good idea to attempt to force parallelism in a program. Forced parallelism produces awkward
program architectures that are hard to under-stand by making them hard to maintain and often hard to
determine program correctness. So when a program uses PVM tasks, they should be a result of the
natural division within the program. Each PVM task should be traceable to one of the categories of
work within the program. For instance, if we have an application that has NLP (Natural Language
Processing) and TTS (Text to Speech) processing as part of its user interface and inferencing as part of
its data retrieval, then the parallelism that is natural within the NLP component should be represented as
tasks within the NLP module or object that is responsible for NLP. Likewise, the parallelism within the
inferencing component should be represented as tasks within the data retrieval module or the object or
framework that is responsible for data retrieval. That is, we identify PVM tasks where they logically fit
within the work that the program is doing as opposed to dividing the work the program does into a set
of generic PVM tasks.

The notion of logic first, parallelism second, has several implications for C++ programs. It means that
we might spawn PVM tasks from the main() function. We might spawn PVM tasks from subroutines
called from main() or from other subroutines. We might spawn PVM tasks from within methods
belonging to objects. Where we spawn the tasks depends on the concurrency requirements of the
function, module, or object that is performing the work. The PVM tasks generally fall into two
categories: SPMD (a derivative of SIMD) and MPMD (a derivative of MIMD). In the SPMD model,
the tasks will execute the same set of instructions but on different pieces of data. In the MPMD model,
each task executes different instructions on different data. Whether we are using the SPMD model or
the MPMD model, the spawning of the task should be from the relevant areas of the program. Figure 6-
4 shows some possible configurations for spawning PVM tasks.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06fig04

Figure 6-4. Some possible configurations for spawning PVM tasks.

6.2.5.1 Using the SPMD (SIMD) Model with PVM and C++

In Figure 6-4, Case 1 represents the situation where the function main() spawns from 1 to N tasks where
each task performs the same set of instructions but on different data sets. There are several options for
implementing this scenario. Example 6.1 shows main() using the pvm_spawn routine.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06fig04

Example 6.1 Calling the pvm_spawn routine from main().

int main(int argc, char *argv[])
{
 int TaskId[10];
 int TaskId2[5];
 pvm_spawn("set_combination",NULL,0," ",10,TaskId); // 1rst Spawn
 pvm_spawn("set_combination",argv,0," ",5,TaskId2); // 2nd Spawn
 //...
}

In Example 6.1, the first spawn creates 10 tasks. Each task will execute the same set of instructions
contained in the set_combination program. The TaskId array will contain the task identifiers for the
PVM tasks if the spawn was successful. Once the program in Example 6.1 has the TaskIds, then it can
use the pvm_send() routines to send specific data for each program to work on. This is possible because
the pvm_send() routine contains the task identifier of the receiving task. The second spawn in Example
6.1 creates five tasks but in this case it passes each task information through the argv parameter. This is
an additional method to pass information to tasks during startup. This is another way for a child task to
uniquely identify itself by using values it receives in the argv parameter. In Example 6.2, the main()
function uses multiple calls to pvm_spawn() to create N tasks as opposed to a single call.

Example 6.2 Using multiple calls to pvm_spawn from main().

int main(int argc, char *argv[])
{
 int Task1;
 int Task2;
 int Task3;
 //...
 pvm_spawn("set_combination",NULL,1,"host1",1,&Task1);
 pvm_spawn("set_combination",argv,1,"host2",1,&,Task2);
 pvm_spawn("set_combination",argv++,1,"host 3",1,&,Task3);
 //...
}

The approach used in Example 6.2 can be used when you want the tasks to execute on specific
computers. This is one of the advantages of the PVM environment. A program can take advantage of
some particular resource on a particular computer, for example, special math processor, graphics
processor, or MPP capabilities. Notice in Example 6.2 each host is executing the same set of
instructions but each host received a different command-line argument. Case 2 in Figure 6-4 represents
the scenario where the main() function does not spawn the PVM tasks. In this scenario the PVM tasks
are logically related to funcB() and therefore funcB() spawns the tasks. The main() function and
funcA() don't need to know anything about the PVM tasks so there is no reason to put any of the PVM
housekeeping code in those functions. Case 3 in Figure 6-4 represents the scenario where the main()
function and other functions in the program have natural parallelism. In this case the other function is
funcA(). Also the PVM tasks executed by main() and the PVM tasks executed by funcA() execute
different code. Although the tasks that main() spawns execute identical code and the tasks that funcA()
spawns executes identical code, the two sets of tasks are different. This illustrates that a C++ program
may use collections of tasks to solve different problems simultaneously. There is no reason that the
program has to be restricted to one problem at a time. In Case 4 from Figure 6-4, the parallelism is
contained within an object, therefore one of the object's methods spawns the PVM tasks. Here, the
logical place to initiate the parallelism was within a class as opposed to some free-floating function.

As in the other cases, the PVM tasks spawned in Case 4 all execute the same instructions but with

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex01

different data. This SPMD (Single Program Multiple Data) method is a commonly used technique for
parallelization of certain kinds of problem solving. The fact that C++ has support for objects and
generic programming using templates makes C++ a particularly powerful choice for this kind of
programming. The objects and templates allow the C++ programmer to represent very general and
flexible solutions to entire classes of problems with a single piece of code. This single piece of code fits
in nicely with the SPMD model of parallelism. The notion of a class extends the SPMD model so that
an entire class of problems can be solved. The templates allow the class of problems to be solved for
virtually any data type. So although each task in the SPMD model is executing the same piece of code,
it might be for an object or any of its descendants and it might be for different data types (different
objects!). For example, Example 6.1 uses four PVM tasks to generate four sets in which each has C(n,r)
elements: C(24,9), C(24,12), C(7,4), and C(7,3). Specifically, Example 6.3 enumerates the
combinations of a set of 24 colors taken 9 and 12 at a time. It also enumerates the combinations of a set
of 7 floating point numbers taken 4 at a time and 3 at a time. For an explanation of the notation C(n,r),
see Sidebar 6.1.

Example 6.3 Creating combinations of sets.

int main(int argc,char *argv[])
{
 int RetCode,TaskId[4];
 RetCode = pvm_spawn("pvm_generic_combination",NULL,0," ",4,TaskId);
 if(RetCode == 4){
 colorCombinations(TaskId[0],9);
 colorCombinations(TaskId[1],12);
 numericCombinations(TaskId[2],4);
 numericCombinations(TaskId[3],3);
 saveResult(TaskId[0]);
 saveResult(TaskId[1]);
 saveResult(TaskId[2]);
 saveResult(TaskId[3]);
 pvm_exit();
 }
 else{
 cerr << "Error Spawning ChildProcess" << endl;
 pvm_exit();
 }
 return(0);
}

Notice in Example 6.3 we spawn four PVM tasks:

pvm_spawn("pvm_generic_combination",NULL,0," ",4,TaskId);

Each task will execute the program named pvm_generic_combination. The NULL argument in our
pvm_spawn call means that we are not passing any options via the argv[] parameter. The 0 in our
pvm_spawn call means we don't care which computer the tasks execute on. TaskId is an array of four
integers and will contain the task identifiers for each of the PVM tasks spawned if the call is successful.
Notice in Example 6.3 we call colorCombinations() and numericCombinations(). These two functions
assign the PVM tasks work. Example 6.4 contains the function definition for colorCombinations().

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06sb03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex01

Example 6.4 Definition of the colorCombinations() function.

void colorCombinations(int TaskId,int Choices)
{
 int MessageId =1;
 char *Buffer;
 int Size;
 int N;
 string Source("blue purple green red yellow orange
 silver gray ");
 Source.append("pink black white brown light_green
 aqua beige cyan ");
 Source.append("olive azure magenta plum orchid violet
 maroon lavender");
 Source.append("\n");
 Buffer = new char[(Source.size() + 100)];
 strcpy(Buffer,Source.c_str());
 N = pvm_initsend(PvmDataDefault);
 pvm_pkint(&Choices,1,1);
 pvm_send(TaskId,MessageId);
 N = pvm_initsend(PvmDataDefault);
 pvm_pkbyte(Buffer,strlen(Buffer),1);
 pvm_send(TaskId,MessageId);
 delete Buffer;
}

Notice in Example 6.3 there are two calls to colorCombinations(). Each call assigns a PVM task a
different number of color combinations to enumerate: C(24,9) and C(24,12). The first PVM task will
produce 1,307,504 color combinations and the second task will produce 2,704,156 color combinations.
The program named in the pvm_spawn() call does all the work. Each color is represented by a string.
Therefore, when the pvm_generic_combination program is producing combinations it does so using a
set of strings as the input. This is in contrast to the numericCombinations() function shown in Example
6.5. The code in Example 6.3 makes two calls to the numericCombinations() function. The first
generates C(7,4) combinations and the second generates C(7,3) combinations.

Example 6.5 Using PVM tasks to produce numeric combinations.

void numericCombinations(int TaskId,int Choices)
{
 int MessageId = 2;
 int N;

 double ImportantNumbers[7] = {3.00e+8,6.67e-11,1.99e+30,
 1.67e-27,6.023e+23,6.63e-34,
 3.14159265359};
 N = pvm_initsend(PvmDataDefault);
 pvm_pkint(&Choices,1,1);
 pvm_send(TaskId,MessageId);
 N = pvm_initsend(PvmDataDefault);
 pvm_pkdouble(ImportantNumbers,5,1);
 pvm_send(TaskId,MessageId);
}

In the numericCombinations() function in Example 6.4, the PVM task is sent an array of floating point
numbers as opposed to an array of bytes representing strings. So the colorCombinations() function
sends its data to the PVM tasks using:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex03

pvm_pkbyte(Buffer,strlen(Buffer),1);
pvm_send(TaskId,MessageId);

The numericCombination() function sends its data to the PVM tasks using:

pvm_pkdouble(ImportantNumbers,5,1);
pvm_send(TaskId,MessageId);

The colorCombinations() function in Example 6.4 builds a string of colors and then copies that string of
colors into an array of char called Buffer. The array of char is then packed and sent to the PVM task
using the pvm_pkbyte() and pvm_send() functions. The numericCombinations() function in Example
6.5 creates an array of doubles and sends it to the PVM task using the pvm_pkdouble() and pvm_send()
functions. One function sends a character array; the other function sends an array of doubles. In both
cases the PVM tasks are executing the same program pvm_generic_combination. This is where the
advantage of using C++ templates and genericity comes in. The same tasks are able to do work not only
with different data but on different data types without a code change. The template facility in C++ helps
to make the SPMD model more flexible and efficient. The pvm_generic_combination program is
almost unaware of what data types it will be working with. The use of C++ container classes allows it
to generate combinations of any vector<T> of objects. The pvm_generic_combination program does
know that it will be working with two data types. Example 6.6 shows a section of code from the
pvm_generic_combination program.

Example 6.6 Using the MessageId tag to distinguish data types.

pvm_bufinfo(N,&NumBytes,&MessageId,&Ptid);
if(MessageId == 1){
 vector<string> Source;
 Buf = new char[NumBytes];
 pvm_upkbyte(Buf,NumBytes,1);
 strstream Buffer;
 Buffer << Buf << ends;
 while(Buffer.good())
 {
 Buffer >> Color;
 if(!Buffer.eof()){
 Source.push_back(Color);
 }
 }
 generateCombinations<string>(Source,Ptid,Value);
 delete Buf;
}
if(MessageId == 2){
 vector<double> Source;
 double *ImportantNumber;
 NumBytes = NumBytes / sizeof(double);
 ImportantNumber = new double[NumBytes];
 pvm_upkdouble(ImportantNumber,NumBytes,1);
 copy(ImportantNumber,ImportantNumber +(NumBytes + 1),
 inserter(Source,Source.begin()));
 generateCombinations<double>(Source,Ptid,Value);
 delete ImportantNumber;

}

Here we use the MessageId tag to distinguish which data type we are working with. But in C++ we can
do better. If the MessageId tag contains a 1, then we are working with strings. Therefore, we make the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex04

declaration:

vector<string> Source;

If the MessageId tag contains a 2, then we know we are working with floating point numbers, and we
make the declaration:

vector<double> Source;

Once we declare what type of data the vector source will contain, the rest of the function in the
pvm_generic_combination is generalized. Notice in Example 6.6 that each if() statement calls the
generateCombinations() function. This generateCombinations() function is a template function. This
template architecture helps us to achieve the genericity that will extend the SPMD and the MPMD
scenarios for our PVM programs. We will come back to the discussion of our
pvm_generic_combination program after we present the basic mechanics of the PVM environment. It is
important to note that C++ container classes, stream classes, and template algorithms add flexibility to
PVM programming that cannot be easily implemented in other PVM environments. This flexibility
creates opportunities for sophisticated yet elegant parallel architectures.

6.2.5.2 Using the MPMD (MIMD) Model with PVM and C++

Whereas the SPMD model uses the pvm_spawn() function to create some number of tasks executing
the same program but on potentially different data or resources, the MPMD model will use the
pvm_spawn() function to create tasks that are executing different programs each with their own data
sets. Example 6.7 shows how a single C++ program could implement a MPMD model of computation
using PVM calls.

Example 6.7 Using PVM to implement the MPMD model of computation.

int main(int argc, char *argv[])
{
 int Task1[20];
 int Task2[50];
 int Task3[30];
 //...
 pvm_spawn("pvm_generic_combination",NULL,1,"host1",20,Task1);
 pvm_spawn("generate_plans",argv,0," ",50,Task2);
 pvm_spawn("agent_filters",argv++,1,"host 3",30,&Task3);
 //...
}

The code in Example 6.7 creates 100 tasks. The first 20 tasks are generating combinations. The next 50
tasks are generating plans from the combinations as the combinations are being created. The last 30
tasks are filtering the best plans from the set of plans being generated by the set of 50 tasks. This is in
contrast to the SPMD model, where all of the programs spawned by the pvm_spawn() function were the
same. Here, we have pvm_generic_combination, generate_plans, and agent_filters performing the work
of the PVM tasks. They are all executing concurrently. They each have their own set of data; although
they are working with transformations of the data. The pvm_generic_combination transforms its input
into something that generate_plans can use. The generate_plans program transforms its input into
something that agent_filters can use. Obviously these tasks will send messages to each other. The
messages will represent input and control information between the processes. Also notice in Example
6.7 that we used the pvm_spawn() routine to allocate 20 pvm_generic_combination on a computer
named host1. The generate_plans task was allocated to 50 anonymous processors, but each of the 50
tasks received the same command-line argument through the argv parameter. The agent_filters tasks

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06ex06

were also directed to a particular computer. In this case, the computer was host 3, and each task
received the same command-line argument through the argv parameter. This emphasizes the flexibility
and power of the PVM library. Figure 6-5 shows some options available for MPMD configurations
using the PVM environment.

Figure 6-5. Some options available for MPMD configurations using the PVM environment.

We can take advantage of particular resources of particular computers if so desired. We can use
arbitrary anonymous computers in other cases. In addition, we can assign different work to different
tasks simultaneously. In Figure 6-5 Computer A is a MPP (Massively Parallel Processor) computer, and
Computer B has a number of specialized numeric processors. Also notice that the PVM in Figure 6-5
consists of PowerPCs, Sparcs, Crays, and so on. In some cases we don't care what specific capabilities
of the computers in a PVM are, but in other cases we do. The pvm_spawn() routine allows the C++
programmer to use the anonymous approach by simply not specifying which computer to create the
tasks on. On the other hand, if there is something special about some member of the PVM, then that
feature can be exploited by specifying the particular member using pvm_spawn().

S 6.1. Combination Notation
Suppose we wish to choose a team of eight programmers from a pool of 24 candidates. How many
different teams of eight programmers could we come up with? One of the results that follow from the
Fundamental Principle of Counting tells us there are 735,471 different teams consisting of eight
programmers that can be selected from a pool of 24. The notation C(n,r) is read the number of
combination of n choose r. That is, the number of choices taken r at a time from n items. C(n,r) is
calculated by the formula:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec2.htm#ch06fig05

When we have a set that represents a combination, for example, {a,b,c} would be considered the same
as the set {b,a,c}, or {c,b,a}. That is, we don't care about the order of the members in the set; we are
only concerned about the members in the set. Many parallel programs, search algorithms, heuristics,
and artificial intelligence–based programs have to deal with large sets of combinations and their close
relative, permutations.

6.3 The Basic Mechanics of the PVM

The PVM environment consists of two components: the PVM daemon (pvmd) and the pvmd library.
One pvmd daemon runs on each host computer in the virtual machine. The pvmd serves as a message
router and controller. A pvmd is used to start additional pvmds. Each pvmd manages the lists of PVM
tasks on its host machine. The pvmd performs process control, some minimal authentication, and fault
tolerance. Usually the first pvmd is started manually. This pvmd then starts the other pvmds. Only the
original pvmd may start additional pvmds. Only the original pvmd may unconditionally stop another
pvmd.The pvmd library contains the routines that allow one PVM task to interact with other PVM
tasks. The library also contains routines that allow the PVM task to communicate with its pvmd. Figure
6-6 shows the basic architecture of the PVM environment.

Figure 6-6. Basic architecture of the PVM environment.

The PVM environment will consist of two or more PVM tasks. Each task will contain one or more send

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec3.htm#ch06fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec3.htm#ch06fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_22061533.htm

buffers. However, only one send buffer may be active at a time. This is called the active send buffer.
Each task has an active receive buffer. Notice in Figure 6-6 that communication between PVM tasks is
actually accomplished using TCP sockets. The pvm_send() routines make socket access transparent.
The programmer does not access the TCP socket calls directly. Figure 6-6 also shows PVM tasks
communicating to their pvmds using TCP sockets and pvmds communicating between themselves
using UDP sockets. Again, the socket calls are performed by the PVM routines. The programmer does
not have to do low-level socket programming. The PVM routines we use in this book fit into four
categories:

• Process Management and Control

• Messaging Packing and Sending

• Message Unpacking and Receiving

• Message Buffer Management

While there are other categories of PVM routines, such as the Information and Utility Functions and the
Group Operations, we focus on the message processing and process management routines. We will
discuss any other routines in the context of the programs in which they are used.

6.3.1 Process Management and Control Routines

There are six commonly used process management and control routines.

Synopsis
#include "pvm3.h"

int pvm_spawn(char *task, char **argv, int flag, char *location,
 int ntask,int *taskids);
int pvm_kill(int taskid);
int pvm_exit(void);
int pvm_addhosts(char **hosts,int nhosts,int *status);
int pvm_delhosts(char **hosts,int nhosts,int *status);
int pvm_halt(void);

The pvm_spawn() routine is used to create new PVM tasks. The routine can specify how many tasks to
create, where to create the tasks, and arguments to be passed to each task. For example:

pvm_spawn("agent_filters",argv++,1,"host 3",30,&Task3);

The task parameter should contain the name of the program that the pvm_spawn() is to execute. Since
the program that is executed by the pvm_spawn() routine is a standalone program, command-line
arguments may be required. The argv parameter is used to pass any command-line arguments to the
program. The location parameter specifies which host the task is to be executed on. The taskids
parameter will contain either the task identifiers for the spawned tasks or status codes representing any
error conditions that might have been created during the spawn process. The ntasks parameter specifies
how many instances of the task to create. The pvm_kill() routine is used to kill tasks other than the
calling task. The taskid passed to pvm_kill() can reference any other user-defined task in the PVM. This
routine works by sending the SIGTERM signal to the PVM task to be killed. The pvm_exit() routine is
used to cause the calling task to be removed from the PVM. While the task can be removed from the
PVM, the process that the task belonged to may continue to execute. Keep in mind that a task executing
PVM calls may have other work to perform that is not related to the PVM. The pvm_exit() routine

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec3.htm#ch06fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec3.htm#ch06fig06

should be called by any task that no longer has work relevant to the PVM processing. The
pvm_addhosts() allows the caller to dynamically add more computers to an existing PVM. Typically,
the pvm_addhosts() is called with a list of one or more hostnames:

int Status[3];
char *Hosts[] = {"porthos", "dartagnan","athos"};
pvm_addhosts("porthose",1,&Status);

//... or ...

pvm_addhosts(Hosts,3,Status);

The Hosts parameter will usually contain the names of one or more hosts listed in the .rhosts file or
the .xpvm_hosts file. The nhost parameter will contain the number of hosts to be added to the PVM,
and the status parameter will contain a value = to nhosts if the call was successful. If the call was not
able to add any hosts, the return value will be less than 1. If the call was only partially successful, the
return value will represent the number of hosts added. Likewise, the pvm_delhosts() allows the caller to
dynamically remove one or more computers from an existing PVM. The hosts parameter will contain a
list of one or more hosts. The nhosts parameter will contain the number of hosts to be removed. For
instance:

pvm_delhosts("dartagnan",1);

causes the computer with hostname dartagnan to be removed from the PVM environment. The
pvm_addhosts() and pvm_delhosts() may be called during runtime. This allows the programmer to have
a dynamically sizeable PVM. Any PVM task running on a host computer that is deleted from the PVM
will be killed. If there are any pvmds running on the computers that are deleted from the PVM, the
pvmds will be stopped also. If a host fails for some reason, the PVM environment will automatically
delete the host. The return values for pvm_delhosts are the same as they are pvm_addhosts(). The
pvm_halt() routine shuts down the entire PVM system. All tasks and pvmds are stopped.

6.3.2 Message Packing and Sending

Geist, Beguelin, and colleagues state the message model of the PVM environment accordingly:

PVM daemons and tasks can compose and send messages of arbitrary lengths containing
typed data. The data can be converted using XDR1 when passing between hosts with
incompatible data formats. Messages are tagged at send time with a user-defined integer
code and can be selected for receipt by source address or tag. The sender of a message does
not wait for an acknowledgement from the receiver, but continues as soon as the message
has been handed to the network and the message buffer can be safely deleted or reused.
Messages are buffered at the receiving end until received. PVM reliably delivers messages,
provided the destination exists. Message order from each sender to each receiver in the
system is preserved; if one entity sends several messages to another, they will be received in
the same order.

The PVM library consists of a family of routines used to pack the various data types into a send buffer.
There are pack routines for character arrays, doubles, floats, ints, longs, bytes, and so on. Table 6-3
shows the list of pvmpk routines by type.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec3.htm#ch06table03

Table 6-3. pvmpk Routines

Message Packing Functions

bytes

int pvm_pkbyte(char *cp, int count, int std);

complex/double complex

int pvm_pkcplx(float *xp, int count, int std);
int pvm_pkdcplx(double *zp, int count, int std);

double

int pvm_pkdouble(double *dp, int count, int std);

float

int pvm_pkfloat(float *fp, int count, int std);

int

int pvm_pkint(int *np, int count, int std);

long

int pvm_pklong(long *np, int count, int std);

short

int pvm_pkshort(short *np, int count, int std);

string

int pvm_pkstr(char *cp);

Each of the pack routines in Table 6-3 are used to store an array of data in the send buffer. Notice in
Figure 6-6 that each PVM task will have at least one send and receive buffer. Each of the pack routines
takes a pointer to an array of the appropriate data type. Every pack routine except for pvm_pkstr() takes
the total number of items to be stored in the array (not the number of bytes!). The pvm_pkstr() routine
assumes the character array it is working with will be NULL terminated. Each pack routine except the
pvm_pkstr() has as the last parameter a value that represents how to traverse the source array as items
are selected to be packed into the send buffer. The parameter is often referred to as the stride. For

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec3.htm#ch06fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec3.htm#ch06table03

instance, if the stride is four, then every fourth element will be selected from the source to be stored in
the send buffer. It is important to note that the pvm_initsend() routine should be used prior to sending
each message. The pvm_initsend() routine clears the buffer and prepares it to send the next message.
The pvm_initsend() routine prepares the buffer to send the message in one of three formats: XDR, Raw,
or In Place.

XDR (External Data Representation) is a standard used to describe and encode data. Keep in mind that
the hosts involved in a PVM can be different machine types. For instance, a PVM might consist of Sun,
Macintosh, Crays, and AMD machines. These machines might have different word sizes and may store
data types differently. In some instance the bit ordering might be different from one machine to another.
The XDR standard is used to allow the machines to exchange data in an architecture-independent way.
The Raw format is used to send the data in the native format of the sending machine. No special
encoding is used. The in place format really does not pack the data in the send buffer. Instead, only
pointers to the data and size of the data is sent. The receiving task copies the data directly. These three
types of encoding are represented by three constants in the PVM library:

PvmDataDefault XDR

PvmDataRaw No special encoding

PvmDataInPlace Only pointers and sizes copied to send buffer

For example:

int BufferId;
BufferId = pvm_initsend(PvmDataRaw);
//...

specifies that data be packed into the send buffer as is, that is, with no special encoding. If the
pvm_initsend() call is successful, it will return the number of the send buffer in BufferId. It is important
to remember that although only one send buffer can be active at a time, a PVM task can have multiple
send buffers. Each buffer will have a number associated with it. The PVM library defines several send
routines.

Synopsis
#include "pvm3.h"

int pvm_send(int taskid, int messageid);
int pvm_psend(int taskid, int messageid,char *buffer,int len,
 int datatype);
int pvm_mcast(int *taskid,int ntask,int messageid);

In each of these routines, taskid is the task identifier of the PVM task that receives the message. In the
case of pvm_mcast(), the taskid refers to a collection of tasks represented by the task identifiers passed
in the array *taskid. The messageid parameter specifies which message to send. The message identifiers
are integers and are user-defined. They are used by the sender and receiver to identify which message
will be waited on by the receiver and which message will be sent by the sender. For example:

pvm_bufinfo(N,&NumBytes,&MessageId,&Ptid);

//...

switch(MessageId)
{
 case 1 : // do something
 break;

 case 2 : // do something else
 break
 //...
}

In this case, the pvm_bufinfo() routine is used to get information about the last message received by
receive buffer N. We can get the number of bytes, the messageid, and who sent the message. Once we
get the messageid we can execute the appropriate logic. The pvm_send() routine performs a pseudo-
blocking send to the specified task, that is, the task only blocks as long as it takes to make sure that the
message has been properly sent. The task does not wait for the receiver to actually receive the task. The
pvm_psend() routine sends the message directly to the specified task. Notice that the pvm_psend()
routine has a buffer parameter used to contain the message to be sent. The pvm_mcast() is used to send
a message to multiple tasks simultaneously. The arguments for the pvm_mcast() will include an array
of taskids that receives the message, the number of tasks involved in the multicast, and the messageid to
identify the message sent. Figure 6-6 shows that each PVM task has its own send buffer. The buffer
exists just long enough for the message to be guaranteed to be on its way.

With the exception of control messages, the meaning of the messages between any two PVM tasks is
application defined, that is, the sending and the receiving task must have a predefined use for each
message. The messages are asynchronous, of arbitrary data types, and of arbitrary length. This provides
for maximum flexibility within the application. The counterparts to the pvm_send messages are the
PVM receive messages. There are five important functions in the receive family of routines.

Synopsis
#include "pvm3.h"

int pvm_recv(int taskid, int messageid);
int pvm_nrecv(int taskid, int messageid);
int pvm_precv(int taskid, int messageid, char *buffer,
 int size, int type, int sender, int messagetag,
 int messagelength);
int pvm_trecv(int taskid,int messageid,
 struct timeval *timeout);
int pvm_probe(int taskid, int messageid);

The pvm_recv() routine is used to receive messages from other PVM tasks. This routine creates a new
active buffer that will contain the message received. The taskid parameter specifies the task identifier of
the sending task. The messageid parameter identifies the message that is being sent from the sender.
Keep in mind that a task may send multiple messages, each with different or the same messageid. If the
taskid = -1, then the pvm_recv() routine will accept a message from any task. If the messageid
parameter = -1, then the routine will accept any message. The pvm_recv() routine return value will be
the buffer id of the new active buffer if the call is successful and will be a value < 0 if an error has
occurred. When a task calls the pvm_recv() routine will block and wait until the message has been
received. After the message is received, it is retrieved from the active message buffer using one of the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06lev1sec3.htm#ch06fig06

unpack routines. For instance:

//...
float Value[10];
pvm_recv(400002,2);
pvm_unpkfloat(400002, Value,1);
cout << Value..

The pvm_recv() routine causes this code to wait on a message from a task identified as 400002. The
messageid received from 400002 must be 2 before the routine unblocks. The unpack routine is then
used to retrieve the array of floats. Whereas the pvm_recv() routine causes the task to wait until it
receives a message, the pvm_nrecv() routine is a nonblocking receive. If the appropriate message has
not arrived, the pvm_nrecv() routine will immediately return. If the message has arrived, the
pvm_nrecv() will return immediately and the active buffer will contain the message. If an error
condition occurs, then pvm_nrecv() will return a value < 0. If the message has not arrived, the routine
returns 0. If the message has arrived, the number for the new active buffer will be returned. The taskid
parameter will contain the task identifier for the sending task. The messageid parameter will contain a
user-defined message id. If the taskid = -1, then the pvm_nrecv() routine will accept a message from
any task. If the messageid = -1, or then the routine will receive any message. When messages are
received in the active buffer by either pvm_recv() or pvm_nrecv(), a new active buffer is created and
the current receive buffer is cleared.

Whereas the pvm_recv(), pvm_nrecv(), and the pvm_trecv() receive their messages into a new active
buffer, the pvm_precv() routine receives its message directly into a user-defined buffer. The taskid
parameter contains the task identifier for the sending task. The messageid parameter identifies which
message is being received. The buffer parameter will contain the actual message. So instead of getting
the message from the active buffer using one of the unpack routines, the message is retrieved directly
from the buffer parameter. The size parameter contains the length in bytes of the message. The type
parameter specifies the data type of the message. The values for data type are:

PVM_STR PVM_BYTE

PVM_SHORT PVM_INT

PVM_FLOAT PVM_DOUBLE

PVM_LONG PVM_USHORT

PVM_CPLX PVM_DCPLX

PVM_UINT PVM_ULONG

The pvm_trecv() is an important routine that allows the programmer to use a timed receive. The
pvm_trecv() routine causes the calling task to block and wait for the message, but only for the amount
of time specified for the timeout parameter. The specified parameter is a structure of type timeval
defined time.h. For example:

#include "pvm3.h"

 //...

 struct timeval TimeOut;
 TimeOut.tv_sec = 1000;
 int TaskId;
 int MessageId;
 TaskId = pvm_parent();
 MessageId = 2;
 pvm_trecv(TaskId,MessageId,&TimeOut);
 //...

the TimeOut variable has the tv_sec member set to 1000 seconds. The timeval struct can be used to set
the timeout values in seconds and microseconds. The timeval is a struct has the structure:

struct timeval{
 long tv_sec; // seconds
 long tv_usec; // microseconds
};

This means the pvm_trecv() routine will block the calling task for at the most 1000 seconds. If this
message gets there before the 1000 seconds have expired, the routine will return. This routine can be
used to help prevent indefinite postponement and deadlock. If pvm_trecv() is successful, it will return
the number of the new active buffer. If an error occurs, then a value < 0 will be returned. If taskid = -1,
the routine will accept a message from any sender. If the messageid parameter = -1, it will accept any
message.

The pvm_probe() routine determines whether a particular message has arrived from the specified
sender. The taskid parameter identifies the sender. The messageid parameter identifies the particular
message. If the pvm_probe() routine sees the specified message, then the routine returns the buffer
number for the new active buffer. If the specified message has not arrived, the routine returns a 0. If an
error condition has occurred, the routine will return a value < 0.

Synopsis
#include "pvm3.h"

int pvm_getsbuf(void);
int pvm_getrbuf(void);
int pvm_setsbuf(int bufferid);
int pvm_setrbuf(int bufferid);
int pvm_mkbuf(int Code);
int pvm_freebuf(int bufferid);

There are six useful buffer management routines that can be used for setting, identifying, and
dynamically creating the send and receive buffers. The pvm_getsbuf() routine is used to get the number
for the active send buffer. If there is no current buffer, this routine will return 0. The pvm_getrbuf()
routine is used to get the id number for the active receive buffer. Keep in mind that every time a
message is received, a new active receive buffer is created and the current receive buffer is cleared. If
there is no current receive buffer, pvm_getrbuf() will return 0. The pvm_setsbuf() routine sets the active
send buffer to bufferid. Typically, a PVM task has only one send buffer. However, sometimes multiple
send buffers are required. Although only one send buffer can be active at a time, a PVM task may
create additional send buffers using the pvm_mkbuf() routine. The pvm_setsbuf() can be used to set the

active buffer to send buffers that have been created at runtime. This routine returns the buffer identifier
for the previous active send buffer. The pvm_setrbuf() sets the active receive buffer to bufferid.
Remember that the PVM unpack routines work with the active receive buffer. If there is more than one
buffer, then the pvm_setrbuf() can be used to set the current buffer to be used by the unpack routines. If
the call to pvm_setrbuf() is successful, it will return the buffer id of the previous buffer. If the buffer
identifier passed to pmv_setrbuf() is not valid or does not exist, then the routine can return one of the
following error messages: PvmBadParam or PvmNoSuchbuf. The pvm_mkbuf() routine is used to
create a new message buffer. The Code parameter specifies whether the buffer will be set up to contain
data encoded as XDR format, native machine format, or pointers and sizes. The Code parameter can be
one of three values:

PvmDataDefault XDR

PvmDataRaw Machine dependent (no encoding)

PvmDataInPlace Pointers to the data and sizes of data only used

If the pvm_mkbuf() routine is successful, it will return the buffer id of the new active buffer. If an error
occurs, the function will return a value < 0. For every call to pvm_mkbuf() there should be a call made
to pvm_freebuf() when the send buffer is no longer needed. The memory allocated by the pvm_mkbuf()
routine is released by pvm_freebuf(). pvm_freebuf() should only be used on a buffer that is no longer
needed, for example, after the message has been sent.

6.4 Accessing Standard Input (stdin) and Standard Output (stdout) within PVM
Tasks

A PVM environment ties a collection of machines together and presents them to the program as one
logical machine with multiple processors. Which machine in the PVM should act as the console? When
a PVM task inserts data into the cout ostream object, where will the data be displayed? If a PVM task
attempts to get data from a keyboard, which keyboard will it read the data from? The stdout for each
child process is intercepted and sent to a designated PVM task as a PVM message. Each child process
inherits information that determines which task will receive information written to stdout and how that
information should be identified. Each child process's stdin is tied to /dev/null. Anything written to
/dev/null disappears. If /dev/null is opened for reading, the equivalent of end-of-file is returned. This
means child processes should not be designed to rely on input from stdin (cin) or on sending output to
stdout (cout). When designing input and output processing, this behavior of stdin and stdout in a PVM
environment must be considered. However, stdin and stdout for the main or parent task behaves as
expected. PVM tasks use messages to communicate. Input may be retrieved from messages, pipes,
shared memory, environment variables, command-line arguments, or files. Output may be written to
messages, pipes, shared memory, and files.

6.4.1 Retrieving Standard Output (cout) from a Child Task

Output written to stdout or inserted into cout behaves differently for PVM-spawned children. The
parent decides what ultimately happens to the output. When output from a spawned child is inserted
into cout or cerr, it is intercepted by the pvmd for that task and is packaged into standard PVM
messages and sent to a TaskId specified by the parent. The parent associates a pair (TaskId, Code) to
the cout and cerr of its children. This is done using the pvm_setopt() routine. This routine is called
before the children are spawned. If the TaskId is 0, the messages will go to the master pvmd, where

they will be written to its error log. A spawned child may only set the TaskId to 0, the value inherited
from its parent, or its own TaskId. This means the parent ultimately controls where cout or cerr would
write to. A child PVM designate other PVM tasks to receive data inserted into cout or cerr. The typical
approach is to let the spawning task manage any important data written to stdout or stdin and let the
master pvmd take everything else.

Summary

The PVM library is a flexible library that supports the major models of parallel programming. The
advantage of a PVM environment is its ability to work with heterogeneous collections of computers that
may consist of different processor speeds, sizes, and architectures. Besides hardware compatibility, it
works nicely with the C++ standard library and with the UNIX/Linux system library. When combined
with the C++ template capabilities, object-oriented programming capabilities, and collection of
algorithms, the power of the PVM environment is increased considerably. The template facility has a
nice application to SPMD programming. The containers and algorithms can be used to enhance the
MIMD (MPMD) capabilities of the PVM. In Chapter 13, we dig a little deeper into the PVM and show
how it can be used to help implement blackboards using C++. The blackboard is one of our primary
choices for implementing parallel problem solving.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13.htm#ch13

Chapter 7. Error Handling, Exceptions, and Software Reliability
"It is always possible to invent over-elaborate models to explain a set of observable facts,
but the scientist, if not the philosopher, will always accept the simplest theory that is
consistent with all the data."

—Alastair Rae, Quantum Physics Illusion or Reality

In this Chapter

• What is Software Reliability?

• Failures in Software Layers and Hardware Components

• Definitions of Defects Depend on Software Specifications

• Recognizing Where to Handle Defects versus Where to Handle Exceptions

• Software Reliability: A Simple Plan

• Using Map Objects in Error Handling

• Exception Handling Mechanisms in C++

• Event Diagrams, Logic Expressions, and Logic Diagrams

• Summary

One of the primary goals of software design and engineering is to produce software that meets the user's
requirements correctly and reliably. Users demand reliable and correct software regardless of the
software's function. Gamers have high expectations for their software in the same way as users in a
business environment. Unreliable software, whether in financial, industrial, medical, scientific, or
military applications, can have devastating ramifications. The dependency on software by people and
machines at all levels in our society requires that every effort be made to produce reliable, robust, and
fault-tolerant software. This necessity presents additional challenges to the software designer and
developer who has to develop systems that contain concurrency. Programs that contain concurrency or
components that execute in distributed environments contain more layers of software. The more layers
involved, the more complexity that must be managed. The more complexity that needs to be managed,
the greater possibility that software defects will go undiscovered. The more defects a piece of software
contains, the stronger the guarantee that the software will fail, doing so at the worst possible time.

Programs divided into concurrently executing or distributed tasks have the additional challenges that
are found in the process of correctly identifying the WBS (Work Breakdown Structure) of a solution.
Also, the problems that are inherently part of network communications have to be handled. In addition
to WBS and communication problems, synchronization woes such as deadlock and data race must be
tackled. Concurrent programming is almost by definition more complex than sequential programming
and therefore the error handling and exception handling for concurrent programs require more thought,
more effort, and more coding. The interesting thing to note here is that the trend for software
development is toward applications that require parallel and distributed programming. The Internet and
the intranet model are pervasive in today's software design. General-purpose computers with multiple
processors are becoming the norm rather than the exception. Embedded and industrial computing
devices are becoming more sophisticated with more onboard computing power and multiple processors.
The notion of the cluster is quickly becoming the de facto standard for server deployment. It is our
contention that today's software designer and developer have little choice but to understand how to
design and develop reliable software for parallel processor or networked environments. The
requirements for software are growing in complexity and sophistication.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec9.htm#ch07lev1sec9
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec8.htm#ch07lev1sec8
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec7.htm#ch07lev1sec7
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07lev1sec6
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec5.htm#ch07lev1sec5
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec4.htm#ch07lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec3.htm#ch07lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec2.htm#ch07lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec1.htm#ch07lev1sec1

In many of the code examples in this book we do not show the necessary error handling or exception
handling code because it would detract from some idea or concept that we are presenting. It is
important to keep in mind that the examples presented in this book are introductory in nature. In
practice, the amount of error handling and exception handling code for programs that require
concurrency or distribution is significant. Error handling and exception handling must be part of the
design of the software at every phase of its development. We advocate a modeling approach toward
discovering the parallelism within a problem domain or solution domain. It is during this modeling
phase that the exception handling and error handling models need to be developed. In Chapter 10, we
discuss how the UML (Unified Modeling Language) can be used to visualize the design of systems
requiring concurrency or distributed programming. The design of error handling and exception handling
techniques can also take advantage of the UML and visualization process. There is no real substitute for
this visualization process. Therefore, as an initial goal you want to see your software's reliability using
tools like the UML, event diagrams, event expressions, synchronization diagrams, and so on. In this
chapter we take advantage of several design techniques that aid with the visualization of error and
exception handling design. We also take advantage of C++'s exception handling facilities, including the
exception class hierarchy, to act as a foundation for developing reliable and robust software.

7.1 What is Software Reliability?

Software reliability is the probability of failure-free operation of a computer program for a specifiedin a
specified environment. Ideally, that probability should be as close to 100% as necessary. When failure
is not an option, the software must be designed using the techniques of fault-tolerant programming. A
fault-tolerant system is one that corrects or survives software faults. A fault is a program defect that can
cause a piece of software to fail. We define "software failure" as the execution of some component of
software that deviates from system specifications. We rely on Musa, Iannino, and Okumoto in their
work Software Reliability for a complete characterization of faults and failures:

A fault is the defect in the program that when executed under particular conditions, causes a
failure. There can be different sets of conditions that cause failures, or the conditions can be
repeated. Hence a fault can be the source of more than one failure. A fault is a property of
the program rather than a property of its execution or behavior. It is what we are really
referring to in general when we use the term "bug." A fault is created when a programmer
makes an error.

The errors that a programmer or software developer makes may be from a misinterpretation of the
software requirements, or from a poor, incorrect, or incomplete translation of the software requirements
into code. When the programmer makes these kinds of errors, he or she introduces defects or faults into
the software. When those defects or faults are executed, they can cause software failure. Software
failure can only occur during the execution. The process of testing and debugging software removes
faults from software, thereby preventing the possibility of software failure. Note that we use the terms
"defect" and "fault" interchangeably. We use the term "error" to refer to the mistakes that the
programmer makes that introduce faults (defects) into the software. Fault tolerance is a property that
allows a piece of software to survive and recover from the software failures caused by faults introduced
into the software as a result of human error. The most robust fault tolerance can even correct these
failures.

Some failures are the result of software faults. Other failures are the result of exceptional conditions
(not necessarily due to human error) that can occur in either hardware or software. For instance, a
network card damaged as a result of a power surge can cause the software that depends on it to fail. A
virus may corrupt a data transmission that will cause the software that depends on the data transmission
to fail. A user may inadvertently remove critical components of a system, thereby causing the software
to fail. These kinds of failures are not due to defects in the software, but are created by conditions that

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10#ch10

we call exceptions. An exception is an abnormal condition, exceptional circumstance, or an
extraordinary occurrence that the software encounters that causes all or part of the software to fail.
Although both defects and exceptions cause software failure, it is important to distinguish between
them. The techniques for dealing with defects and exceptions can be and usually are different. While
the end result of applying those techniques is reliable software, exception handling and error (defect)
handling use different design approaches and coding constructs.

7.2 Failures in Software Layers and Hardware Components

Designing reliable fault-tolerant software requires that we design software that continues to operate
even after some of its components fail. These components can be either hardware or software
components. If our software is fault tolerant, it will have features that counter the effects of hardware or
software faults. At the very minimum, our fault-tolerant designs should provide for graceful
degradation of service as opposed to immediate interruption of service. If our software is fault tolerant
and it encounters failed component(s), it should continue to function but at reduced levels. The failures
that our software must handle can be divided into two categories: software and hardware. Figure 7-1
contains a breakdown of some of the hardware components as well as the layers of software that may
be involved in failure.

Figure 7-1. A breakdown of some of the hardware components and layers of software involved in failure.

In Figure 7-1, we make a distinction between the hardware components and the software layers because
the techniques for handling hardware failures are often different from the techniques used to handle
software failures. Also in Figure 7-1, there are several software layers involved. Some of the software
layers are beyond the direct control of the developer and require special consideration during exception
and error handling. The software design, development, and testing phases have to take into account the
kinds of problems caused by hardware failures and the software layers where failure can occur.
Programs that require parallelism or that consist of distributed components have additional hardware
failures to consider. For instance, distributed programs rely on communications hardware and software.
Failure in a communication component can cause the entire system to fail. Programs designed for
parallel processors may fail if the anticipated number of processors is not available. Also, if
communications or processors are available during startup, failure may occur at some time after the
program has begun to execute. Exceptions may occur with any of the hardware components and in any
of the software layers. In addition, each software layer may contain defects that must be handled.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec2.htm#ch07fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec2.htm#ch07fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec2.htm#ch07fig01

During the software design phase it is useful to approach exception and error handling layer by layer.
The options for recovery or repair for an application that faces failure at layer 2 are different from the
options that are available at layer 3. In addition to the failures that may occur in the various software
layers and hardware components, the failures may also be characterized by location. Figure 7-2 depicts
how as the distance between the tasks increases, so does the level of difficulty of error and exception
handling.

Figure 7-2. Contrasting the increase of distance between location of tasks and the increase of the level of difficulty of
error and exception handling.

The more distance in software or hardware components between the concurrently executing tasks, the
more sophistication required when designing exception and error handling components. So from
Figures 7-1 and 7-2, we can see that in order to design and develop reliable software, we will have to
make provisions for the what and where of defects and exceptions.

7.3 Definitions of Defects Depend on Software Specifications

A software specification is the measuring stick that we use to decide whether a piece of software has
defects. We cannot determine a software component's correctness without access to the software's
specification. The specification contains the description and requirements for what a software
component is supposed to do and what it is not supposed to do. It is important to note that complete,
thorough, and accurate specifications are notoriously difficult to produce. Specifications typically fall
between two extremes: The specification may come as a set of formal documents and requirements
compiled by end users, analysts, user interface engineers, domain specialists, and others, or it may only
have been a set of goals and loosely defined objectives verbally communicated to the software
designers and developers. The deviation of a software component from the software specification is a
defect or fault. The higher the quality of the specification, the easier it is to define what a defect is or to
identify where the programmer made mistakes. When a project's specification is vague, and the
elements are poorly defined and the requirements are not definitive, then the definition of a software
defect for that project is a moving target. If the specifications are ambiguous, we cannot say what is
defective and what is not. We cannot state with certainty whether the developer is correct. Vaguely
defined specifications lead to vaguely defined defects. Fault-tolerant and reliable software is not
possible under these situations.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec2.htm#ch07fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec2.htm#ch07fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec2.htm#ch07fig02

7.4 Recognizing Where to Handle Defects versus Where to Handle Exceptions

In general, software defects (which are the result of programmer error) should be detected and corrected
during the testing phases defined in Table 7-1.

Table 7-1. Types of Testing Used During the Software Development Process

Types of
Testing

Description

Unit testing The software is tested one component or unit at a time. A unit is described as a
software module, a collection of modules, a function, a procedure, an algorithm, an
object, or a program.

Integration
testing

An assembly of components of the software is tested. The components are collected
into logical groups and each group is tested as a unit. The groups can be subjected to
the same tests. As groups pass the test, they are added to an assembly, which in turn
must be tested. The number of elements that must be tested will grow
combinatorially.

Regression
testing

Modules are retested once they are changed. Regression testing guarantees the
changes to the component do not cause it to lose any functionality.

Stress testing Testing that pushes a component or system to and beyond its limits. This will include
testing boundary conditions, which help in determining what happens at the
boundaries.

Operational
testing

Test the system in full operation. The software is placed in a live environment to be
tested under a complete system load. This testing is also used to determine
performance in a totally foreign environment.

Specification
testing

The component is audited against the original specifications. The specification
dictates what components are involved in the system and the relationships between
those components. This is part of the software verification process.

Acceptance
testing

Testing performed by the end user of the module, component, or system to determine
performance. This is part of the software validation process.

Through the process of testing and debugging, defects should be identified and removed. On the other
hand, exceptions are handled during execution of the program at runtime. We also distinguish between
exceptional conditions and unwanted conditions. For instance, if we have designed a program that will
add a list of numbers typed in by the user and the user types in some numbers and some characters that
are not numbers, then this is an unwanted condition, not an exceptional condition. We should design
programs to be robust through input validation so that the user is forced to enter the data that our
program requires for proper execution. If part of a program that we design saves information to external
storage and the program encounters an out-of-space condition, then the out-of-space condition is an

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec4.htm#ch07table01

unwanted situation, not an exceptional or extraordinary condition. We reserve exception handling for
the unusual, not the unwanted. We reserve exception handling techniques for the unanticipated.
Situations that are unwanted but have a reasonable probability should be handled by ordinary program
logic such as the following:

If Input data not acceptable then
 request input data again
else
 perform required operation
end if

Checking conditions in this way is part of the fundamental art of programming. This kind of
programming prevents problems from happening. It certainly doesn't rise to the definition of exception.
There is a difference between defects and exceptions and between exceptions and unwanted conditions.
Defects are dealt with using testing and debugging. Unwanted conditions are handled within the
confines of the regular program logic and exceptions are handled using exception handling
programming techniques. Table 7-2 contrasts the difference between the characteristics of error
handling, exception handling, and the handling of unwanted conditions.

Table 7-2. Differences between the Characteristics of Error and Exception Handling and the Handling of Unwanted
Conditions

Error Handling Exception Handling Handling Unwanted Conditions

• Logical errors
discovered during
design and testing

• Correct programs do
not contain errors

• Use program logic
to anticipate and
correct errors

• Normal flow of
control is
maintained

• Describes unanticipated
conditions during
execution time

• Correct programs can
encounter exceptions

• Use exception handling
to recover from
exceptions

• Normal flow of control
is disrupted

• Describes unwanted conditions
that have a reasonable
probability of occurring during
execution time

• Correct programs may
encounter unwanted conditions

• Use program logic to correct
unwanted conditions

• Attempt to maintain normal
flow of control

The goal is to build error handling and exception handling components that can then be integrated with
the other components that make up our parallel or distributed programs. The error handling and
exception handling components must have the capability of identifying and reporting what the problem
is as well as recovering from or correcting the problem. The recovery and correction can involve
everything from prompting the user to reenter the data to restarting a subsystem within the software.
Recovery and correction efforts can involve extensive file processing, database backouts, network
rerouting, processor masking, device reinitialization, and for some systems, even hardware part
replacements. Error and exception handling components can take on a range of forms, from simple
assertion statements to smart agents whose sole purpose it is to anticipate failures and prevent them
before they happen. A significant portion of any serious piece of software will be devoted to the error
and exception handling components. Figure 7-3 shows the architecture for a simple error handling
component.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec4.htm#ch07fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec4.htm#ch07table02

Figure 7-3. Architecture of a simplified error handling component.

Component 1 in Figure 7-3 is a simple map component that contains a list of error numbers and their
descriptions. Component 2 contains a map object that maps the error numbers to jump locations,
functions, or subsystems. Depending on what the error number is, component 2 is used to determine
where to transfer. Component 3 is a map that maps the error numbers to the report hierarchy and report
logic. The report hierarchy contains who or what should be notified of the error. The report logic
determines what the notification should be. Component 4 contains two map objects. The first object
maps the error numbers to objects whose purpose it is to correct some failure condition. The second
object maps error numbers to objects who will return the system to a stable or at least a partially stable
state. The simple error handling component in Figure 7-3 can be applied to software of all sizes and
shapes. How the error handling and exception handling components are used will be determined by the
amount of software reliability desired.

7.5 Software Reliability: A Simple Plan

Keep in mind that we distinguish between error conditions and inconvenient/unwanted conditions.
Inconvenient or unwanted conditions should be handled by the normal program logic. Errors (defects)
require special processing. C++ Programming Language (Stroustrup, 1997) lists four basic alternative
actions that a program can take when it encounters an error. According to Stroustrup, upon detecting a
problem that cannot be handled locally, the program could:

Option 1. Terminate the program.

Option 2. Return a value representing an "error."

Option 3. Return a legal value and leave the program in an illegal state.

Option 4. Call a function supplied to be called in case of error.

These four alternatives are generally seen in producer-consumer relationships of all sizes. The producer
is typically a piece of code that implements a library function, class, class library, or application
framework. The consumer is typically a piece of code that calls a library function, class, class library, or
application framework. The consumer makes a request. The producer encounters an error in attempting
to fulfill the request, and the four alternatives immediately become applicable. The problem with these
four alternatives is that none of them is applicable in every situation.

Obviously terminating the program every time an error occurs is simply not acceptable. We agree with
Stroustrup. We can and must do better than program termination upon encountering an error. With
option 2, simply returning an error value may help in some situations but not in others. Not every return
value can be interpreted as success or failure. For example, if a function has a return value of floats and
the range of the function includes both negative and positive values, then which value of the function
can be used to represent error? This is not always possible. As far as we are concerned, option 3 is also

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec4.htm#ch07fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec4.htm#ch07fig03

unacceptable. The assumption will be if the value is legal, then the operation worked. This will cause
problems. Option 4 is where most of the effort should be spent whether we are discussing error or
exception handling.

7.5.1 Plan A: The Resumption Model, Plan B: The Termination Model

Once an error or exception is encountered, there are two basic plans of attack for implementing option
4. The first plan of attack is to attempt to correct the condition or adjust for the condition that caused the
failure, then resume execution at the point where the error or exception was encountered. This approach
is called resumption. The second approach is to acknowledge the error or exception and perform a
graceful exit of the subsystem or subroutine that caused the problem. The graceful exit is accomplished
by closing the appropriate files, destroying the appropriate objects, logging the error (if possible),
deallocating the appropriate memory, and handling any devices that need to be dealt with. This
approach is called termination, not to be confused with the notion of just abruptly exiting the program.
Both plans are valid and are useful in different situations. Before we discuss how to implement
resumption or termination, lets look at the support C++ has for error handling and exception handling.

7.6 Using Map Objects in Error Handling

A map is a simple component that can be used as a part of any error handling or exception handling
strategy. A map associates one item with another. For example, a map can be used to associate error
numbers with descriptions:

//...
map<int,string> ErrorTable;
ErrorTable[123] = "division by zero";
ErrorTable[4556] = "no dial tone";
//...

Here, the number 123 is associated with "division by zero." If we write:

cout << ErrorTable[123] << endl;

Then "division by zero" will be written to cout.

In addition to mapping built-in data types, we may also map user-defined objects with built-in types.
Instead of simply returning a message description for each error number, we may return an object with
each error number. The object can have methods designed for error correction, error reporting, and
error logging. For example, if we have a user-defined object called

defect_response:

class defect_response{
protected:
 //...
 int DefectNo;
 string Explanation;

public:
 bool operator<(defect_response &X);
 virtual int doSomething(void);
 string explanation(void);
 //...
};

We can add defect_response objects to the map using something like:

//...
map<int, defect_reponse *> ErrorTable;
defect_response * Response;
Response = new defect_response;
ErrorTable[123] = Response;
//...

This associates a response object with error number 123. Using polymorphism, the map object can
contain pointers to any defect_response object or any object that is descended from defect response. For
instance, if we have a class:

class exception_response : public defect_response{
 //...
public:
 int doSomething(void)
 //...
};

called exception_response that is descended from defect_response, then we may also add pointers to
type exception_response to the ErrorTable object.

//...
map<int,defect_reponse *> ErrorTable;
defect_response * Response;
exception_response *Response2;
Response = new defect_response;
Respone2 = new exception_response;
ErrorTable[123] = Response; // Stores an object of type
 defect_response
ErrorTable[456] = Response2; // Stores an object of type
 exception_response
//...

This shows that the ErrorTable object can map different objects with different explanations and
capabilities with the appropriate error number. Therefore, the references to the doSomething() method:

//...
defect_response *ProblemSolver;
ProblemSovler = ErrorTable[123];
ProblemSolver->doSomething();
ProblemSovler = ErrorTable[456];
ProblemSovler->doSomething();
//...

will each cause the ProblemSolver object to execute a different set of instructions. Although
ProblemSolver is a pointer to a defect_response object, polymorphisms allow ProblemSolver to also
point to an exception_response object or any other object descended from defect_response. Because the
doSomething() method is declared virtual in the defect_response class, the compiler can do dynamic
binding. This will ensure that the correct doSomething() method will be called at runtime. This dynamic
binding is important because each descendant of defect_response will define its own do-Something()
method. We want the doSomething() method to be called based on which descendant of
defect_response is referenced. This technique allows us to associate error numbers with objects that are
specialized in handling certain error conditions. Using this technique, we can make the error handling
code simpler. Example 7.1 shows how the return value from some function can be used to summon the
appropriate error handling object:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex01

Example 7.1 Using a function's return values to determine the correct ErrorHandler object to access.

void importantOperation(void)
{
 //...
 Result = reliableOperation();
 if(Result != Success){
 defect_response *Solver;
 Solver = ErrorTable[Result];
 Solver->doSomething();
 }
 else{
 // continue processing
 }
 //...
}

Notice in Example 7.1 that we do not have a series of if() statements or case statements. The map object
allows us to directly access the error handling object we want by index. The doSomething() method
called in Example 7.1 will depend on the value of Result. Obviously this is an oversimplification of the
processing. For example, Example 7.1 doesn't show who's responsible for memory management of the
dynamically allocated objects stored in the ErrorTable map. Also, both the reliableOperation() routine
and the doSomething() function might fail. So things can be a little more complicated than what is
shown in Example 7.1. However, the example does illustrate how a single piece of code can handle
many error situations. We can do better: Example 7.1 assumes that all the errors will be addressed by
objects in ErrorTable. The objects in ErrorTable are either defect_response objects or objects descended
from defect_response. What if we have multiple families of error handling classes? Example 7.2 shows
how we can make the importantOperation() more general using templates.

Example 7.2 Using a template in the importantOperation() function.

template<class T,class U> int importantOperation(void)
{
 T ErrorTable;
 //...
 U *Solver;
 //...
 Solver = ErrorTable[Result];
 Solver->doSomething();
 //...
};

In Example 7.2, ErrorTable is not restricted to defect_response objects. This technique allows us to
further simplify and expand the flexibility of our error handling code. This example uses both vertical
and horizontal polymorphism. This kind of polymorphism is extremely useful in SPMD and MPMD
programs. See Chapter 9 for a discussion on simplifying programs that require concurrency using
templates and polymorphism. Using map objects and error handling objects are important steps in the
direction of increasing software reliability. We can also take advantage of the exception handling
mechanism and the exception handling classes in C++. These facilities add exception handling to error
handling techniques.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09.htm#ch09
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex01

7.7 Exception Handling Mechanisms in C++

Ideally, the testing and debugging process will remove all defects from the software or at least as many
defects as possible from the software. Unwanted and inconvenient conditions should be handled by
regular program logic. After defects are removed and unwanted or inconvenient conditions are handled,
everything left is an exception. Exception handling is supported in C++ by three keywords: try, throw,
and catch. Any code that encounters an exceptional condition that it cannot cope with throws an
exception hoping that some exception handler (somewhere) can handle the problem (Stroustrup, 1997).
The throw keyword is used to throw an object of some type. Throwing the object transfers control to an
exception handler coded to deal with the type of object thrown. The catch keyword is used to identify
handlers designed to catch exception objects. For example:

void importantOperation
{
 // executeImportCode()
 // the Impossible Happens Somehow
 impossible_condition ImpossibleCondition;
 throw ImpossibleCondition;
 //...
}

catch (impossible_condition &E)
{
 // Do something about E
 //...
}

The importantOperation() routine attempts to do its work and encounters an unusual condition that it
cannot cope with. In our example, it creates an object of type impossible_condition and uses the
keyword throw to throw the object. The block of code that uses the catch keyword is designed to catch
objects of type impossible_condition. This block of code is called an exception handler. Exception
handlers are associated with blocks of code contained within a try expression. A try block is used to
surround code that possibly contains a routine that will encounter some exceptional situation. A catch
block may only follow a try block or another catch block. So we might have:

try{
 //...
 importantOperation()
 //...
}

catch(impossible_condition &E)
{
 // do something about E
 //...
}

Here, either the routine importantOperation() or one of the routine importantOperation() calls have the
potential to encounter some condition that it simply cannot cope with. The routine will throw an
exception. Control will be transferred to the first exception handler that accepts an error of type
impossible_condition. Either that routine will handle the exception or throw the exception to be handled
by another exception handler. The objects thrown can be user-defined objects that can form simple to
sophisticated error codes and messages. They may contain code that will help the exception handler
perform its work. If we used objects like exception_response objects from Examples 7.1 and 7.2, they
may be used by the exception handler to either correct the problem or allow the program to somehow

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex01

recover its state. We may also use the built-in exception classes to create exception objects.

7.7.1 The Exception Classes

The standard C++ class library has nine exception classes divided into two basic groups. Table 7-3
shows the runtime error group and the logic error group. The runtime error group represents errors that
are somewhat difficult to prevent. The logic error group represents errors that are "theoretically
preventable."

Table 7-3. Runtime and Logic Error Classes

runtime error Classes logic error Classes

range_error domain_error

underflow_error invalid_argument

overflow_error length_error

 out_of_range

7.7.1.1 The runtime_error Classes

Figure 7-4 shows the class relationship diagram for the runtime_error family of classes. The
runtime_error family of classes is derived from the exception class. Three classes are derived from
runtime_error: range_error, overflow_error, and underflow_error. The runtime_error classes report
internal computation or arithmetic errors. The runtime_error classes get their primary functionality from
the exception class ancestor. The what() method, assignment operator=(), and the constructors for the
exception handling class provide the capability of the runtime_error classes. The runtime_error classes
provide an exception framework and architectural blueprint to build upon.

Figure 7-4. The class relationship diagram for the runtime_error family of classes.

They offer little inherent functionality—the programmer must specialize them through inheritance. For
example, the defect_response and exception_response classes created in Examples 7.1 and 7.2 might be
derived from either runtime_error or logic_error classes. Let's look at how the basic exception classes
work with no specialization. Example 7.3 shows how an exception object and a logic_error object can
be thrown.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec7.htm#ch07ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec7.htm#ch07fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec7.htm#ch07table03

Example 7.3 Throwing an exception object and a logic_error object.

try{
 exception X;
 throw(X);
}

catch(const exception &X)
{
 cout << X.what() << endl;
}

try{
 logic_error Logic("Logic Mistake");
 throw(Logic);
}
catch(const exception &X)
{
 cout << X.what() << endl;
}

The basic exception classes have only construction, destruction, assignment, copy, and simple reporting
capabilities. They do not contain the capability to correct a fault that has occurred. The error message
returned by the what() method of the exception classes will be determined by the string passed to the
constructor for the logic_error object. In Example 7.3, the string "Logic Mistake" passed to the
constructor will be returned by the what() message in the catch block.

7.7.1.2 The logic_error Classes

The logic_error family of classes is derived from the exception class. In fact, most of the functionality
of the logic_error family of classes is also inherited from the exception class. The exception class
contains the what() method, used to report to the user a description for the error being thrown. Each
class in the logic_error family contains a constructor used to tailor a message specific to that class.
Figure 7-5 shows the class relationship diagram for the logic_error classes.

Figure 7-5. The class relationship diagram for the logic_error family of classes.

Like the runtime_error classes, these classes are really designed to be specialized. Unless the user adds
some functionality to these classes, they cannot do anything other than report the error and the type.
The nine generic exception classes provide no corrective action or error handling.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec7.htm#ch07fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec7.htm#ch07ex03

7.7.1.3 Deriving New Exception Classes

The exception classes can be used as-is, that is, they can be used simply to report an error message
describing the error that has occurred. However, this is virtually useless as an exception handling
technique. Simply knowing what the exception was doesn't do much to increase software reliability.
The real value of the exception class hierarchy is the architectural road map that they provide for the
designer and the developer. The exception classes provided basic error types that the developer can
specialize. Many of the exceptions that occur in a runtime environment can be placed into either the
logic_error or runtime_error family of classes. To demonstrate how to specialize an exception class, lets
use the runtime_error class as an example. The runtime_error class is a descendant of the exception
class. We can specialize the runtime_error class through inheritance. For instance:

class file_access_exception : public runtime_error{
protected:
 //...
 int ErrorNumber;
 string DetailedExplanation;
 string FileName;
 //...
public:
 virtual int takeCorrectiveAction(void)
 string detailedExplanation(void);
 //...

};

Here, the file_access_exception inherits runtime_error and specializes it by adding a number of data
members and member functions. Specifically, the takeCorrectiveAction() method is added. This
method can be used to help the exception handler perform its recovery and correction work. This
file_access_exception object knows how to identify deadlock and how to break deadlock. It also has
specialized logic for dealing with viruses that can damage files as well as specialized knowledge for
dealing with file transfers that get unexpectedly interrupted. Each of these situations can introduce
runtime exceptions. We can use our file_access_exception objects with the throw, catch, and try
facilities of C++. For instance:

try{
 //...
 fileProcessingOperation();
 //...
}

catch(file_access_exception &E)
{
 cerr << E.what() << endl;
 cerr << E.detailedExplanation() << endl;
 E.takeCorrectiveAction();
 // Handler Take Additional Corrective Action
 //...
}

This technique allows you to create ExceptionTable map objects similar to the ErrorTable map objects
used in Examples 7.1. and 7.2 Using vertical and horizontal polymorphism will also simplify exception
handler processing.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec6.htm#ch07ex01

7.7.1.4 Protecting the Exception Classes from Exceptions

The exception objects are thrown when some software component encounters a software or hardware
anomaly. But note, the exception objects themselves do not throw exception. This has many
implications. If the processing of the exception is complex enough to potentially cause another
exception to be generated, then the exception processing should be redesigned and simplified where
possible. The exception handling mechanism is unnecessarily complicated when exception handling
code can generate exceptions. Therefore, most of the methods in the exception classes contain the
empty throw() specification.

7.8 Event Diagrams, Logic Expressions, and Logic Diagrams

Exception handling should be used as the last line of defense because the mechanism totally alters the
natural flow of control within the program. There are schemes that try to mask this fact, but those
schemes are typically not flexible enough to scale to our programs that require concurrency or
distribution. In the vast majority of situations where the temptation is to use catchall exception handlers,
the logic can be made more robust by solid error handling or through improving the logic of a program.
It is often useful to use an event diagram to help identify those components of an application that are
critical to an acceptable completion of the application's work. Event diagrams can show which
components can be potentially bypassed and which components lead to system failure. In some
applications a single component's failure does not necessarily lead to system failure. Where a single
component's failure would lead to system failure, then exception handling techniques can be used in
conjunction with error handling techniques to provide the failure-is-notan-option feature. Figure 7-6
shows a simple event diagram.

Figure 7-6. A simple event diagram.

We use the event diagram to come up with a scheme to use in exception handling. Figure 7-6 depicts a
system that consists of seven tasks labeled A, B, C, D, E, F, and H. Notice that each label is located at a
switch. If switches are closed, then the component is functioning; otherwise, the component is not
functioning. The terminal point at the left represents the beginning execution and the terminal at the
right represents the end of execution. In order for the program to successfully end, a path through
functioning components must be found. We can illustrate how this can be applied to our exception
handling situation. Lets say that we start the program executing at A. In order for the program to
successfully complete, A and C must both function properly. That is, the A switch and the C switch
must be closed. In this event diagram both A and C are on the same branch. This means that A and C
are executing concurrently. If either A or C fails, then an exception is thrown. The exception handler
could possibly start A and C again. However, our event diagram tells us that this operation will be
successful if either AC or DE or FBH is successful. Therefore, we design our exception handler to
execute one of an alternative set of components (e.g., DE or FBH). There is an OR relationship between
AC, DE, and FBH. This means that either set of these components concurrently executing represents
success. The simple event diagram in Figure 7-6 indicates how we can approach our exception handler.
The expression:

S = (AC + FBH + DE)

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec8.htm#ch07fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec8.htm#ch07fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec8.htm#ch07fig06

in Figure 7-6 is often referred to as a logic expression or boolean expression. This expression means
that (A and C) or (F and B and H) or (D and E) must successfully execute in order for the system to be
in a reliable state. The event diagram can also be used to tell us which combinations of component
failure can lead to system failure. For instance, if only the components E and B fail, then the system
may still successfully execute if components A and C are functioning. However, if components A, H,
and D were to fail, then the entire system fails. The event diagram and the logic expression are useful
tools for describing concurrently dependent and independent components. They are also good for
determining how to approach processing in the exception handler. For example, from Figure 7-6, we
can use:

try{
 start(task A and B)
}

catch(mysterious_condition &E){
 try{
 if(!(A && B)){
 start(F and B and H)
 }
 }
 catch(mysterious_condition &E){
 start(D and E)
 }
};

This kind of strategy aims at improving software reliability. Also note that the concurrency and
opportunities for fault tolerant planning can be seen in the traditional logic diagram shown in Figure 7-
7.

Figure 7-7. A logic diagram showing three AND gates OR'ed with OR gates to obtain the success of the system.

Figure 7-7 shows three AND gates and how they are OR'ed together to get to the S that represents the
success of the system. The event diagram in Figure 7-6 and the logic diagram in Figure 7-7 are
examples of simple techniques that can be used to visualize the critical paths and critical components in
a piece of software. Once the critical paths and components are correctly identified, the developer must
design software responses in case any of the critical components fail. If the termination model is used,
then the exception handling does not attempt to resume execution at the point where the exception
occurred; rather, the function or procedure where the exception occurred is exited, and steps are taken
to put the system in as stable a state as possible. However, if the resumption model is used, the
condition(s) that created the exception are either corrected or adjusted and the program resumes from
the point where the exception occurred. It is important to note that the resumption model carries with it
several challenges. For example, if we have a succession of nested procedure calls such as:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec8.htm#ch07fig07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec8.htm#ch07fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec8.htm#ch07fig07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec8.htm#ch07fig07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec8.htm#ch07fig07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec8.htm#ch07fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07lev1sec8.htm#ch07fig06

try{
 A calls B
 B calls C
 C calls D
 D calls E
 E encounters an anomaly that it cannot cope with
}
catch(exception Q)
{

}

and an anomaly occurs in E and an exception is thrown, then there is the issue of what to do about the
call stack. There are also object destruction issues and suspended return values that need to be resolved.
What happens if C and D are recursive? Even if we fix the condition that caused the exception in
procedure E, how can we return the program to the state it was in just prior to the exception? We will
have to keep stack information, object construction and destruction tables, interrupt tables, and so on.
This requires a lot of overhead and cooperation between the callee and the caller. These issues represent
only the surface. It is because of the complexity of implementing the resumption model and the fact that
large-scale systems can be developed without it that the termination model was chosen for C++. In The
Design and Evolution of C++, Stroustrup (1994) presents a complete rationale about why the ANSI
committee eventually selected the termination model of exception handling. While the resumption
model does present challenges, if the reliability and the continuity of the software are critical enough,
then the effort to implement a resumption model will have to be expended and the exception handling
facilities in C++ can be used to implement a resumption model.

// Class declaration for exception class

class exception {
public:
 exception() throw() {}
 exception(const exception&) throw() {}
 exception& operator=(const exception&) throw()
 {return *this;}
 virtual ~exception() throw() {}
 virtual const char* what() const throw();
};

Note the throw() declarations with empty arguments. The empty argument shows that the method
cannot throw an exception. If the method attempts to throw an exception, a compile-time error message
is generated. If the base class cannot throw an exception, then the corresponding method in any derived
class cannot throw an exception.

Summary

Producing reliable software is serious business. Exception handling and defect removal should be
approached with extreme rigor. Thorough testing then debugging of a software component should be
the primary defense against software defects. Exception handling should be added to the software
system or subsystem after the software has undergone rigorous testing. Throwing exceptions should not
be used as a generic error handling technique because it destroys the flow of control of the program.
Exceptions should only be thrown after all of the measures have been exhausted. The standard
exception handling classes should be used as architectural road maps for the programmer who wishes to
design more complete and useful exception classes. If not specialized through inheritance, the standard
classes can only report errors. More useful exception classes can be built that have corrective

functionality as well as more information. In general, both the termination and resumption models
allow the program to continue to execute. Both models resist simply aborting the program when an
error occurs. For a more complete discussion of exception handling, see The Design and Evolution of
C++ (Stroustrup, 1994).

Chapter 8. Distributed Object-Oriented Programming in C++
"So a basic naively determined difference between the human situation and the android
situation is that the human being comes equipped with an ego, whereas the robot does not."

—Cary G deBessonet, Towards A Sentential 'Reality' for the Android

In this Chapter

• Decomposition and Encapsulation of the Work

• Accessing Objects in Other Address Spaces

• The Anatomy of a Basic CORBA Consumer

• The Anatomy of a CORBA Producer

• The Basic Blueprint of a CORBA Application

• A Closer Look at Object Adapters

• Implementation and Interface Repositories

• Simple Distributed Web Services Using CORBA

• The Trading Service

• The Client/Server Paradigm

• Summary

Distributed objects are objects that are part of the same application but reside in different address
spaces. The address spaces may be on the same computer or on different computers connected by a
network or another form of communication. The objects involved in the application could have been
designed originally to work together or they may have been designed by different departments,
divisions, companies, or organizations at different times and for different purposes. A distributed
object-oriented application can be anything from a one-time collaborative effort by a collection of
unrelated objects to a multigenerational application whose objects are spread over the entire Internet.
The location of the objects can be intermixed between intranets, extranets, and the Internet. In the most
general description of distributed objects, the object may be implemented in different languages such as
C++, Java, Eiffel, and Smalltalk. Distributed objects play a number of roles. In some situations an
object or collection of objects is used as a server that can provide database, application, or
communication services. In other situations objects play the part of clients. Distributed objects can be
used in collaborative problem-solving models such as blackboards and multiagent systems. Besides
collaborative problem-solving models, distributed objects can be used to implement parallel
programming paradigms such as SPMD and MPMD. Objects within the same application don't need
any special protocol to communicate. The communication is achieved through normal method
invocation, parameter passing, and global variables. Since distributed objects reside in different address
spaces, inter-process communication techniques are required and in many cases network programming
is necessary.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec12.htm#ch08lev1sec12
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec11.htm#ch08lev1sec11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec10#ch08lev1sec10
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec9.htm#ch08lev1sec9
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec8.htm#ch08lev1sec8
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec7.htm#ch08lev1sec7
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec5.htm#ch08lev1sec5
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec1.htm#ch08lev1sec1

Applications that require distribution can be necessary for several reasons:

• Resources needed (e.g., databases, special processors, modems, printers, etc.) are located on
different computers. Client objects interact with server objects in order to access these resources.

• Objects developed at different times, by different parties, which reside in different locations
need to interoperate in order to perform some necessary work or solve some problem.

• Agents implemented as objects are highly specialized and each agent requires its own address
space because it is started as a separate process.

• Objects are used as the basic unit of modularity and the modules have been implemented as
separate programs, each with its own address space.

• Objects have been implemented in a SPMD or MPMD architecture in order to facilitate parallel
programming, and the objects are located in different processes and on different computers.

In an object-oriented application, the work that a program does is divided between a number of objects.
These objects are models of some real-world person, place, thing, or idea. The execution of an object-
oriented program causes its objects to interact with each other according to the models they represent.
In a distributed object-oriented application, some interacting objects will have been created by different
programs possibly running on different computers. Recall from Chapter 3 that each executing program
has one or more processes associated with it. Each process has its own resources. For instance, each
process has its own memory, file handles, stack space, process id, and so on. Tasks executing in one
process do not have direct access to the resources owned by another process. If the tasks executing in
one process need information stored in the memory of another process, then the two processes must
explicitly exchange the information either through files, pipes, shared memory, environment variables,
or sockets. Objects that reside in different processes that need to interact must also explicitly exchange
information in one of these ways. The challenges for the C++ developer that wants to do distributed
object-oriented programming include:

• Decomposition and encapsulation of the problem and solution into a set of objects, with the
realization that some of the objects will belong to different processes and may be located on
different computers.

• Communication between objects residing in different processes (address spaces).

• Synchronization of the interaction between the local and the remote objects.

• Error and exception handling in the distributed environment.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03

8.1 Decomposition and Encapsulation of the Work

Object-oriented software design is the process of translating the software requirements into a blueprint
where objects model each aspect of the system to be developed and work to be done. The blueprint is
centered around the structure and hierarchy of collections of objects and their relationships and
interactions. The C++ class keyword is used to support the notion of a software model. There are two
basic types of models. The first type of model is a scaled representation of some process, concept, or
idea. This type of model is used for the sake of analysis or experimentation. For example, a class can be
used to develop a molecular model. The hypothesis and structure of some chemical process within
molecules can be modeled using C++'s class concept. A molecule's behavior when new groups of atoms
are introduced can then be studied in software. The second type of software model is a reproduction in
software of some real-world task, process, or idea. The purpose of this model is to function as its real-
world counterpart as a part of some system or application. The software takes the place of some
component in a manual system, or some physical thing. For example, we may use the class concept to
model an adding machine. Once we have correctly modeled all of the characteristics and behavior of
the adding machine, then an object can be instantiated from that class and used in place of a real adding
machine. The software adding machine takes the place of the real-world adding machine. The modeled
class serves as a virtual stand-in for some real-world person, place, thing, or idea. The software model
captures the essence of the real thing.

For our purposes, decomposition is the process of dividing a problem and its solution into units of
work, collections of objects, and the relationships between those objects. Likewise, encapsulation is the
capturing or modeling of the characteristics, attributes, and behavior of some person, place, thing, or
idea using the C++ class construct. This modeling (encapsulation) and decomposition is part of the
object-oriented software design phase. Object-oriented applications that contain distributed objects add
an additional layer to the design considerations. In one view of the design, the locations of objects
within an application should not affect the design of the attributes and characteristics of those objects.
The class is a model and unless location is part of that model, the ultimate location of the objects that
will instantiate that class should not matter. On the other hand, objects don't exist in a vacuum. They
interact and communicate with other objects. If some of the objects that communicate are located on
different computers, possibly different networks, then this consideration has to be part of the original
software design process. Although there is a lot of disagreement as to where in the design process
distribution needs to be considered, it must be considered. The error handling and exception handling
between objects located in different processes or computers are different from the error handling and
exception handling between objects that are part of the same process. Also, the communication and
interaction between objects located within the same process is performed differently if those objects are
located in different processes where the processes may be on different computers. This must be taken
into account during the design phase. In a distributed object-oriented application, the work that must be
done is divided between the objects in the application and is implemented as member functions of the
various objects. The objects will be logically divided into some WBM (Work Breakdown Model). They
may be divided into a client-server, producer–consumer, peer-to-peer, blackboard, or multiagent model.
Figure 8-1 shows the logical structure of each of these models and how the objects are distributed in
each model.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec1.htm#ch08fig01

Figure 8-1. The logical structure and distribution of objects in the producer–consumer, peer-to-peer, blackboard,
and multiagent models.

In each model shown in Figure 8-1, the objects involved may or may not be on the same computer.
However, they will be in different processes. The fact that they are in different processes is what makes
them distributed.[1] Each model represents a different approach to the division of work between the
objects.

[1] We do not include multithreaded programs in the category of distributed programs.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec1.htm#ch08fn01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec1.htm#ch08fig01

8.1.1 Communication between Distributed Objects

If the objects are located within the same process, then parameter passing, regular method invocation,
and global variables can be used as a means of communication. If the objects are located in different
processes on the same computer, then files, pipes, fifos, shared memory, clipboards, or environment
variables are needed to facilitate communication between the objects. If the objects are located on
different computers, then sockets, remote procedure calls, and other types of network programming will
be required to facilitate communication. Not only must we be concerned with how the objects in a
distributed application communicate, we must also be concerned with what they communicate. Object-
oriented applications can include anything from simple to complex user-defined classes. These classes
are often communicated between objects. So not only do distributed objects need to communicate
simple built-in data types such as ints, floats, and doubles, they also need to communicate any type of
user-defined class that might be necessary to allow some object to complete its work. Also, one object
needs a way to be able to invoke methods of another object located in another address space. To
complicate matters, there needs to be some way for one object to know the methods of a remote object.
While C++ does support pure object-oriented programming, it does not have distributed communication
facilities built in. It does not have built-in methods for locating and querying remote objects.

There are several important protocols for distributed object communication. Two of the most important
protocols are IIOP (Internet Inter-ORB Protocol; pronounced "eye-op"), and the RMI (Remote Method
Invocation). Using these protocols, objects located virtually anywhere on any network can
communicate. In this chapter, we will discuss techniques for implementing distributed object-oriented
programs using these protocols and the CORBA (Common Object Request Broker Architecture)
specification. The CORBA specification is the industry standard for specifying the relationships, the
interaction, and the communication between distributed objects. IIOP and GIOP are the two primary
protocols that the CORBA specification works with. These protocols operate well with TCP/IP.
CORBA is the easiest and most flexible way to add distributed programming to the C++ environment.
The facilities provided by a CORBA implementation support the two major models of object-oriented
parallelism that we use in this book: blackboards and multiagent systems. Because the CORBA
specification reflects object-oriented programming, applications ranging from the small to the very
large can be reasonably implemented. In this book we use MICO[2] which is an open-source
implementation of the CORBA specification. The MICO implementation supports the major CORBA
components and services. C++ interacts with MICO through a collection of classes and class libraries.
CORBA supports distributed object-oriented modeling at every level.

[2] Any CORBA examples in this book are implemented using MICO 2.3.3 on SuSE Linux
and MICO 2.3.7 on Solaris 8.

8.1.2 Synchronization of the Interaction between the Local and the Remote Objects

Mutexes and semaphores can be used to help synchronize data and resource access between two or
more objects located in different processes but on the same computer. This is because each process,
although segregated, still has access to the computer's system memory. This system memory acts as a
kind of shared memory between processes. However, multiple computers don't have any memory in
common and therefore synchronization schemes must be implemented differently when the processes
are distributed across different computers. Synchronizing access depending on the WBM used can
require considerable communication between the distributed objects. For synchronization we will
enhance the traditional methods of synchronization with CORBA's communication abilities.

8.1.3 Error and Exception Handling in the Distributed Environment

Perhaps one of the most challenging areas of exception or error handling in a distributed environment is

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec1.htm#ch08fn02

the area of partial failure. In a distributed system, one or more components may fail while the other
components operate under the assumption that everything is fine. In a local application where all of the
components are within the same process, if one function or routine fails, it is not difficult for the entire
application to know about it. This is not so for distributed applications. A network card might fail on
one computer and the other objects executing on other computers will have no knowledge that a failure
has happened. What happens if one of the objects needs to communicate or interact with an object
whose network communications have been mysteriously interrupted? In a peer-to-peer model of
problem solving where we have groups of objects working on various facets of some problem and one
of the groups fails, how will the other groups know? Furthermore, what do we do about it? Should a
single component's failure lead to system failure? If one client fails, should we shut the server down? If
the server fails, should we shut the client down? What if the server or the clients only partially fail? So,
in addition to data race and deadlock, we must also find ways to cope with partial failure of a
distributed system where one or more of the components in the system have totally or partially failed.
Again, what is necessary is a distributed approach to C++'s exception handling mechanism. The
CORBA facilities provide a sufficient start.

8.2 Accessing Objects in Other Address Spaces

Objects that share the same scope can interact. They can access each other through their names, aliases
for their names, or through pointers. An object can only be accessed where its name or a pointer to it is
visible. Scope determines the visibility of object names. C++ has four basic levels of scope:

• block scope

• function scope

• file scope

• class scope

Recall that a block is defined in C++ by {} so that assigning Y to X in Example 8.1 would be illegal
because Y is only visible within the block that it is declared in. The function main() does not know the
name Y after the closing brace of the block where Y was declared.

Example 8.1 Simple example of block scope.

int main(int argc, char argv[])
{
 int X;
 int Z;
 {
 int Y;
 Z = Y; // Legal
 //...
 }
 X = Y ; // Illegal, Y is no longer defined
}

However, the name Y is visible to any other code that occurs in the same block where Y is declared. A
name has function scope when it is declared within the function or the function's declaration. In
Example 8.1, X and Z are visible only to the function main() and cannot be accessed by other functions.
File scope refers to source files. Since a C++ program can consist of multiple files, we can have objects
that are visible within one file but not in another. Names that have file scope visibility are visible from
the point they are declared until the end of the source file. Names with file scope visibility will not be
declared in any particular function. They are usually referred to as global variables. Names that have

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08ex01

object scope are visible to any member function declared as part of the object. We use scope as the first
level of access to an object's capabilities. The object's private, protected, and public interfaces
determine the second level. Although an object's name may be visible, private and protected members
still have restricted access. Scope simply tells us if the object's name is visible. In a nondistributed
program, scope is associated with a single address space. Two objects in the same address space can
refer to each other by name or pointer and can interact simply by invoking each other's methods.

Example 8.2 Using objects which invoke methods of other objects of the same address space.

//...
some_object A;
another_object B;
dynamic_object *C;
C = new dynamic_object;

//...
B.doSomething(A.doSomething());
A.doSomething(B.doSomething());
C->doMore(A.doSomething());
//...

In Example 8.2, objects A and B are within the same scope, B is visible to A and A is visible to B. A
may call B's member functions and vice versa. How is scope affected when two objects are on different
machines? What happens when B is created by another program and is in a totally different address
space? How will A know of B's existence? More importantly, how will A know B's name and interface?
How can A call member functions that belong to B if B is part of another program? In Example 8.2,
objects A and B are created at compile time and object C is created at runtime. They are part of the
same program, they have the same scope, and their addresses are part of the same process. In order for a
process to execute an instruction, it needs to know the address of the instruction. When the program in
Example 8.2 is compiled, the addresses of objects A and B are stored in the executable. Therefore, the
process that executes the program in Example 8.2 will know where objects A and B can be found. The
address for object C is assigned during runtime. The exact location of the object C is unknown until the
new() function has been called. However, the pointer C does have an address within the same space as
objects A and B and therefore the process will use the pointer to get to the object. We have access to
each object because we have access to their addresses either directly or indirectly. The object's variable
name is simply an alias for the object's address. If the object's name is within our scope then we may
access it. The trick is how we associate a remote object with our local scope. If we want to access
object D that is in another address space we need some way to introduce the address of the remote
object to our executing process. We need some way to associate the remote object with our local scope.
We need a visible name that is an alias for an address in another process that might even be on another
machine. In some cases the other machine might be on another network! It would be convenient if we
could simply ask for the remote object by some agreed-upon description and receive a reference for the
address of the remote object. Once we had the reference, we could then interact with the remote object
in our local scope. Here is where a CORBA implementation can be used to do distributed
programming.

8.2.1 IOR Access to Remote Objects

The IOR (Interoperable Object Reference) is the standard object reference format for distributed
objects. Each CORBA Object has an IOR. The IOR is a handle that uniquely identifies the object.
Whereas a pointer contains a simple machine address for an object, an IOR can contain a port number,
a host name, an object key, and more. In C++ we use a pointer to access dynamically created objects.
The pointer tells where the object is located in memory. When an object's pointer is dereferenced, the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08ex02

address is used to access the services of that object. The dereferencing process requires more effort
when the object to be accessed is located in a different address space and possibly on a different
computer. The pointer must contain enough information to resolve the object's exact location. If the
object is located on another network, then the pointer must contain either directly or indirectly a
network address, a network protocol, hostname, port address, object key, and physical address. The
standard IOR acts as a kind of distributed pointer to a remote object. Figure 8-2 shows a high-level
breakdown of some component contained in an IOR under the IIOP protocol.

Figure 8-2. A high-level breakdown of some component contained in an IOR under the IIOP protocol.

Logical Components of an IOR

HOST PORT OBJECT KEY OTHER COMPONENTS

Identifies the
Internet host.

Contains the TCP/IP port
number where the target
object is listening for
requests.

A value that maps
unambiguously to a
particular object.

Additional information that may
be used in making invocations,
e.g., security.

The notion of a portable object reference is an important advancement in distributed computing. It
allows local references to remote objects to appear virtually anywhere on the Internet or an intranet.
This has important implications for multiagent systems where agents may need to travel between
systems and throughout the Internet. The IOR standard creates some foundation for mobile objects and
distributed agents. Once your program has access to an object's IOR, then an ORB (Object Request
Broker) can be used to interact with the remote object through method invocation, parameter passing,
return values, and so on.

8.2.2 ORBS (Object Request Brokers)

The ORB acts on behalf of your program. It sends messages to the remote object and returns messages
from the remote object. The ORB acts as a middleman between your objects and the remote objects.
The ORB takes care of all the details involved in routing a request from your program to the remote
object, and routing the response from the remote object back to your program. It makes the
communications between systems virtually transparent. The ORB removes the need to do socket
programming between processes on different computers. Similarly, it removes the need to do pipe or
fifo programming between processes on the same computer. It takes care of much of the network
programming that is required for distributed programs. Furthermore, it hides the differences between
operating systems, computer languages, and hardware. The local objects are not aware of what
language the remote objects have been implemented in, what platform they are running on, or whether
they are located on the Internet or some local intranet. The ORB uses the IOR to help facilitate
communications between machines, networks, and objects. Notice in Figure 8-2 that an IOR does
contain information that can be used to make TCP/IP connections. We present only a high-level partial
description of the IOR because the IOR is meant to be a black box for the developer. The ORB uses the
IOR to locate the target object. Once the target object is located, the ORB activates it and transmits any
arguments that are necessary to call the object. The ORB waits for the request to complete and returns
the necessary information to the calling object or an exception if the method invocation or call fails.
Figure 8-3 contains a simplified overview of the steps that an ORB uses on behalf of a local object.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08fig02

Figure 8-3. The simplified overview of the steps that an ORB uses on behalf of a local object.

SIMPLIFIED ORB METHOD INVOCATION STEPS

1) Locate the remote object.

2) Activate the module containing the target object if it is not already activated.

3) Transmit arguments to the remote object.

4) Wait for response from the invocation of the remote object's method.

5) Return information to the local object or exception if the remote method invocation failed.

The steps in Figure 8-3 present a simplified overview of what the ORB does during an interaction with
a remote object. These steps are almost transparent to the local object. The local object invokes one of
the methods of the remote object and the ORB performs these steps on behalf of the local object. The
ORB does a lot of processing with a few simple lines of code. Typically, a distributed object-oriented
application requires at least two programs. Each program has one or more objects that will interact with
each other across address spaces. The object interaction may be client-server, producer-consumer, or
peer-to-peer in nature. Therefore, if we have two programs, one will act as the client and the other as
the server, or one as the producer and the other as the consumer, or they will both be peers. Program 8.1
implements a consumer that invokes a simple remote adding machine object. The program shows how a
remote object may be accessed and how an ORB is initialized and used.

Program 8.1

 1 using namespace std;
 2 #include "adding_machine_impl.h"
 3 #include <iostream>
 4 #include <fstream>
 5 #include <string>
 6
 7
 8 int main(int argc, char *argv[])
 9 {
10 CORBA::ORB_var Orb = CORBA::ORB_init(argc,argv,"mico-local-orb");
11 CORBA::BOA_var Boa = Orb->BOA_init(argc,argv,"mico-local-boa");
12 ifstream In("adding_machine.objid");
13 string Ref;
14 if(!In.eof()){
15 In >> Ref;
16 }
17 In.close();
18 CORBA::Object_var Obj = Orb->string_to_object(Ref.data());
19 adding_machine_var Machine = adding_machine::_narrow(Obj);
20 Machine->add(700);
21 Machine->subtract(250);
22 cout << "Result is " << Machine->result() << endl;
23 return(0);
24 }
25

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08fig03

On line 10 the ORB is initialized. On line 15 the IOR for the adding_machine object is read from a file.
One of the nice features of the IOR is that it can be stored as a simple string and communicated to other
programs. Transmitting the IOR through command line arguments, stdin, environment variables, or
files are the simplest methods. An IOR can be sent using e-mail or ftp. IORs can be shared through
common file systems and can be downloaded from Web pages. Once a program has an IOR for a
remote object, then an ORB can be used to access the remote object. We shall cover other techniques
for communicating IORs later in this chapter. But the file system technique is enough to get us started.
The IOR was originally converted from an object reference to its stringified form by the remote adding
machine's ORB and written to a file. On line 18 the local Orb object converts the stringified IOR back
to an object reference. On line 19 the object reference is used to instantiate an adding_machine object.
The interesting thing about this adding_machine object is that when its methods are invoked they will
cause code on the remote machine to execute. The calls on line 20, 21, and 22

Machine->add(700);
Machine->subtract(250);
cout << "Result is " << Machine->result() << endl;

although made in our local scope, refer to executable code in another address space and in this case on
another machine. To the developer the Machine object's location is transparent. After the object has
been created on line 19 it is used like any other C++ object. Although there are very specific differences
between local object invocations and remote object invocations,[3] the object-oriented metaphor is
maintained, and from the object-oriented programming perspective remote objects look and feel like
local objects. The code in Program 8.1 is client code or consumer code because it uses the services of
the adding_machine object. In order for this simple adding machine application to be complete, we
need the code that implements the adding_machine object. The code in Program 8.2 shows the second
component to our simple adding machine application.

[3] Remote objects invocation introduces latency, security requirements, and the possibility
of partial failure.

Program 8.2

1 #include <iostream>
2 #include <fstream>
3 #include "adding_machine_impl.h"
4
5
6
7
8 int main(int argc, char *argv[])
9 {
10 CORBA::ORB_var Orb = CORBA::ORB_init(argc,argv,"mico-local-orb");
11 CORBA::BOA_var Boa = Orb->BOA_init(argc,argv,"mico-local-boa");
12 adding_machine_impl *AddingMachine = new adding_machine_impl;
13 CORBA::String_var Ref = Orb->object_to_string(AddingMachine);
14 ofstream Out("adding_machine.objid");
15 Out << Ref << endl;
16 Out.close();
17 Boa->impl_is_ready(CORBA::ImplementationDef::_nil());
18 Orb->run();
19 CORBA::release(AddingMachine);
20 return(0);
21 }
22
23

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08fn03

Notice on line 10 that the producer program also has to initialize an Orb object. This is an important
requirement for CORBA-based programs. Each program communicates with the aid of an ORB.
Initializing the ORB is one of the first things that a CORBA program must do. On line 12, the actual
adding_machine object is declared. This is the object that Program 8.1 will actually communicate with.
On line 13, the object reference for the actual adding_machine object is converted to its stringified
form. It's then written to a simple text file that can be easily read. Once the IOR is written to the file, the
Orb object waits for a request. Each time one of its methods is called, it performs the necessary addition
or subtraction to a persistent value. This value is accessed by calling the adding_machine's result()
method. Programs 8.1 and 8.2 represent barebones CORBA programs that show the basic structure that
CORBA programs will have. The code that makes the adding_machine object distributed begins with
its CORBA class declaration. Each CORBA object starts out as an IDL (Interface Definition Language)
design.

8.2.3 Interface Definition Language (IDL): A Closer Look at CORBA Objects

The IDL is the standard object-oriented design language used to design classes that will be used for
distributed programming. It is used to express class interfaces and class relationships. It is used to
specify member function prototypes, parameter types, and return types. One primary function of the
IDL is to separate the class interface from the implementation. Therefore, the actual definitions of
methods are not specified with the IDL. Neither the implementation of member functions nor data
members are specified using IDL. The IDL only specifies the function interface. Table 8-1 contains the
commonly used keywords in the IDL.

Table 8-1. IDL Keywords

IDL Keywords

abstract enum native struct

any factory Object supports

attribute FALSE octet typedef

boolean fixed oneway unsigned

case float out union

char in raises ValueBase

const inout readonly valuetype

cell interface sequence void

double long short wchar

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08table01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08prog01

IDL Keywords

exception module string

The keywords in Table 8-1 are reserved words in a CORBA program. In addition to specifying the
function interface for a class, the IDL is used to specify relationships between classes. The IDL
supports:

• user-defined types

• user-defined sequences

• array types

• recursive types

• exception semantics

• modules (similar to namespaces)

• single and multiple interitance

• bitwise and arithmetic operators

Here is the IDL definition for adding_machine class from Example 8.2:

interface adding_machine{
 void add(in unsigned long X);
 void subtract(in unsigned long X);
 long result();
};

It begins with the CORBA keyword interface. Notice that this adding_machine declaration does not
include any variables to hold the result of the additions and subtractions. Its add() and subtract()
methods accept a single unsigned long as a parameter. The parameter is accompanied by the CORBA
keyword in to denote that the parameter is an input parameter. This class declaration is stored in a
separate source file and named adding_machine.idl. Source files containing IDL definitions must end in
the .idl suffix. The source file containing the IDL declaration must be converted to C++ before it can be
used. This conversion can be done using a preprocessor step or by a standalone program. All CORBA
implementations include an IDL compiler. There are IDL compilers for C, Smalltalk, C++, Java, and so
on. The IDL compiler converts IDL definitions into the appropriate language. In our case the IDL
compiler converts the interface declaration into legitimate C++ code. Depending on the implementation
of CORBA that you use, the IDL compiler is called with syntax that will be similar to:

idl adding_machine.idl

This command will produce a file that contains C++ code. Since our IDL definition is saved in a file
named adding_machine.idl, the MICO IDL compiler produces a file named adding_machine.h that
contains several C++ skeleton classes and some CORBA data types. Table 8-2 contains the basic IDL
data types.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08table01

Table 8-2. Basic IDL Data Types

IDL Datatypes Range Size

long –231 to 231 – 1 > = 32 bits

short –215 to 215 – 1 > = 16 bits

unsigned long 0 to 232 – 1 > = 32 bits

unsigned short 0 to 216 – 1 > = 16 bits

float IEEE single-precision > = 32 bits

double IEEE double-precision > = 64 bits

char ISO Latin-1 > = 8 bits

string ISO Latin-1, except ASCII NULL Variable length

boolean TRUE or FALSE Unspecified

octet 0-255 > = 8 bits

any Runtime identifiable arbitrary type Variable length

Even after the IDL compiler creates C++ code from the interface class, the implementation for the
interface class methods are still undefined. The IDL compiler produces several C++ skeletons that are
to be used as base classes. Example 8.3 shows two of several classes generated by our MICO IDL
compiler from the file adding_machine.idl.

Example 8.3 Two classes generated by MICO IDL compiler from the adding_machine.idl.

class adding_machine : virtual public CORBA::Object{
public:
 virtual ~adding_machine();

 #ifdef HAVE_TYPEDEF_OVERLOAD
 typedef adding_machine_ptr _ptr_type;
 typedef adding_machine_var _var_type;
 #endif
 static adding_machine_ ptr _narrow(CORBA::Object_ ptr obj);
 static adding_machine_ ptr _narrow(CORBA::AbstractBase_ ptr obj);
 static adding_machine_ ptr _duplicate(adding_machine_ ptr_obj);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08ex03

 {
 CORBA::Object::_duplicate (_obj);
 return _obj;
 }

 static adding_machine_ ptr _nil()
 {
 return 0;
 }

 virtual void *_narrow_helper(const char *repoid);
 static vector<CORBA::Narrow_proto> *_narrow_helpers;
 static bool _narrow_helper2(CORBA::Object_ptr obj);
 virtual void add(CORBA::ULong X) = 0;
 virtual void subtract(CORBA::ULong X) = 0;
 virtual CORBA::Long result() = 0;

protected:
 adding_machine() {};
private:
 adding_machine(const adding_machine&);
 void operator=(const adding_machine&);
};

class adding_machine_stub : virtual public adding_machine{
public:
 virtual ~adding_machine_stub();
 void add(CORBA::ULong X);
 void subtract(CORBA::ULong X);
 CORBA::Long result();

private:
 void operator=(const adding_machine_stub&);
};

adding_machine.idl is input to the compiler and adding_machine.h along with its skeleton classes is
output from the compiler. The developer uses inheritance to actually provide implementations for the
function interfaces declared in the IDL source file. For instance, Example 8.4 shows the user-defined
class that provides the implementation for one of the skeleton classes produced by the IDL compiler.

Example 8.4 User-defined class implementation of skeleton classes.

class adding_machine_impl : virtual public adding_machine_skel{
private:
 CORBA::Long Result;
public:
 adding_machine_impl(void)
 {
 Result = 0;
 };
 void add(CORBA::ULong X)
 {
 Result = Result + X;
 };
 void subtract(CORBA::ULong X)
 {
 Result = Result - X;
 };

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08ex04

 CORBA::Long result(void)
 {
 return(Result);
 };
};

One of the skeletons that IDL compiler creates from the adding_machine interface class is named
adding_machine_skel. Notice that the IDL uses the name used in the interface definition to derive new
classes. Our adding_machine_impl class provides the implementation for the function interfaces
declared using the IDL. First, the adding_machine_impl class declares a data member named Result.
Second, it declares the actual implementations for the add(), subtract(), and the result() methods. So
while the adding_machine interface class specifies the declaration of these methods, the
adding_machine_impl class provides implementation of the methods. The userdefined
adding_machine_impl class will inherit a lot of functionality useful for distributed programming from
the base class. This is the basic scheme when doing CORBA programming. An interface class is
designed that represents the interfaces to be used. The IDL compiler is called to generate real C++ class
skeletons from the interface definition. The developer derives a class from one of the skeletons and
provides implementations for the methods defined in the interface class and data members that will be
used to hold attributes of the object. Generating real C++ classes from IDL is a three-step process:

1. Design the class interfaces, relationships, and hierarchies using the IDL.

2. Use the IDL Compiler to generate real C++ skeletons from the IDL classes.

3. Use inheritance to create descendants from one or more of the skeleton classes and implement
the interface methods inherited from the skeleton classes.

We'll discuss this process in more detail later in this chapter. First, let's take a closer look at the basic
structure of a consumer program.

8.3 The Anatomy of a Basic CORBA Consumer

One of the most common models for distributed programming is the consumer-producer model. In this
model, one program plays the role of producer and another plays the role of consumer. The producer
creates some service or data used by a consumer. For example, we could have a program that generates
unique license plate numbers upon demand. The consumer is the program that makes requests for new
license plate numbers and the producer is the program that generates the license plate numbers.
Typically, the consumer and producer are located in different address spaces. Figure 8-4 shows several
components and steps that most CORBA consumer programs contain.
Figure 8-4. Components and steps used by a CORBA consumer program.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04

To communicate with objects on other computers or in different address spaces, each program involved
in the communication must declare an ORB object. Once the Orb object is declared, then the consumer
program has access to its member functions. In Figure 8-4, the ORB is initialized using the call:

CORBA::ORB_var Orb = CORBA::ORB_init(argc,argv,"mico-local-orb");

This initializes an ORB object. The CORBA::ORB_var type is a handle to an object of type ORB. In
CORBA implementations, objects that have the _var designation take care of deallocating its
underlying reference. This is in contrast to the objects that have the _ptr designation. The command-line
arguments are passed to the ORB's constructor along with an orb_id. In our case, the orb_id is "mico-
local-orb". The string passed to the ORB_init() function that names the ORB to be initialized is
implementation specific and can differ between implementations. The derived object is referred to as
the servant object.

Once the ORB and the object adapter are initialized, the next basic component that any CORBA
application will need is the IOR for the remote object(s). In Figure 8-4, the IOR is retrieved from a file
named adding_machine.ior. The IOR has been written in its stringified form to the file. The ORB object
is used to convert the IOR from a string back to its object form using its string_to_object() method. In
Figure 8-4, this is accomplished by the call:

CORBA::Object_var Obj = Orb->string_to_object(Ior.c_str());

Here, Ior.c_str() returns the stringified IOR and Obj will be a reference to the object form of the IOR.
The object form of the IOR is then narrowed. This narrowing process is analogous to C++ type casting.
The narrowing process sizes an object reference to the appropriate object type. In this case, the
appropriate type is adding_machine The consumer program in Figure 8-4 narrows the IOR object using
the call:

adding_machine_var Machine = adding_machine::_narrow(Obj);

This process creates a reference to an adding_machine object. The consumer program can now call the
methods defined in the IDL interface for the adding_machine class. For instance:

Machine->add(500);
Machine->subtract(125);

call the add() and subtract() methods of the remote object. Although the consumer program in Figure 8-
4 is an oversimplified consumer, it does show the basic components of a typical CORBA consumer or
client program. The consumer program requires a producer program in order for the application to be
complete. We will look at a simplified CORBA program that acts as the producer for the program in
Figure 8-4.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04

8.4 The Anatomy of a CORBA Producer

The producer is responsible for providing either data, routines, or services to its consumer programs.
The producer, together with the consumer, make a complete distributed application. Each CORBA
producer program is designed with the assumption that there will be consumer programs to invoke its
services. Therefore, each producer program will create servant objects and provide IORs so that the
objects may be accessed. Figure 8-5 contains a simple producer program used in conjunction with the
consumer program from Figure 8-4. Figure 8-5 contains the basic components that any CORBA
producer program will contain.

Figure 8-5. Basic components of a CORBA producer program.

Notice that part A for the consumer program and the producer program are essentially the same. Both
the consumer and the producer program require an ORB to communicate. The ORB is used to get a
reference to an object adapter. Figure 8-5 contains the call:

CORBA::BOA_var Boa = Orb->BOA_init(argc,argv,"mico-local-boa");

This call is used to get a reference to an object adapter. The object adapter is a middleman between the
ORB and the object that implements the services to be called. Keep in mind that CORBA objects start
as interface declarations only. At some point in the development process, a derived class provides the
implementation for the CORBA interface. The object adapter acts as the middleman between the
interface that the ORB interacts with and the real methods implemented by the derived class. The object
adapters are used to access servant and implementation objects. The producer in Figure 8-5 creates an
implementation object in part B using:

adding_machine_impl *AddingMachine = new adding_machine_impl;

This is the object that will provide the implementation for the services that the client or consumer
objects will request. Also notice that in part C in Figure 8-5, the producer program uses the Orb object
to convert the IOR to a string and writes the string to a file named adding_machine.ior. This file can be
transmitted to the producer through ftp, e-mail, over http using Web pages, via NFS mounts and so on.
There are other ways to communicate the IOR, but the file method provides a simple introduction. After

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05

the IOR is written the producer program simply waits for requests from client or consumer programs.
The producer program in Figure 8-5 is also an oversimplification of the CORBA producer or server
program, but it does contain the basic components that a typical producer program will have.

8.5 The Basic Blueprint of a CORBA Application

We can see from the programs in Figures 8-4 and Figures 8-5 that a barebones CORBA application will
require two ORBs, an object adapter, a method for communicating an IOR, and at least one servant
object. Figure 8-6 shows the logical structure of a barebones CORBA application.

Figure 8-6. The logical structure of a barebones CORBA application.

After the IOR is obtained and narrowed, the remote method invocation in the consumer or client
program looks just like regular method calls in a C++ program. In the CORBA examples in this book,
the IIOP (Internet Inter ORB Protocol) is assumed. Therefore, the ORBs in Figure 8-6 are
communicating using a TCP/IP protocol. The IOR will contain enough information about the remote
object's location to facilitate the TCP/IP communication. The object adapter in Figure 8-6 will typically
be a portable object adapter. However, some older or simpler programs may use the basic object
adapter. We will describe the difference between these two adapters later in this chapter. Each CORBA
application has one or more servant objects that implements the interface designed in the IDL class. The
simple consumer and producer programs shown in Figures 8-4 and 8-5 can execute on the same
computer in different processes or on different computers. If the programs are executed on the same
computer then the file adding_machine.ior should be accessible from both programs. If the programs
are executed on different computers, then the file will have to be sent to the client computer via ftp, e-
mail, http, and so on. The compilation and execution details for the programs shown in Figure 8-4 and
8-5 are shown in Profile 8.1 and Profile 8.2

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec5.htm#ch08sb02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec5.htm#ch08sb01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec5.htm#ch08fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec5.htm#ch08fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec5.htm#ch08fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec3.htm#ch08fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05

Program Profile 8.1
Program Name

adding_machine_client_impl.cc

Description

This program is a simple consumer program. It connects to the CORBA producer program shown in
Figure 8-5. It adds 500 to the adding machine and then subtracts 125. It sends the result of the
operations to cout using the results() method.

Libraries Required

mico2.3.3 or mico2.3.7

Headers Required

None

Compile & Link Instructions

idl –poa adding_machine.idl
mico-c++ -g -c adding_machine.cc -o adding_machine.o
mico-c++ -g -c adding_machine_impl.cc -o adding_machine_impl.o
mico-c++ -g -c adding_machine_client_impl.cc -o
adding_machine_client_impl.o
mico-ld -g -o adding_machine_client adding_machine_client_impl.o
adding_machine_impl.o adding_machine.o -lmico2.3.3

Test Environment

SuSE Linux 7.1 gnu C++ 2.95.2, Solaris 8 Workshop 7, MICO 2.3.3, MICO 2.3.7

Execution Instructions

Execute the binary named adding_machine_client (e.g., ./adding_machine_client). The CORBA
producer program needs to be started first. The producer program is shown in Figure 8-5 and is named
adding_machine_server.

Notes

The CORBA producer program should be running at the time adding_machine_client is invoked.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05

Program Profile 8.2
Program Name

adding_machine_server_impl.cc

Description

This program is a simple server program shown in Figure 8-5. It accepts requests for additions and
subtractions and produces the results of those requests.

Libraries Required

mico2.3.3 or mico2.3.7

Headers Required

None

Compile and Link Instructions

idl –poa adding_machine.idl
mico-c++ -g -c adding_machine.cc -o adding_machine.o
mico-c++ -g -c adding_machine_impl.cc -o adding_machine_impl.o
mico-c++ -g -c adding_machine_server_impl.cc -o
adding_machine_server_impl.o
mico-ld -g -o adding_machine_server adding_machine_server_impl.o
adding_machine_impl.o adding_machine.o -lmico2.3.3

Test Environment

SuSE Linux 7.1 gnu C++ 2.95.2, Solaris 8 Workshop 7, MICO 2.3.3, MICO 2.3.7

Execution Instructions

Execute the binary named adding_machine_server (e.g., ./adding_machine_server)

Notes

None

8.5.1 The IDL Compiler

The IDL compiler is a tool used to translate IDL Class definitions into C++ code. This code consists of
a collection of class skeletons, enumerated types, and template classes. The IDL compiler used for the
CORBA programs in this book is the MICO IDL compiler. Table 8-3 contains some commonly used
command-line options to the IDL compiler.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec5.htm#ch08table03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec4.htm#ch08fig05

Table 8-3. Some Commonly Used Command-Line Options to the IDL Compiler

IDL Complier Command-
Line Options

Description

--boa Generates skeletons that use the basic object adapter (BOA). This is
the default.

--no-boa Turns off code generation of skeletons for the BOA.

--poa Generates skeletons that use the portable object adapter (POA).

--no-poa Turns off code generation of skeletons for the POA. This is currently
the default.

--gen-included-defs Generate code that was included using the #include.

--version Prints the version of MICO.

-D<define> Defines a preprocessor macro. This option is equivalent to the -D
switch of most UNIX C-compilers.

-I<path> Defines a search path for #include directives. This option is equivalent
to the -I switch of most UNIX C-compilers.

The -boa and -poa switches in Table 8-3 can be used to determine what kind of adapter skeletons will
be produced. For example, typing the command:

idl -poa -no-boa adding_machine.idl

will produce a file named adding_machine.h that contains skeletons for the poa (portable object
adapter) and it will turn off the production of skeletons for the boa (basic object adapter). Typing the
command:

idl -h

generates a complete list of the IDL compiler switches. If the man pages for the MICO distribution
have been properly installed, then typing the command:

man idl

will provide a complete explanation of the IDL switches available. Designing the IDL classes is the first
step in CORBA programming. The next major step in a CORBA program is determining how the IORs
for remote objects will be stored and retrieved.

8.5.2 Obtaining IOR for Remote Objects

The ORB class has two member functions that can be used for converting IOR objects between strings

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec5.htm#ch08table03

and Object_ptrs. The methods are string_to_object() and object_to_string(). The string_to_object()
member function takes a const char * and converts it to an Object_ptr. The object_to_string() member
function takes an Object_ptr and converts it to a char *. These methods are part of the ORB class
interface. The object_to_string() method is used to stringify object IORs. Once the IOR has been
stringified it can be transmitted to client and consumer programs through a variety of techniques,
including:

E-mail Shared file systems (NFS mounts)

ftp Embedded within html documents

Java applets/servlets Command-line arguments

Shared memory Traditional IPC (i.e., pipes, fifos)

Environment variables CGI get and post commands

The receiving program then takes the stringified IOR and uses its ORB's string_to_object() member
function to convert the IOR to a CORBA object ptr. The CORBA object ptr is then narrowed and used
to initialize the local object. Programs 8.1 and 8.2 use stringified objects and a file to communicate the
IOR between the consumer program and the producer program. The stringified IOR can be used to
facilitate very flexible connections to remote objects that can reside virtually anywhere on the Internet
or on any intranet or extranet. In fact, the MIWCO (Wireless Mico) is an open-source implementation
of wCORBA,[4] the wireless CORBA standard, and can be used to enhance the mobility of objects.
The wireless specification enables mobility through a MIOR (Mobile IOR). The wireless specification
has support for TCP, UDP, and WAP WDP (Wireless Application Protocol Wireless Datagram
Protocol) transports. Multiagent and distributed agent systems can also benefit by taking advantage of
the IOR standards. The IOR and MIOR are part of the building blocks for the next generation of object-
oriented Web services. It is important to note that although the stringified IOR provides a flexible and
portable object reference, it may not be ideal for all situations and configurations. Moving a file
containing the IOR may not be practical for many installations. Forcing client and server applications to
share the same file system or network may not be practical. Security concerns might exclude the
stringified IOR as an option. If a client-server application is large and diverse enough, then the
stringified IOR sharing may be too restricting. The CORBA specification includes two other standards
for obtaining or communicating object references: naming services, and trading services.

[4] wCorba is the CORBA standard for wireless remote object interaction. White papers and
case studies for the wireless CORBA standard are available at www.omg.org.

http://www.omg.org/
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec5.htm#ch08fn04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08prog01

8.6 The Naming Service

The naming service standard provides a mechanism for mapping names to object references. The
requester of an IOR provides a name to the naming service and the naming service returns the object
reference associated with that name.

The naming service acts as a kind of telephone directory, in which the name is used to look up the
number. It allows client and consumer programs to look up object references by name. The naming
service can be used to map other application resources in addition to providing simple IOR maps. A
mapping from a name to an object reference is called name binding. A collection of name bindings is
associated with a naming context object. To illustrate the notion of a naming context, lets say we have
an application that does travel planning that consists of a large and diverse collection of objects. We can
organize these groups of objects according to function. Some objects are associated with file I/O, some
object with security. Other objects are specifically related to transportation: train, bus, car, and bicycle
objects. Each grouping forms a context. For instance, to logically group the transportation related
objects together we can create a transportation context, and associate each of our forms of
transportation with that context. This grouping forms a naming context. We bind the name of each form
of transportation with its IOR. This is name binding. We then associate that binding with the
transportation context. We use contexts to logically organize groups of related objects. Furthermore, a
collection of connected naming contexts forms a naming graph. Naming contexts are represented by
objects. Since a naming context is implemented as an object, it can participate in name binding just like
any other object. This means that a naming context can potentially contain other naming contexts. For
instance, Figure 8-7 contains several contexts including a logical representation for our transportation
context.

Figure 8-7. Several different naming contexts.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08fig07

Notice that the last entry in the transportation context is the name airborne. The airborne name maps to
another context named flying_machines. The flying_machines context contains bindings of several
objects related by function. The transportation context, together with the flying_machines context, form
a naming graph. Notice in Figure 8-7 that the last object in the flying_machines context is named sonic.
The sonic name maps to the fast_flying_machines context. That is, the sonic name has an object
reference of 8888. This adds another context to the naming graph. This is an example of one naming
context containing another naming context. The naming graph can be used to represent the "big picture"
of the structure of the relationships within a distributed object-oriented application. The naming graph
captures the landscape of a distributed application. For multiagent systems the naming graph can be
used as a kind of semantic network (see sidebar 8.1). Although the objects involved may be scattered
among diverse hardware platforms, operating systems, programming languages, and geographical
locations, the naming graph can present a single logical structure of the relationships and connections
between the objects. Figure 8-8 shows an alternative representation of the naming graph from Figure 8-
7. Figure 8-8 has the same naming contexts as Figure 8-7 and it clearly shows the relationships between
the naming contexts. Figure 8-8 also demonstrates that there is a path from the transportation context to
the fast_flying_machines context and then back to the transportation context.

Figure 8-8. An alternative representation of the naming graph.

Graph traversal algorithms can even be employed to traverse through the naming graph in the process
of distributed problem solving. Using traversal in this way, various paths through a naming graph can
represent solutions to problems. The naming service provides the requester access to naming contexts
and naming graphs. Naming contexts can be accessed through naming graphs. Bindings can be
accessed through naming contexts. The binding provides a direct association between a name and an
object reference. Program 8.3 shows a simple producer that creates a name binding and associates that
name binding with a naming context.

Program 8.3

 1 #include <iostream>
 2 #include <fstream>
 3 #include "permutation_impl.h"
 4 #define MICO_CONF_IMR
 5 #include <CORBA-SMALL.h>
 6 #include <iostream.h>
 7 #include <fstream.h>
 8 #include <unistd.h>
 9 #include <mico/CosNaming.h>
10
11

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08fig08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08fig07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08fig08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08fig07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08fig07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08fig08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08sb03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08fig07

12 int main(int argc, char *argv[])
13 {
14 CORBA::ORB_var Orb = CORBA::ORB_init
 (argc,argv, "mico-local-orb");
15 CORBA::Object_var PoaObj =
 Orb->resolve_initial_references("RootPOA");
16 PortableServer::POA_var Poa =
 PortableServer::POA::_narrow(PoaObj);
17 PortableServer::POAManager_var Mgr = Poa->the_POAManager();
18 inversion Server;
19 PortableServer::ObjectId_var Oid =
 Poa->activate_object(&Server);
20 Mgr->activate();
21 permutation_ptr ObjectReference = Server._this();
22 CORBA::Object_var NameService =
 Orb->resolve_initial_references ("NameService");
23 CosNaming::NamingContext_var NamingContext =
 CosNaming::NamingContext::_narrow (NameService);
24 CosNaming::Name name;
25 name.length (1);
26 name[0].id = CORBA::string_dup ("Inflection");
27 name[0].kind = CORBA::string_dup (" ");
28 NamingContext->bind (name, ObjectReference);
29 Orb->run();
30 Poa->destroy(TRUE,TRUE);
31 return(0);
32 }
33
34

S 8.1. Semantic Networks
A semantic network or semantic net is one of the oldest and easiest to understand knowledge
representation schemes. A semantic network is basically a graphic depiction of knowledge that shows
the hierarchical relationships between objects. Sidebar Figure 8-1 shows a simple semantic network
that conveys knowledge about vehicles in general and knowledge about certain vehicles in particular.

. Sidebar Figure 8-1 A simple vehicle semantic network.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08sbfig01

The circles in the semantic net are called nodes. The lines are called links. The links represent some
kind of relationship between the nodes. The nodes are used to represent objects and facts or
descriptors. Links are used to represent relationships and connections. Some links are definitional
while other links can be computational. The links can be used to show inheritance or subordination.
Together the nodes and the links convey chunks of knowledge. For example, from the semantic
network in Sidebar Figure 8-1, we know that a F-15 is a vehicle and a flying machine that has at least
two wings. Semantic networks are used to understand and design the knowledge needed by problem-
solving software.

8.6.1 Using the Naming Service and Creating Naming Contexts

On line 22, the server program gets a reference to the naming service:

CORBA::Object_var NameService = Orb->resolve_initial_
references ("NameService");

In addition to returning object references for the Implementation Repository and the Interface
Repository, the resolve_initial_references() method of the ORB is used to return a reference to the
naming service. After obtaining a reference to the naming service, the server program creates a naming
context from the object reference of the naming service on line 23:

CosNaming::NamingContext_var NamingContext =
CosNaming::NamingContext::_narrow(NameService);

This technique provides a naming context referred to as the initial naming context. The initial naming
context plays the part of a default context. Once the naming service is located and the initial naming
context is created, then the server program can add name/object reference pairs (name bindings) to the
context. The names may be domain objects or other contexts. To add a name/object pair to a context, a
name must first be created. Names are implemented in the CORBA standard by the NameComponent
structure:

struct NameComponent {
 //...
 Istring_var id;
 Istring_var kind;
}

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec1.htm#ch08fig01

The MICO implementation of CORBA declaring the NameComponent structure is the CosNaming.h
file. The NameComponent structure has two attributes: id and kind. The first attribute is used to hold
the text of the name and the second attribute is an identifier that can be used to classify the object. For
example:

//...
CosNaming::Name ObjectName;
ObjectName.length(1);
ObjectName.id = Corba::string_dup("train");
ObjectName.kind = Corba::string_dup("land_transportation");
NamingContext->bind(ObjectName,ObjectReference);
//...

Declares a NameComponent object. The id attribute is set to "train" and the kind attribute is set to
land_transportation. Obviously the id attribute should be descriptive of the object. The kind attribute
can be used to describe the context or the logical group that the object belongs to. In this case, it
classifies train as a land_transportation object. The bind() method maps the ObjectName to the
ObjectReference and associates it with the initial naming context. A name can consist of multiple
NameComponent objects. If the name only consists of a single NameComponent, it is called a simple
name. If it consists of multiple NameComponent objects, it is called a component name. If the name is a
compound name, then the kind attribute can be used to describe a relationship. This technique is
discussed further in Chapter 12. Program 8.3 binds its object with an object reference and associates it
with a naming context. Once it is associated with the naming context, then the client object may access
it through the name service. In Programs 8.1 and 8.2, we used a file to communicate a stringified IOR
between the consumer program and the producer program. The naming service is used for
communication with the client for Program 8.3.

The details for installing and executing the naming service is implementation specific. The MICO
environment contains a program named nsd that implements a COS-compliant naming service. The nsd
program requires the micod daemon to be running and appropriate entries to be made to the
Implementation Repository before the naming service will be available to the consumer program. See
the man pages for nsd, micod, and imr for a description of these programs and the MICO manual for a
description of how they are used. Furthermore, the MICO distribution is accompanied by a wealth of
examples of how to use the imr, nsd, micod, and ird programs. Example 8.5 is an excerpt from the shell
script used to set up the server in Program 8.3 so that the name service would be available to the
consumer program.

Example 8.5 Shell script that adds an entry to the Implementation Repository and starts the naming service.

micod -ORBIIOPAddr inet:hostname:portnumber -forward &
imr create NameService poa 'which nsd' IDL:omg.org/CosNaming/
NamingContext:1.0#NameService \
 -ORBImplRepoAddr inet:hostname:portnumber \
 -ORBNamingAddr inet:hostname:hostname:portnumberportnumber

imr create permutation persistent "'pwd'/permutation_server \
 -ORBImplRepoAddr inet:hostname:portnumber \

 -ORBNamingAddr inet:hostname:portnumber" IDL:permutation:1.0 \
 -ORBImplRepoAddr inet:hostname:portnumber \
 -ORBNamingAddr inet:hostname:portnumber
imr activate permutation -ORBImplRepoAddr inet:hostname:portnumber \
 -ORBNamingAddr inet:hostname:portnumber

This shell script can be used in conjunction with the server in Program 8.3. In fact, this script actually

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08prog02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec2.htm#ch08prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12.htm#ch12

helps to automatically start the server program named permutation_server. Note that hostname and
portnumber in Example 8.5 need to be replaced by the hostname of the computer where the server is
running and an appropriate port number.

8.6.2 A Name Service Consumer/Client

Program 8.3 associates the name of an object with a naming context. Program 8.4 contains a consumer
program that uses the naming service to access the object/reference bindings that were created in
Program 8.3 Program 8.3 produces a permutation of any string of characters that it receives.
Permutations are creating by inflections of the characters within a string. For instance:

Objcte JbOetc tbOjec

Ojbect JObetc

Ojbcet JtObec

are permutations of the string Object. The client gives the server a string to permute and the server
generates N permutations. The server associates the name "Inflection" with the naming context. This
name is the name that the client program will have to specify in order to get the object reference from
the naming context.

Program 8.4

 1 int main(int argc, char *argv[])
 2 {
 3
 4 try{
 5 CORBA::ORB_var Orb = CORBA::ORB_init
 (argc,argv,"mico-local-orb");
 6 object_reference Remote("NameService",Orb);
 7 Remote.objectName("Inflection");
 8 permutation_var Client =
 permutation::_narrow(Remote.objectReference());
 9 char Value[1000];
10 strcpy(Value,"Common Object Request Broker");
11 Client->original(Value);
12 int N;
13 for(N = 0;N < 15;N++)
14 {
15 cout << "Value of nextPermutation() "
 << Client->nextPermutation() << endl;
16 }
17 }
18 catch (CosNaming::NamingContext::NotFound_catch &exc) {
19 cerr << " Object NotFound exception" << endl;
20 }
21 catch (CosNaming::NamingContext::InvalidName_catch &exc) {
22 cerr << "InvalidName exception" << endl;
23 }
24
25 return(0);
26 }

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08ex05

Three steps the consumer program must take to access the appropriate object in the naming context are:

1. Get a reference to the name service.

2. Obtain a reference to the appropriate naming context through the name service.

3. Obtain a reference to the appropriate object through the naming context.

Step 1 is accomplished by calling the resolve_initial_references() method:

//...
CORBA::Object_var NameService;
NameService = Orb->resolve_initial_references ("NameService");
//...

This will return an object reference to the name service. In Step 2 this reference is used to get an object
reference for the naming context:

CosNaming::NamingContext_var NameContext;
NameContext = CosNaming::NamingContext::_narrow (NameService);

The value of NameService is narrowed in Step 3, resulting in an object reference for NameContext. The
consumer program needs the NameContext object so that it may call the NameContext's resolve()
method. The technique from Program 8.3 lines 24-27 is used to construct the name that will passed to
the NameContext's resolve() method:

Name.length (1);
Name[0].id = CORBA::string_dup ("Inflection");
Name[0].kind = CORBA::string_dup (" ");
try {
 ObjectReference = NameContext->resolve (Name);
}

The resolve() method will return the object reference associated with the name. In this case, the object's
name is "Inflection." Note that this is the same name associated with the naming context on line 28
from Program 8.3. Once the consumer program has this object reference, it can be narrowed and then
the remote object can be accessed by the consumer program. The process of obtaining an object
reference for a remote object is such a common event that it makes sense to simplify the process by
encapsulating the components within a class.

class object_reference{
//...
protected:
 CORBA::Object_var NameService;
 CosNaming::NamingContext_var NameContext;
 CosNaming::Name Name;
 CORBA::Object_var ObjectReference;
public:
 object_reference(char *Service,CORBA::ORB_var Orb);
 CORBA::Object_var objectReference(void);
 void objectName(char *FileName,CORBA::ORB_var Orb);
 void objectName(char *OName);
//...
}

Program 8.4 takes advantage of the simple skeleton object_reference class that we have created for this
purpose.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03

Notice on line 6 from Program 8.4 that an object named Remote of type object_reference is created. On
line 8, this object is used to obtain a reference to the remote object using the method call:

Remote.objectReference();

After making this call the consumer program has access to the remote object. The object_reference
class hides some of the work that needs to be done and therefore makes writing the consumer program
easier. The constructor for the object_reference class is called on line 6 of Program 8.4. The constructor
is implemented as:

object_reference::object_reference(char *Service,CORBA::ORB_var Orb)
{
 NameService = Orb->resolve_initial_references (Service);
 NameContext = CosNaming::NamingContext::_narrow (NameService);
}

The constructor gets a reference to the name service and instantiates the NameContext object. On line
7, the object's name is passed to the method objectName(). This process will using the naming context
to retrieve the object reference associated with the object's name. The objectName() method is
implemented as:

void object_reference::objectName(char *OName)
{
 Name.length (1);
 Name[0].id = CORBA::string_dup (OName);
 Name[0].kind = CORBA::string_dup (" ");
 try {
 ObjectReference = NameContext->resolve (Name);
 }
 catch(...){
 cerr << " Problem resolving Name " << endl;
 throw;
 }
}

After the objectName() method is called the consumer program has access to the remote object's
reference. All that is left to do is to call the objectReference() method. This occurs on line 8 of Program
8.4. The resolve() function does most of the work in the objectName() method. Programs 8.3 and 8.4
form a simple distributed client/server application that uses the naming service instead of stringified
IORs to communicate object references. Both the naming service approach and the stringified IOR can
be used in an intranet or on the Internet. Both can be used as support structure components within the
context of the new Web services model.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog04

8.7 A Closer Look at Object Adapters

In addition to the name service and naming context object, the server in Program 8.3 also uses a
portable object adapter. Recall from Figure 8-6 that the adapter acts as a kind of middleman between
the ORB and the servant object that actually does the work of the CORBA object. We can compare a
servant object to a ghost writer that writes a book on behalf of a celebrity. The publicists, marketers,
and lawyers interact with the celebrity. The celebrity gets all the credit, but the ghost writer does the
actual work and writing involved. The CORBA object publishes an interface to the outside world and is
the celebrity in a CORBA program. The client or producer program interacts with the interface that the
CORBA object provides, however, it's the servant object playing the part of the ghost writer that
actually does the real work. The servant object has its own protocol. This protocol might be different
from the one presented by the CORBA object. The CORBA object might present a C++ interface to the
client. The servant object might be implemented in Java, Smalltalk, Fortran and so on. The object
adapter provides an interface to the servant object. It adapts the interface so that the implementation of
the servant object is transparent to the ORB and the client program. A CORBA implementation will
normally have support for two types of object adapters: the Basic Object Adapter (BOA) and the
Portable Object Adapter (POA). The BOA was the original adapter specified by the CORBA standard.
The POA was designed to replace the BOA and is considerably more flexible and most commonly
used. The BOA is a barebones adapter that has minimal capabilities. However, the BOA can be used to
activate object implementations based on information stored in the Implementation Repository. Table
8-4 contains some of the commonly found elements in an Implementation Repository.

The BOA uses the activation mode and the path from the Implementation Repository to start the
execution of a producer or server object. Although some of the simpler examples in this chapter used
the BOA, we recommend that you use the POA for any serious CORBA development. The POA:

• Supports transparent object activation

• Supports transient objects

• Supports implicit activation of servant objects

• Supports persistent objects across server boundaries

Table 8-4. Some Commonly Found Elements in an Implementation Repository

Implementation Repository Elements Description

object name Unique identifier for each object.

activation mode Shared, unshared, persistent, permethod library.

path Name and path of the binary.

list of repository IDs

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec7.htm#ch08table04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec7.htm#ch08table04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec5.htm#ch08fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03

Perhaps the most important function of the POA is to interact with servant objects. The CORBA
specification defines a servant accordingly:

A servant is a programming language object or entity that implements requests on one or
more objects. Servants generally exist within the context of a server process. Requests made
on an object's references are mediated by the ORB and transformed into invocations on a
particular servant. In the course of an object's lifetime it may be associated with multiple
servants.

Every servant object will have at least one POA. However, other configurations are possible. Figure 8-9
shows the configuration possibilities between POAs and servants.

Figure 8-9. Configuration possibilities between POAs and servants.

POAs are managed in part by POA manager objects. The CORBA specification defines a POA
manager accordingly.

A POA manager is an object that encapsulates the processing state of one or more POAs.
Using operation on a POA manager, the developer can cause requests for the associated
POAs to be queued or discarded. The developer can also use the POA manager to
deactivate the POAs.

The server in Program 8.3 provides a simple example of how to use POAs and POA manager objects. A
complete discussion of the POA is beyond the scope of this book. For a thorough discussion of POAs,
see Advanced CORBA Programming with C++ by Michi Henning and Steve Vinoski. The MICO
distribution also contains several examples of how to use some of the more advanced features of the
POA.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec6.htm#ch08prog03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec7.htm#ch08fig09

8.8 Implementation and Interface Repositories

The ORB uses the Implementation Repository to locate objects when stringified IORs are not available.
Implementation Repositories are normally ORB specific and are used as a convenient place to store
environment-specific information (e.g., security information, debugging information, etc.). The
Implementation Repository will contain enough information to allow the ORB to locate the object's
path and binary executable. The imr tool is used with MICO distributions to manage the
Implementation Repository. The imr tool is used to display, list, add, and delete entries from the
Implementation Repository. For example:

imr create permutation persistent " 'pwd'/permutation_server \
 -ORBImplRepoAddr inet:hostname:portnumber \
 -ORBNamingAddr inet:hostname:portnumber" IDL:permutation:1.0 \

Adds an entry to the repository with the name permutation. The executable file is located at
'pwd'/permutation_server. The entry also includes the hostname and the portnumber that the program
should be executed on. The Implementation Repository is a good place to store this type of information
about an object. This entry is also given the mode of persistent. The ORB uses the information in this
entry to properly initiate the execution of the program named permutation_server. See the man pages
for a complete list of options available for the imr tool. The Interface Repository is used in addition to
the Implementation Repository to store runtime information about each object. The Interface
Repository can be used to discover the interface to CORBA objects dynamically because the IDL
information about CORBA objects can be stored in the Interface Repository. The ird tool implements
the Interface Repository for MICO distributions of CORBA. Although the CORBA specification
describes the logical features of the Implementation Repository and the Interface Repository, the
specifics are environment, distribution, and vendor specific. Also, the manner in which information is
placed into and managed within an Implementation and Interface Repository will be vendor specific.

8.9 Simple Distributed Web Services Using CORBA

The addresses for Implementation Repositories and naming services can be imbedded within HTML
and used as part of a CGI call to a Web server. This technique can be used to implement simple
distributed Web services using CORBA. Example 8.6 shows a simple HTML entry. When the link is
clicked, a CORBA client executes. The CORBA client can then get to the server using the address of
the Implementation Repository and the naming service that was passed from the HTML CGI command.

Example 8.6 A HTML document with an embedded call to a CORBA client program.

<HTML>
<HEAD>
<TITLE> CORBA</TITLE>
</HEAD>
<BODY>
<a href="http://www.somewhere.org/cgi-bin/client?-
ORBImplRepoAddr+inet:hostname:port+-
ORBNamingAddr+inet:hostname:port">Click
<P>
</HTML>

Here the client refers to a program that will access a CORBA producer or server program. The client
has the name of the object that needs to be accessed and uses the naming service to resolve the
reference. This technique does not require code to be downloaded to the user's computer. Instead, the
client code is executed on the Web server and will access the CORBA-based server program whether it

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec9.htm#ch08ex06

is on an intranet connected to a Web server or somewhere else on the Internet. The client program will
respond to the HTML browser using the appropriate CGI protocol. Figure 8-10 shows a simple Web
services configuration using CORBA components.

Figure 8-10. A simple Web services configuration using CORBA components.

In addition to http, telnet can be used to launch CORBA-based clients and servers. The http protocol
and the telnet protocol can be used to support global distribution of CORBA components. It is
important to remember software, data, and system security when considering the design of distributed
components that will be used across the Internet or intranet. Although security implementations and
requirements are beyond the scope of this book, we mention it as a fundamental consideration in any
distributed design. The Implementation Repository can be used to store security-type information. A
CORBA implementation can be used in conjunction with SSL (Secure Socket Layer) and SSH (Secure
Shell).

8.10 The Trading Service

In addition to stringified IORs and the naming service, the CORBA specification includes a more
advanced and dynamic method of obtaining object references called the trading service. The trading
service offers a more discovery-based approach to interacting with remote objects. Instead of
interacting with a naming service, the client interacts with a trader. A trader has access to object
references in the same manner as a naming service. However, the trader associates descriptions, and
interfaces with the object references instead of a simple name. Whereas the naming service contains
name/reference pairs, the trader contains descriptions-interfaces/reference pairs. Clients can describe
the object they are looking for to the trader and the trader responds with an object reference if a match
is found. This a very powerful search method. Not only can the client be unaware of the object's
location, it can also be unaware of the object's name. This allows the client to query a trader based on a
list of services that it needs instead of looking for a particular object. This allows the client to have a I-
don't-care-who-or-where approach. The CORBA specification defines a trader accordingly:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec9.htm#ch08fig10

A trader is an object that supports the trading object service in a distributed environment. It
can be viewed as an object through which other objects can advertise their capabilities and
match their needs against advertised capabilities. Advertising a capability or offering a
service is called "export." Matching against the needs or discovering services is called
"import." Export and import facilitate dynamic discovery of, and late binding to, services.

In the same way that connecting two or more naming contexts produce naming graphs, connecting two
or more traders produce trading graphs. Naming and trading graphs are powerful methods of knowledge
and capability representation. Naming graphs and trading graphs provide the foundations for global
Web services and telnet services. Traversing naming and trading graphs might include hops that have
the potential to visit anywhere on the local network, intranet, extranet, or the Internet. Like naming
contexts, traders typically represent certain kinds of objects. For instance, we might have some traders
that have access to credit card objects while other traders have access to compression and encryption
objects. We can have traders that deal in weather and geography objects. We can have traders that deal
in financial and insurance services. If each of these traders were linked, we would have a trading graph.
If one trader trades on behalf of other traders, we would have what is known as a trade federation.
When a client describes the services that it needs to one trader and that trader then contacts other traders
to locate the required services, the client and the trader are involved with a trade federation. This is the
most powerful and flexible form of I-don't-care-who-or-where request that the client can perform.
When a trade federation returns an object reference it can literally be from anywhere and may be
implemented by a servant object(s) whose operating system and language are totally foreign to the
client program. Federations of traders provide access to very large and diverse collections of services.
Keep in mind that the CORBA standard includes a wireless specification wCORBA. This has
tremendous implications for the design of mobile agent and multiagent systems. Figure 8-11 shows the
basic architecture of a CORBA-based client/server application that makes requests of traders.

Figure 8-11. Basic architecture of a CORBA-based client-server application that makes requests of traders.

A client program may interact directly with a trader or traders or indirectly with a trader through the
federation. Notice in Figure 8-11 that the object reference is obtained and then the interaction with the
ORB occurs. Table 8-5 shows common terms used with trader programming.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec10.htm#ch08table05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec10.htm#ch08fig11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec10.htm#ch08fig11

Table 8-5. Common Trader Programming Terms

Trader
Programming Terms

Description

Exporter Advertises a service with a trader. An exporter can be the service provider or
it can advertise a service on behalf of another.

Importer Uses a trader to search for services matching some criteria. An importer can
be the potential service client or it can import a service on behalf of another.

Service offer Contains a description of the service being advertised. It contains a service
type name, object reference, and object properties.

8.11 The Client/Server Paradigm

The terms "client" and "server" are applied in many ways to many different kinds of software
applications. The client/server paradigm divides a patten of work between two parties represented by
either processes or threads. One party, the client, makes requests for data or for action. The other party,
the server, fulfills the requests. The roles of requester and request satisfier are common themes found in
many different software applications. The terms client/server are used at the operating-system level to
describe many producer–consumer relationships that can occur between processes. For instance, when a
fifo is used to connect two processes, one of the processes takes on the role of server and the other of
client. Sometimes a client can take on the role of server when it receives requests. Similarly, a server
may take on the role of client when it needs to make requests of another program. The client/server
configuration is the most fundamental architecture for distributed programming. The type of server
involved usually characterizes the entire application. Table 8-6 shows the most commonly found types
of software servers.

Blackboards and multiagent systems are the two primary architectures that we use in this book to
support parallel and distributed programming. We place special emphasis on the logic server defined in
Table 8-6. The logic server is a special type of an application server, and is used to perform problem
solving that requires intense symbolic and possibly parallel computation. The process of inference and
deduction is often processor intensive and can benefit from parallel processors. Usually the more
processors available to logic servers, the better. The Agent and Blackboard architectures that we discuss
in Chapter 12 and 13 rely on the notion of distributed logic servers that can cooperatively solve
problems over a network, an intranet, or the Internet. Although the Blackboard and Agents form more
of a peer-to-peer architecture, they are clients to the logic servers that they access. Distributed objects
are used to implement all of the components involved. CORBA is used to facilitate the network
programming.

Summary

Distributed programming involves programs that execute in different processes. Each process can
potentially reside on a different computer and possibly on a different network with different network
protocols. Distributed programming techniques allow the developer to divide an application into
separately executing modules that will either have some kind of producer–consumer relationship or
peer-to-peer relationship. The modules each have their own address space and computer resources.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12.htm#ch12
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec12.htm#ch08table06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08lev1sec12.htm#ch08table06

Distributed programming can be used to take advantage of special processors, peripherals, and other
computer resources (i.e., database servers, applications servers, e-mail servers, etc.). CORBA is the
standard for distributed object-oriented programming. We provide an introduction to some of the
simple basics of CORBA programming. However, this chapter barely scratches the surface of the
CORBA specification and CORBA services. It provides only enough to see what the basic components
look like and how a simple distributed program can be constructed. The CORBA specifications for
Web services, MAF, naming services, and so on, can be obtained from www.omg.org. Michi Henning
and Steve Vionosk provide a detailed resource in their Advanced CORBA Programming with C++. The
naming and trader graphs provide the basis for powerful distributed knowledge representation that can
be used in conjunction with multiagent programming. They provide the basis for the next level of smart
Web services.

Table 8-6. Common Types of Software Servers

Types of
Software
Servers

Description

Application
servers

Used to provide multiple clients with access to an application. It divides work in an
application between the client and the server. The majority of the work is done on the
server and the client (with its own processor) performs part of the work.

File servers Acts as a central repository for shared documents, multimedia files, databases, and so
on. The clients are usually terminals or workstations on a network. The client makes
requests for files or records within the files, then the file server transmits the request to
the client. The file server maintains data integrity and enforces file access security.

Database
servers

Splits the processing of an application between different machines in a network
environment. A client makes requests for an item of data, then the database server
locates the data and transmits the request to the client. The database server can process
complex information queries that may require joins and intersections of multiple
databases.

Transaction
servers

Used to perform transactions that take place on the machine or machines that contain
the transaction server. Every action or update completes in its entirety without
interruption. If any problems are encountered, all actions or updates are undone and
the transaction is tried again.

Logic servers Used to perform problem solving that requires intense symbolic computation. It is able
to find both implicit and explicit information within a database. The logic server is
able to deduce or infer information that has not been explicitly entered into the
database. It consists of a database with one or more built-in inference engines. The
inference engine is used to obtain conclusions and inferences from the server. The
database consists of rules, theorems, axioms, and procedures. Queries submitted to the
logic server causes it to perform deduction, induction, abduction, or some
combination.

http://www.omg.org/

Chapter 9. SPMD and MPMD Using Templates and the MPI
"There must be an essentially non-algorithmic ingredient in the action of consciousness."

—Roger Penrose, The Emperor's New Mind

In this Chapter

• Work Breakdown Structure for the MPI

• Using Template Functions to Represent MPI Tasks

• Simplifying MPI Communications

• Summary

Templates support the notion of parameterized programming. The basic idea of parameterized
programming is to maximize software reuse by implementing software designs in as general a form as
possible. Function templates support generic procedural abstractions and class templates support
generic data abstractions. Typically, computer programs are already general solutions to specific
problems. A program that adds two numbers is usually designed to add any two numbers. However, if
the program only performed the operation of addition, we could generalize this program by allowing it
to perform different operations on any two numbers. If we want the most general program, can we stop
with simply allowing it to perform different operations on any two numbers? What if the numbers are
of different types, that is, complex numbers and floats? We may wish to design the program so that not
only can it perform different operations on any two numbers but on different types or classes of
numbers (i.e., ints, floats, doubles, complex numbers, etc.). In addition, we would like the program to
perform any kind of binary operation on any pair of numbers so long as that operation is legal for those
two numbers. Once we have implemented such a program, the opportunities for reuse are significant.
Function and class templates give this capability to the C++ programmer. This kind of generalization
can be accomplished using parameterized programming.

The parameterized programming paradigm supported by C++, combined with the object-oriented
paradigm that is also supported by C++, provide some unique approaches to MPI programming. As we
discussed in Chapter 1, the MPI (Message Passing Interface) is a standard of communication used in
implementing programs that require parallelism. The MPI is implemented as a collection of more than
300 routines. The MPI functions include everything from spawning tasks to barrier synchronization to
set operations. There is also a C++ representation for the MPI functions that encapsulate the
functionality of the MPI into a set of classes. However, many of the advantages found in the object-
oriented paradigm are not used in the MPI library. The advantages of parameterized programming are
also absent. So while the MPI has important value as a standard, it does not go a long way to simplify
parallel programming. It does insulate the programmer from socket programming and many of the
pitfalls of network programming. That insulation is not enough. Cluster, SMP, and MPP application
programming can be made easier. The template facilities in C++, and the support for true object-
oriented programming, can be used to help us accomplish this goal. In this chapter, we use templates
and techniques from object-oriented programming, to simplify the basic SPMD and MPMD approaches
used with MPI programming.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch01.htm#ch01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec4.htm#ch09lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec3.htm#ch09lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec1.htm#ch09lev1sec1

9.1 Work Breakdown Structure for the MPI

One of the advantages of using the MPI over traditional UNIX/Linux processes and sockets is the
ability of an MPI environment to launch multiple executables simultaneously. An MPI implementation
can launch multiple executables, establish a basic relationship between the executables, and identify
each executable. In this book we use the MPICH[1] implementation of MPI. The command:

[1] All the MPI examples in this book were implemented using MPICH 1.1.2 and MPICH
1.2.4 in the Linux environment.

$ mpirun -np 16 /tmp/mpi_example1

tells the MPI runtime to launch 16 processes. Each process will execute the program named
mpi_example1. Each process may use a different processor if the processor is available. Also, each
process may be on a different machine if the MPI is run in a cluster-type environment. The processes
will execute concurrently. The mpirun command is a shell script that is responsible for starting MPI
jobs on the necessary processors. This script insulates the user from details of starting concurrent
processes on different machines. Here it will launch 16 copies of the program mpi_example1. Although
the MPI-2 standard does specify spawn routines that can be used to dynamically add programs to an
executing MPI application, this technique is not encouraged. In general, the number of processes
needed are created at the start of an MPI application. This means that the code is replicated N number
of times during startup. This scheme easily supports the SPMD (SIMD) model for concurrency because
the same program is launched simultaneously on multiple processors. The data that each program needs
to work on can be determined after the programs are running. This technique of starting the same
program on multiple processors also has implications if the MPMD model is desired. The work that a
MPI program will do is divided between the number of processes launched on startup. Which process
does what and which process works on which data is coded in the executable. The computers that can
be involved in the process are listed in the machines.arch (machines.Linux in our case) file by host
name. The location of this file is implementation dependent. Depending on your installation, the
computers listed in the file will either be able to communicate using ssh or the UNIX/Linux 'r'
commands.

9.1.1 Differentiating Tasks by Rank

During the startup of the processes involved in an MPI application, the MPI environment assigns each
process a rank and a communication group. The rank is stored as an int. The rank serves as a kind of
process id for each MPI task. The communication group determines which processes can engage in
point-to-point communications. Initially, all MPI processes are assigned to a default communication
group. The members of a communication group can be changed after the application has started. After
each process is started, one of the first things that it should do is determine its rank. This is done with
the MPI_Comm_rank() routine. The MPI_Comm_rank() routine returns the rank of the calling process.
The calling process specifies what communicator it is associated with in the first argument to the
routine and the rank is returned in the second argument. Example 9.1 shows how the
MPI_Comm_rank() routine is used.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec1.htm#ch09ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec1.htm#ch09fn01

Example 9.1 Using the MPI_Comm_rank() routine.

//...
int Tag = 33;
int WorldSize;
int TaskRank;
MPI_Status Status;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&TaskRank);
MPI_Comm_size(MPI_COMM_WORLD,&WorldSize);
//...

The MPI_COMM_WORLD communicator is the default communicator that all MPI tasks are assigned
upon startup. MPI tasks are grouped by communicators. The communicator is what identifies a
communication group. In Example 9.1 the rank is returned in the variable TaskRank. Each process will
have a unique rank. Once the rank is determined, then the appropriate data may be given to that task or
the appropriate code for that task to execute may be determined. For instance, in Case 1:

Case 1: Simple MPMD Case 2: Simple SIMD

if(TaskRank == 1){
 // do something
}

if (TaskRank == 2){
 // do something else
}

if(TaskRank == 1){
 // use this data
}

if(TaskRank == 2){
 // use that data
}

the rank is used to differentiate which process will do which work and in Case 2 the rank is used to
differentiate which data each process will work on. Although each MPI executable starts out with the
same code, MPMD (MIMD) may be achieved by using the rank and performing a branch. Likewise,
once the rank is determined, data types may be assigned to the data of a process or specific data that a
given process needs to work with may be identified. The rank is also used in message passing. MPI
tasks identify each other in a communication exchange by ranks and communicators. The MPI_Send()
and MPI_Recv() routines use rank for destination and source, respectively. The call:

MPI_Send(Buffer,Count,MPI_LONG,TaskRank,Tag,Comm);

will send Count number of longs to a MPI process with rank = TaskRank. The Buffer is a pointer to the
data to be sent to the process TaskRank. Count represents the number of items in the Buffer, not the
size of Buffer. Each message has a tag. The tag can be used to differentiate one message from another,
to group messages into classes, to associate certain messages with certain communicators, and so on.
The tag is an int and its value is user-defined. The Comm parameter represents the communicator that
the process is assigned to or associated with. If the rank and communicator of a task are known, then
messages may be sent to that task. The call:

MPI_Recv(Buffer,Count,MPI_INT,TaskRank,Tag,Comm,&Status);

will receive Count ints from a process with rank = TaskRank. This routine will cause the caller to block
until it receives a message from a process with TaskRank and the appropriate value for Tag. The MPI
does support wild-cards for the rank and tag parameters. These wildcards are MPI_ANY_TAG and
MPI_ANY_SOURCE. If these values are used, the calling process will accept the next message that it
receives regardless of the source and tag of that message. The Status parameter is of type MPI_Status.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec1.htm#ch09ex01

Information about the receive operation can be retrieved from the Status object. Three fields contained
in status are MPI_SOURCE, MPI_TAG, and MPI_ERROR. Therefore, the Status object can be used to
determine what the tag and source of the sending process were. Once the processes know how many
processes are involved, they can determine who to send messages to and who to receive messages from.
Naturally, which task receives messages and which task sends messages will depend on the application.
How the work is divided up between the processes will also be application dependent. Another piece of
information that is determined immediately by each process before the work starts is how many other
processes are involved in the application. This is done by a call to:

MPI_Comm_size(MPI_COMM_WORLD,&WorldSize);

This routine determines the size of the group of processes associated with a particular communicator. In
this case, the communicator is the default communication MPI_COMM_WORLD. The number of
processes involved are returned in the WorldSize parameter. This parameter is an int. Once each
process has the WorldSize, it knows how many processes are associated with its communicator and
what its rank is relative to the other processes.

9.1.2 Grouping Tasks by Communicators

In addition to ranks, processes are also associated with communicators. The communicator specifies a
communication domain for a set of processes. All processes with the same communicator are in the
same communication group. The work that a MPI program does can be divided between communicator
groups. MPI_COMM_WORLD is the default communicator group that all processes are in initially.
MPI_Comm_create() can be used to create new communicators. Table 9-1 shows a list of short
descriptions for the routines used to work with communicators.

Through the use of the rank and the communicator, MPI tasks are identified and differentiated. The
rank and the communicator allow us to structure a program as SPMD or MPMD or some combination.
We use the rank and the communicator in conjunction with paramaterized programming and object-
oriented techniques to simplify the code written for a MPI program. The templates can accommodate
not only the different data aspect of SIMD but different data types may also be specified using
templates. This greatly simplifies the many computational-intensive applications that do the same work
but with different data types. We recommend runtime polymorphism (supported by objects), parametric
polymorphism (supported by templates), function objects, and predicates to achieve MPMD (MIMD).
These techniques are used in conjunction with the rank and the communicator of a MPI process to
accomplish the division and assignment of work in an MPI application. When using an object-oriented
approach, the work of a program is divided between families of objects. The families of objects are
each associated with different communicators. Associating families of objects with different
communicators helps with modularity in the design of an MPI application. This kind of division also
helps with understanding how the parallelism can be applied. We have found that the object-oriented
approach makes MPI programs more extensible, maintainable, and easier to debug and test.

9.1.3 The Anatomy of an MPI Task

Figure 9-1 contains a skeleton MPI program. The tasks involved in this MPI program simply report
their ranks to the MPI task whose rank == 0.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec1.htm#ch09fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec1.htm#ch09table01

Figure 9-1. A MPI program.

Every MPI program should at least have MPI_Init() and MPI_Finalize(). The MPI_Init routine
initializes the MPI environment for the calling task. The MPI_Finalize() routine deallocates resources
from the MPI task.

Table 9-1. Routines Used to Work with Communicators

MPI Communicator Routines #include
"mpi.h"

Description

int MPI_Intercomm_create
(MPI_Comm LocalComm,
 int LocalLeader,
 MPI_Comm PeerComm,
 int remote_leader,
 int MessageTag,
 MPI_Comm *CommOut);

Creates an intercommunicator from two
intracommunicators.

int MPI_Intercomm_merge
(MPI_Comm Comm,int High,

Creates an intracommunicator from an

MPI Communicator Routines #include
"mpi.h"

Description

 MPI_Comm *CommOut); intercommunicator.

int MPI_Cartdim_get
(MPI_Comm Comm,int *NDims);

Returns Cartesian topology information associated with
a communicator.

int MPI_Cart_create
(MPI_Comm CommOld,int NDims,
 int *Dims,int *Periods,
 int Reorder,
 MPI_Comm *CommCart);

Creates a new communicator to which topology
information has been attached.

int MPI_Cart_sub
(MPI_Comm Comm,
 int *RemainDims,
 MPI_Comm *CommNew);

Divides a communicator up into subgroups, which form
lower dimensional Cartesian subgrids.

int MPI_Cart_shift
(MPI_Comm Comm, int Direction,
 int Display,int *Source,
 int *Destination);

Retrieves the shifted source and destination ranks, given
a shift direction and amount.

int MPI_Cart_map
(MPI_Comm CommOld,
 int NDims,int *Dims,
 int *Periods,int *Newrank);

Maps process to Cartesian topology information.

int MPI_Cart_get
(MPI_Comm Comm,int MaxDims,
 int *Dims,int *Periods,
 int *Coords);

Returns Cartesian topology information associated with
a communicator.

int MPI_Cart_coords
(MPI_Comm Comm, int Rank,
 int MaxDims, int *Coords);

Calculates process coords in Cartesian topology given
rank in group.

int MPI_Comm_create
(MPI_Comm Comm,
 MPI_Group Group,
 MPI_Comm *CommOut);

Creates a new communicator.

int MPI_Comm_rank
(MPI_Comm Comm,int *Rank);

Calculates and returns the rank of the calling process in
the communicator.

int MPI_Cart_rank
(MPI_Comm Comm,int *Coords,

Calculates and returns the process rank in a

MPI Communicator Routines #include
"mpi.h"

Description

 int *Rank); communicator given Cartesian location.

int MPI_Comm_compare
(MPI_Comm Comm1,
 MPI_Comm Comm2,
 int *Result);

Compares two communicators, Comm1 and Comm2

int MPI_Comm_dup
(MPI_Comm CommIn,
 MPI_Comm *CommOut);

Duplicates an already existing communicator along with
all its cached information.

int MPI_Comm_free
(MPI_Comm *Comm);

Marks the communicator object to be deallocated.

int MPI_Comm_group
(MPI_Comm Comm,
 MPI_Group *Group);

Accesses the group associated with the given
communicator.

int MPI_Comm_size
(MPI_Comm Comm,int *Size);

Calculates and returns the size of the group associated
with a communicator.

int MPI_Comm_split
(MPI_Comm Comm,int Color,
 int Key,MPI_Comm *CommOut);

Creates new communicators based on colors and keys.

int MPI_Comm_test_inter
(MPI_Comm Comm,int *Flag);

Determines if a communicator is an intercommunicator.

int MPI_Comm_remote_group
(MPI_Comm Comm,
 MPI_Group *Group);

Accesses the remote group associated with the given
intercommunicator.

int MPI_Comm_remote_size
(MPI_Comm Comm,int *Size);

Calculates and returns the size of the remote group
associated with an intercommunicator.

Every MPI task should call the MPI_Finalize() routine prior to exiting. Notice the calls to
MPI_COMM_rank() and MPI_COMM_Size() in Figure 9-1. They are used to get the rank and the
number of processes that belong to an MPI application. Most MPI applications should call this function.
The remaining MPI functions will depend on the application. The MPI environment supports over 300
functions. Consult your man pages for a complete listing and discussion of the MPI functions.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec1.htm#ch09fig01

9.2 Using Template Functions to Represent MPI Tasks

Function templates allow us to generalize a procedure for any type. Let's look at a multiplication
procedure that works for any data type for which multiplication is defined:

template<class T> T multiplies(T X, T Y)
{
 return(X * Y);
}

To use a template function such as this one we provide the necessary parameters for the type T. T is a
stand-in for some data type that will be supplied when the template is instantiated. So we can instantiate
multiplies() accordingly:

//...
multiplies<double>(3.2,4.5);
multiplies<int>(7,2);
multiplies<rational>("7/2","3/4");
//...

with T instantiated to double, int, and rational, thereby determining the exact implementation of the
multiplication operation. Multiplication is defined differently for each data type. So the specification of
the data type causes slightly different code to be executed. The template function allows us to write the
multiplies() operation once and apply it to many different data types.

9.2.1 Instantiating Templates and SPMD (Datatypes)

Parameterized functions can be used with the MPI to handle situations where each process is executing
the same code but is working with a different type of data. So once we have determined the TaskRank
of the process, we can differentiate what data and type of data the process should work with. Example
9.2 shows how to instantiate different tasks for different ranks.

Example 9.2 Using template functions to designate what the MPI task will do.

int main(int argc, char *argv[])
{
 //...
 int Tag = 2;
 int WorldSize;
 int TaskRank;
 MPI_Status Status;
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&TaskRank);
 MPI_Comm_size(MPI_COMM_WORLD,&WorldSize);
 //...
 switch(TaskRank)
 {
 case 1: multiplies<double>(3.2,4.6);
 break;
 case 2: multiplies<complex>(X,Y)
 break;

 //case n:

 //...
 }

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex02

}

Since no two tasks have the same rank, each branch in the case statement in Example 9.2 will be
executed by a different MPI task. Also, you may extend this type of parameterization to container
arguments for template functions. This allows you to pass different containers of objects containing
different types of objects to the same generic template function. For instance Example 9.3 contains a
generic search() template.

Example 9.3 Using container templates as arguments to template functions.

template<T> bool search(T Key,graph<T>)
{
 //...
 locate(Key)
 //...
}

//...
MPI_Comm_rank(MPI_COMM_WORLD,&TaskRank);
//...
switch(TaskRank)
{

 case 1:
 {
 graph<string> bullion;
 search<string> search("gold", bullion)
 }
 break;
 case 2:
 {
 graph<complex> Coordinates;
 search<complex>((X,Y),Coordinates);
 }
 break;

//...

In Example 9.3, the process with TaskRank == 1 searches a graph named bullion that contains string
objects and the process with TaskRank == 2 searches a graph named Coordinates containing complex
numbers. We did not have to change the search() routine to accommodate the different data or data
types and the MPI program is made simpler because we can reuse the search function template to
search a graph container containing any type. Using templates simplifies SPMD programming. The
more generic we make the MPI task, the more flexible it is. Also, once the template is debugged and
tested, the reliability of all of the MPI tasks are increased since they all execute the same code.

9.2.2 Using Polymorphism to Implement MPMD

Polymorphism is a primary characteristic of object-oriented programming. In order for a language to
support true object-oriented programming, the language must support encapsulation, inheritance, and
polymorphism. Polymorphism is the ability of an object to take on many forms. Polymorphism supports
the notion of "one interface, multiple implementations." A user uses one name or interface implemented
in different ways by different objects. To illustrate the concept of polymorphism, lets look at a vehicle
class, its descendants, and a simple function called travel() that uses the vehicle class. Figure 9-2 shows
the simple hierarchy for our vehicle class family.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex02

Figure 9-2. The vehicle class family hierarchy.

Airplanes, helicopters, cars, and submarines are all descendants of type vehicle. A vehicle object can
start its engine, move forward, turn right, turn left, stop, and so on. Example 9.4 demonstrates how the
travel function uses a vehicle object to make a computerized trip.

Example 9.4 The travel() function using a vehicle object.

void travel(vehicle *Transport)
{

 Transport->startEngine();
 Transport->moveForward();
 Transport->turnLeft();
 //...
 Transport-> stop();
}

int main(int argc, char *argv[])
{
 //...
 car *Car;
 Transportation = new Vechicle();
 travel(Car);
 //...
}

The travel() function accepts a pointer to a vehicle object. The travel() function invokes the appropriate
methods of the vehicle object. Notice that the main() function in Example 9.4 declares an object of type
car and not type vehicle. A car object is passed to the function travel() instead of a vehicle object. This
is possible because in C++ a pointer to a class can point to an object of that type or any objects that are
descendants of that type. Since car inherits vehicle, a vehicle pointer can point to an object of type car.
The function travel() is written without the knowledge of what types of vehicle object it will
manipulate. The travel() function simply requires that its vehicle objects have the capability of starting
an engine, moving forward, turning left and right, and so on. As long as its vehicle object can perform
those actions, then the travel() function can do its work. Notice in Figure 9-2 that the methods of the
vehicle class have been declared as virtual. Declaring the methods as virtual in a base class is necessary
for runtime polymorphism to work. The car, helicopter, submarine, and airplane class will each define:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex04

startEngine();
moveForward();
turnLeft();
turnRight();
stop();
//...

relative to their type of machine. Although each type of vehicle moves forward, the method in which a
car moves forward is different from the way a submarine moves forward. The way an airplane turns
right is different from the way a car turns right. Therefore, each vehicle type has to implement the
necessary operations to complete its class. Since these operations are declared as virtual in the base
class, they are candidates for polymorphism. When the travel() function's vehicle pointer actually points
to a car object, then the startEngine(), moveForward(), and so on called will be those methods defined
in the car class. If the travel () function's vehicle pointer was assigned a pointer to an airplane class,
then the startEngine(), moveForward(), and so on methods that belonged to the airplane class would be
called. This is where the many forms, or single interface multiple implementations, come in. Although
the travel() function only calls a single set of methods, the behavior of those methods can be radically
different depending on what type of vehicle has been assigned to the vehicle pointer. In this way
travel() is polymorphic because it may do something very different each time it is called. In fact, as
long as the travel() function uses a pointer to a vehicle type, it may be used in the future for vehicle
types that were unknown or that did not exist at the time the travel() function was designed. As long as
the future vehicle classes inherit vehicle and define the necessary methods then they can be manipulated
by the travel() function. This type of polymorphism is called runtime polymorphism. It's called runtime
polymorphism because the travel() function does not know exactly which startEngine(),
moveForward(), or turnLeft() functions it will call until the program is executing.

This type of polymorphism is useful when implementing MPI programs that use a MPMD model. If the
work that the MPI tasks perform manipulate pointers to base classes, then polymorphism allows the
MPI class to also manipulate any derived classes of the base class. If instead of pointers, the travel()
function in Example 9.4 had a declaration:

void travel(vehicle Transport);

then the startEngine(), moveForward(), and so on calls would belong to the vehicle class and there
wouldn't be an easy way to manipulate derived classes. The pointer to the vehicle class and the fact that
the methods in the vehicle class are declared virtual are what makes the polymorphism work. MPI tasks
that manipulate pointers to base classes can take advantage of polymorphism in the same way that the
travel() function is able to work with any kind of vehicle object present or future. This technique holds
a lot of promise for the future of cluster, smp, and mpp applications that will need to implement MPMD
models. To see how this MPMD works in a MPI context, let's use our travel() function as a MPI task
that is part of a search and rescue simulation. Each MPI task is responsible for performing a search and
rescue mission with a different type of vehicle object. Each vehicle will obviously have different means
of mobility. Although the problem to be solved requires that each MPI task perform a search, the code
is different because each task uses a different kind of vehicle object that works different and requires
different data. Example 9.5 would be launched in our MPICH environment using:

$ mpirun -np 16 /tmp/search_n_rescue

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex04

Example 9.5 MPI tasks implementing simple search and rescue simulation.

template<T> bool travel(vehicle *Transport,set<T> Location,
 T Object)
{

 //...
 Transport->startEngine();
 Transport->moveForward(XDegrees);
 Transport->turnLeft(YDegrees);
 //...
 if (Location.find(Transport->location() == Object){
 //... rescue()
 }
 //...
}

int main(int argc, char *argv[])
{
 //...
 int Tag = 2;
 int WorldSize;
 int TaskRank;
 MPI_Status Status;
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&TaskRank);
 MPI_Comm_size(MPI_COMM_WORLD,&WorldSize);
 //...
 switch(TaskRank)
 {
 case 1:
 {
 //...
 car * Car;
 set<streets> SearchSpace
 travel<streets>(Car, SearchSpace,Street);
 //...
 }
 break;
 case 2:
 {
 //...
 helicopter *BlueThunder;
 set<air_space> NationalAirSpace;
 travel<air_space>(BlueThunder,NationalAirSpace,
 AirSpace);
 //...
 }
 //case n:

 //...
 }

}

This will cause search_n_rescue to be launched in 16 processes, with each process potentially running
on a different processor and each processor potentially on a different computer. Although each process
is executing the same executable, the work (code) and data that each process works with is radically

different. Templates and polymorphism are used to differentiate what each MPI task will do and what
data it will use. Notice in Example 9.5 that the MPI process that has a TaskRank == 1 will use a Car
object to perform a search and rescue with a container that contains street objects. The MPI process that
has a TaskRank == 2 will perform its simulation using helicopters and air_space objects. Both tasks call
the travel() template function. Since the travel() template function manipulates pointers to the vehicle
class, it can take advantage of polymorphism and perform its operations with any descendant of type
vehicle. This means that although each MPI task is calling the same travel() function, the operation that
the travel() function performs will not be the same. Notice there are no case statements or if statements
in the travel() function that attempt to identify what type of vehicle it is working with. The particular
vehicle object it is working with is determined by the type that vehicle is pointing to. This MPI
application would work with potentially 16 different vehicles, each with its own type of mobility and
search space. There are other techniques that can be used to implement MPMD within a MPI
environment but the polymorphic approaches generally require less code.

The two primary types of polymophism we demonstrate are dynamic binding polymorphism supported
by inheritance and virtual methods and parametric polymorphism supported by templates. The travel()
function in Example 9.5 uses both types of polymorphism. The inheritance-based polymorphism is
demonstrated by the use of the vehicle *Transport. The parameterized polymorphism is demonstrated
by the use of set<T>, and T Object. Parametric polymorphism is the mechanism by which the same
code is used on different types passed as parameters. Table 9-2 lists the different types of
polymorphism that may be used to simplify MPI tasks and shorten the code required to implement an
MPI program.

Table 9-2. Different Types of Polymorphism That May Be Used to Simplify MPI Tasks

Types of
Polymorphism

Mechanisms Description

Runtime (dynamic) inheritance virtual
methods

All information needed to determine which function is to
be executed is not known until runtime.

Parametric templates A mechanism in which the same code is used on
different types that are passed as parameters.

9.2.3 Adding MPMD with Function Objects

Function objects are also used by the standard algorithms to implement a kind of horizontal
polymorphism. The polymorphism implemented using vehicle *Transport in Example 9.5 is vertical
because in order for it to work the classes must all be related through inheritance. When horizontal
polymorphism is used, the classes are not related by inheritance but by interface. Function objects each
has the operator() defined. Function objects would allow MPI tasks to be designed with the general
form:

// function object
class some_class{
 //...
 operator();
 //
};

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec2.htm#ch09ex05

template<class T> T mpiTask(T X)
{
 //...
 T Result;
 Result = X()
 //...

}

The mpiTask() template function will then work with any type T that has the operator() function
appropriately defined:

//...
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&TaskRank);
MPI_Comm_size(MPI_COMM_WORLD,&WorldSize);
//...

if(TaskRank == 0){
 //...
 user_defined_type M;
 mpiTask(M);
 //...
}

if(TaskRank == N){
 //...
 some_other_userdefined_type N;
 mpiTask(N);
}
//....

This horizontal polymorphism does not rely on inheritance or virtual functions. So if our MPI task gets
its rank and then declares any type of object that has the operator() defined, then when mpiTask() is
called its behavior will be dictated by whatever functionality is found in the operator() method. So
although each process launched with the mpirun script is identical, the polymorphism of templates and
the function objects allow each MPI task to perform different work on different data.

9.3 Simplifying MPI Communications

In addition to simplifying and shortening the code of the MPI task with polymorphism and templates,
we can also simplify the communication between MPI tasks by taking advantage of operator
overloading. The MPI_Send() and MPI_Recv() class of functions have the form:

MPI_Send(Buffer,Count,MPI_LONG,TaskRank,Tag,Comm);
MPI_Recv(Buffer,Count,MPI_INT,TaskRank,Tag,Comm,&Status);

where the calls require that the user specify the data type involved in the call and a buffer that will hold
the data to be sent or received. The specification of the data type for each call of the send and receive
routines can be tedious and can introduce subtle errors if the wrong types are passed. Table 9-3 contains
short descriptions for each of the MPI send and receive functions and their prototypes.

The goal is to make the data types and buffers as transparent as possible during send and receive
operations. We would like to send and receive MPI data using the stream metaphor of the iostream
classes. We would like to send data using syntax such as:

//...
int X;
float Y;
user_defined_type Z;

cout << X << Y << Z;

//...

Here, the developer does not have to specify the types when inserting data into cout. The three data
types to be displayed each have the operator << defined. These definitions specify how to translate the
type during the insertion into the cout stream. Likewise, extraction from the cin stream:

//...

int X;
float Y;
user_defined_type Z;

cin >> X >> Y >> Z;
//...

occurs without specifying the types involved. Operator overloading allows the developer to use this
technique for MPI tasks. The cout stream is instantiated from an ostream class and cin is instantiated
from an istream class. These classes define the operator << and >> for the built-in C++ data types. For
instance, the ostream class contains a number of overloaded operator << functions:

//...
ostream& operator<<(char c);
ostream& operator<<(unsigned char c);
ostream& operator<<(signed char c);
ostream& operator<<(const char *s);
ostream& operator<<(const unsigned char *s);
ostream& operator<<(const signed char *s);
ostream& operator<<(const void *p);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(unsigned long n);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec3.htm#ch09table03

Table 9-3. MPI Send and Receive Functions and Their Prototypes

MPI Send and Receive Routines #include "mpi.h" Description

int MPI_Send
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm);

Performs a basic send.

int MPI_Send_init
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Initializes a handle for a standard send.

int MPI_Ssend
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm);

Performs a basic synchronous send.

int MPI_Ssend_init
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Initializes a handle for a synchronous send.

int MPI_Rsend
(void *Buffer, int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm);

Performs basic ready send.

int MPI_Rsend_init
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Initializes a handle for a ready send.

int MPI_Isend
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,

Starts a nonblocking send.

MPI Send and Receive Routines #include "mpi.h" Description

 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

int MPI_Issend
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Starts a nonblocking synchronous send.

int MPI_Irsend
(void *Buffer, int Count,
 MPI_Datatype Type,
 int Destination,
 int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Starts a nonblocking ready send.

int MPI_Recv
(void *Buffer,int Count,
 MPI_Datatype Type,
 int source,int MessageTag,
 MPI_Comm Comm,
 MPI_Status *Status);

Performs a basic receive.

int MPI_Recv_init
(void *Buffer,int Count,
 MPI_Datatype Type,
 int source,int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Initializes a handle for a receive.

int MPI_Irecv
(void *Buffer,int Count,
 MPI_Datatype Type,
 int source,int MessageTag,
 MPI_Comm Comm,
 MPI_Request *Request);

Begins a nonblocking receive.

int MPI_Sendrecv
(void *sendBuffer,
 int SendCount,
 MPI_Datatype SendType,
 int Destination,int SendTag,
 void *recvBuffer,
 int RecvCount,
 MPI_Datatype RecvYype,
 int Source, int RecvTag,
 MPI_Comm Comm,

Sends and receives a message.

MPI Send and Receive Routines #include "mpi.h" Description

 MPI_Status *Status);

int MPI_Sendrecv_replace
(void *Buffer,int Count,
 MPI_Datatype Type,
 int Destination,int SendTag,
 int Source,int RecvTag,
 MPI_Comm Comm,
 MPI_Status *Status);

Sends and receives using a single buffer.

These definitions allow the user of the ostream and the istream classes to use cout and cin objects
without having to specify the data types involved in the operations. This overloading technique can be
used to simplify MPI communications. We explored the idea of a PVM stream in Chapter 6. Here we
employ the same approach to create an MPI stream. We can use the structure of an istream and ostream
as a guide for creating an mpi_stream class. The stream classes consist of a state component, buffer
component, and translation component. The state component is captured by the ios class. The buffer
component is represented by the streambuf, stringbuf, or filebuf classes. The translator classes are
istream, ostream, istringstream, ostringstream, ifstream, and ofstream. The state component is
responsible for encapsulating the state of the stream. The format of the stream, whether the stream is in
a good state or failed state, or whether the stream is at eof, and so on are captured by the ios component.
The buffer components are used to hold the data that is being read or written. The translation classes
translate types into streams of bytes and streams of bytes back into built-in types. Figure 9-3 shows the
UML class diagram for the iostream family classes.

Figure 9-3. UML class diagram for iostream family classes.

9.3.1 Overloading the << and >> Operators for MPI Communication

The relationships and functionality of the classes in Figure 9-3 are used as a guideline for designing

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec3.htm#ch09fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec3.htm#ch09fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06.htm#ch06

mpi_streams. Although going through the trouble of designing MPI stream classes is more work up
front than using the MPI_Recv() and MPI_Send() routines directly, it will make MPI development
considerably simpler in the long run. Where parallel programs can be made simpler, they should.
Reducing the complexity of programs is usually a noteworthy goal. We only present a skeleton on an
mpi_stream class here. We present enough to demonstrate how the construction of an MPI stream class
can be approached. Once an mpi_stream class is designed it can be used to simplify communications in
most any MPI program. Example 9.6 contains an excerpt from the declaration of a mpi_stream class.

Example 9.6 Contains an excerpt from the declaration of a mpi_stream class.

class mpios{
protected:
 int Rank;
 int Tag;
 MPI_Comm Comm;
 MPI_Status Status;
 int BufferCount;
 //...
public:
 int tag(void);
 //...

}
class mpi_stream public mpios{
protected:
 mpi_buffer Buffer;
 //...

public:
 //...
 mpi_stream(void);
 mpi_stream(int R,int T,MPI_Comm C);
 void rank(int R);
 void tag(int T);
 void comm(MPI_Comm C);
 mpi_stream &operator<<(int X);
 mpi_stream &operator<<(float X);
 mpi_stream &operator<<(string X);
 mpi_stream &operator<<(vector<long> &X);
 mpi_stream &operator<<(vector<int> &X);
 mpi_stream &operator<<(vector<float> &X);
 mpi_stream &operator<<(vector<string> &X);
 mpi_stream &operator>>(int &X);
 mpi_stream &operator>>(float &X);
 mpi_stream &operator>>(string &X);
 mpi_stream &operator>>(vector<long> &X);
 mpi_stream &operator>>(vector<int> &X);
 mpi_stream &operator>>(vector<float> &X);
 mpi_stream &operator>>(vector<string> &X);
 //...
};

For exposition purposes we have combined the impi_stream and ompi_stream class into a single
mpi_stream class. In the same manner that the istream and ostream classes overload the << and >>
operators, we overload those operators as well. Example 9.7 shows these overloaded operators can be
defined:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec3.htm#ch09ex07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec3.htm#ch09ex06

Example 9.7 Definition of << and >> operators.

//...
mpi_stream &operator<<(string X)
{
 MPI_Send(const_cast<char*>(X.data()),X.size(),MPI_CHAR,Rank,Tag,Comm);
 return(*this);
}
// Over simplification of buffer
mpi_stream &operator<<(vector<long> &X)
{
 long *Buffer;
 Buffer = new long[X.size()];
 copy(X.begin(),X.end(),Buffer);
 MPI_Send(Buffer,X.size(),MPI_LONG,Rank,Tag,Comm);
 delete Buffer;
 return(*this);
}

// Over simplification of buffer

mpi_stream &operator>>(string &X)
{

 char Buffer[10000];
 MPI_Recv(Buffer,10000,MPI_CHAR,Rank,Tag,Comm,&Status);
 MPI_Get_count(&Status,MPI_CHAR,&BufferCount);
 X.append(Buffer);
 return(*this);

}

The mpios class in Example 9.7 serves a similar purpose to that of the ios class for the iostream. The
purpose of the mpios class is to maintain the state of the mpi_stream classes. Each data type that will be
used within your MPI applications should have the operators << and >> overloaded for them. Here, we
show a few simple overloaded operators. In each case we present an over-simplification of the buffer
management. In practice, exception handling and memory allocation issues are handled by template
classes and allocator classes. Notice in Example 9.7 that the mpios class holds the communicator, status
of the mpi_stream, the buffer count, and the value for rank and tag. This is only one possible
configuration for a mpi_stream class—there are many others. Once an mpi_stream class is defined it
can be reused in any MPI program. Communication between MPI tasks can be written as:

//...
int X;
float Y;
vector<float> Z;
mpi_stream Stream(Rank,Tag,MPI_WORLD_COMM);
Stream << X << Z;
Stream << Y;
//...
Stream >> Z;

This notation allows the programmer to maintain the stream metaphor and simplifies the MPI code. Of
course the appropriate error checking and exception handling must be included within the definitions of
the << and >> operators.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec3.htm#ch09ex07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch09lev1sec3.htm#ch09ex07

Summary

Implementations of the SPMD and MPMD models of concurrency have much to be gained by using
templates and taking advantage of polymorphism. While the MPI does include bindings for C++ it does
not take advantage of object-oriented programming techniques. This presents an opportunity and
challenge to developers using the MPI standard. Inheritance and polymorphism can be used to simplify
MPMD programming. Parameterized or genericity programming that is supported using the template
facilities of C++ can be used to simplify SPMD programming with the MPI. Dividing a program's work
between objects is a natural way to discover and exploit the parallelism within an application. Families
of objects can be associated with communicators to facilitate communication in the MPI between
multiple groups that have different work responsibilities. Operator overloading can be used to maintain
a stream metaphor with the MPI. Using object-oriented programming techniques and parameterized
programming techniques within the same MPI application is a multiparadigm approach that simplifies
and in most cases shortens the code. It leads to programs that are easier to debug, test, and maintain.
MPI tasks implemented by template functions tend to be more reliable across different data types than
separately defined functions that have to perform type casting.

Chapter 10. Visualizing Concurrent and Distributed System
Design
"Unnamed thinking which I would like to suggest may be common with us. Our brainwaves
are very often wordless. We often quite suddenly perceive correct solutions to problems
with which we have been striving for a long time before we have decided we will name
them in one language or another. ... Very many ideas come to us in wordless form . . ."

—O. Koehler, The Ability of Birds to Count

In this Chapter

• Visualizing Structures

• Visualizing Concurrent Behavior

• Visualizing the Whole System

• Summary

A model of a system is the body of information gathered for the purpose of studying the system so it
can be better understood by the developers and maintainers of the system. When a system is modeled,
the boundaries and identification of the entities, attributes, and the activities performed by the system
can be determined. Modeling is an important tool in the design process of any system. It is essential that
developers fully understand the system they are developing. Modeling can reveal the concurrency
embedded in the system and where distribution can be appropriately applied.

The UML (United Modeling Language) is a graphical notation used to design, visualize, model, and
document the artifacts of a software system. It is the de facto standard for communicating and modeling
object-oriented systems. The modeling language uses symbols and notations to represent the artifacts of
a software system from different views and different focuses. The UML brings together the approaches
of Grady Booch, James Rumbaugh, and Ivar Jacobson's object-oriented analysis and design methods
developed in the 1980s and 1990s. It was adopted by the OMG (Object Management Group), an
international organization consisting of software developers and information system vendors with over
800 members. The adoption and conformance to the UML give software developers a consistent
language and tool for object analysis, specification, visualization, and documentation.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec4.htm#ch10lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec3.htm#ch10lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10lev1sec1

In this chapter, we show you how to visualize and model your concurrent and distributed system using
the UML. Besides helping you in the design of your system, modeling will help you identify where
concurrency emerges, when synchronization and communication are needed, and how and where
objects can be distributed. We discuss diagramming techniques used to visualize and model concurrent
systems from the structural and behavioral perspectives. Please note the classes, objects, and systems
used as examples in this chapter are used for exposition purposes and may or may not necessarily
reflect actual classes, objects, or structures used in an actual system.

10.1 Visualizing Structures

The structural view of a system focuses on the static parts of that system. This view examines how the
elements in the system are constructed. It examines its attributes, properties, and operations along with
its organization, composition, and relationship with other elements in the system. The diagraming
techniques discussed in this section are the ones used to model:

• class, objects, templates, processes, and threads

• organization of objects that work together

The elements documented can be conceptual or physical.

10.1.1 Classes and Objects

A class is a model of a construct with its attributes and behaviors. It is a description of a set of things or
objects that share the same attributes. A class is the basic component of any object-oriented system.
Classes can be used to represent real-world, conceptual, hardware, and software constructs. A class
diagram is used to represent the classes, the objects, and the relationships that exist between them
within your concurrent and/or distributed system. The class diagram is used to show the attributes and
the services a class provides and the restrictions that apply to the manner in which these classes/objects
are connected.

The UML provides a graphical representation of a class. The simplest representation of a class is a
rectangular box that contains the name of the class. The name alone is the simple name. The class
diagram can also show the attributes and services provided to the user of the class. To include attributes
and services, a rectangle is drawn displaying three horizontal compartments. The top compartment
displays the simple name of the class, the middle compartment displays the attributes, and the bottom
compartment displays the services. The attributes and services compartments can be labeled "attributes"
and "services," respectively, in order to identify each compartment. Besides the name of the class, if the
attributes or services are to be shown, then the other compartment is displayed as empty. Figure 10-1
shows the various ways a class can be represented.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig01

Figure 10-1. The various ways to represent a class.

In Figure 10-1, the class student_schedule is represented. Figure 10-1(a) shows the class in its simplest
representation, (b) shows the class name and its attributes and services, and (c) shows the class name
and its services. The compartment that contains the attributes is empty in order to communicate that the
class has attributes but they are not shown.

An additional compartment can be used to describe the responsibility of the class. This compartment
appears under the services compartment and can be omitted. The responsibility of the class is what the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig01

class will perform. It is displayed as contractual statements. These responsibilities are transformed into
services and attributes. Attributes are transformed into datatypes and data structures and services are
transformed into methods. This compartment can be labeled "responsibilities". The responsibilities of
the student_schedule class can be stated as: "returns the schedule for a student for any day of the week,
the student number, the year, and term of the stored schedule." The responsibilities of the class are
displayed as text in its compartment where each responsibility is listed as a short statement or
paragraph.

The class diagram can show an object, an instance of a class. Like a class, the simplest representation of
an object is a rectangle that contains the name of the object underlined. This is called a named instance
of a class. A named instance of a class can be shown with or without its class name:

mySchedule named instance

mySchedule:student_schedule named instance with class name

Since the actual name of the object may be known only to the program that declares it, you may want to
represent anonymous instances of classes in your system documentation. You can label an object as
anonymous in this way:

:student_schedule

This type of labeling may be convenient where there are several instances of a class in your system.
Several instances of a class can be represented in two ways: as objects and as classes.

The number of instances a class may have is called multiplicity. The number of instances of a class can
be noted in a class diagram. A class may have zero to an infinite number of instances. A class with zero
instances is a pure abstract class. It cannot have any objects explicitly declared of its type. The number
of instances may have an upper or lower bound, which may also be expressed in the diagram of a class.
Figure 10-2 shows how several instances of a class can be represented in a class diagram as objects or
with multiplicity notation.

Figure 10-2. Mutiple instances of a class represented graphically and using multiplicity notation.

In Figure 10-2, the multiplicity of the student_schedule class is 1..7, meaning the least number of
student schedules in our system is 1 and the most that can exist is 7. Here are more examples of

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig02

multiplicity notation and their meaning:

1 One instance

1..n One to a specified number n

1..* One to an infinite number

0..1 0 to 1

0..* 0 to an infinite number

* An infinite number

Of course, an infinite number of instances will be limited by internal memory or external storage.

10.1.1.1 Displaying Specifics about Attributes and Services

The class diagram can specify more details about the attributes and services of the class. The attributes
compartment can specify the datatype and/or default value (if there is one) for classes and values of
attributes for objects. For example, the datatypes for the attributes of the student_schedule class can be
displayed:

StudentNumber : string
Term : string
StudentSchedule : map <string,vector<course> >
ScheduleIterator : map <string,vector<course> >::iterator

For the mySchedule object, these attributes can take on values:

StudentNumber : string = "102933"
Term : string = "Spring"

Methods can be shown with parameters and return type:

studentSchedule(&X : map <string,vector<course> >) : void
studentNumber() : string

The studentSchedule() function accepts the courses of the student. course is a class that models a single
course. The courses for each day of the week are stored in a vector. The map container maps a string
(day of the week) with the vector of courses for that particular day. The studentSchedule() function
returns void where the studentNumber() function returns a string.

The properties of attributes and methods can be displayed in the class diagram. Properties help describe
how an attribute or operation can be used. Property labels can be used to describe attributes that are
constant or modifiable. There are three properties used to describe attributes: changeable, addOnly, and
frozen. Table 10-1 lists these properties with a brief description. There are four properties used to
define methods: isQuery, sequential, guarded, and concurrent. They are also listed in Table 10-1.
sequential, guarded, and concurrent properties are concerned with the concurrency of a method. The
sequential property describes a concurrent operation where synchronization is the responsibility of the
callers of the operation. These operations do not guarantee the integrity of the object. The guarded

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10table01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10table01

property describes a concurrent operation where synchronization is already built in. guarded operations
mean callers invoke the operation one at a time. The concurrent property describes an operation that
permits simultaneous use. The guarded and concurrent operations guarantee the integrity of the object.
Guaranteeing the integrity of an object is applicable to operations that change the state of the object.

Table 10-1. Properties for Attributes and Operations

Properties for
Attributes

Description

{changeable} No restrictions on modifying the values of this type of attribute.

{addOnly} For attributes with multiplicity > 1, additional values can be added. Once created
a value cannot be removed or changed.

{frozen} Attribute's value cannot be changed once the object has been initialized.

Properties for
Methods

{isQuery} Execution of this type of method leaves the state of the object unchanged. This
method returns values.

{sequential} Users of the object must use synchronization to ensure sequential access to this
method. Multiple concurrent access to this method jeopardizes the integrity of the
object.

{guarded} Synchronized sequential access to this method is built in the object; integrity of
the object is guaranteed.

{concurrent} Multiple concurrent access is permitted; integrity of the object is guaranteed.

guarded and concurrent properties for methods can be used to reflect the PRAM (Parallel Random-
Access Machine) model. If a method is reading and/or writing memory that is accessible to another
method that is also reading and/or writing that same memory, then that method can be described as a
PRAM algorithm. The properties can be appropriately used. For example:

PRAM Algorithms Properties

CR (Concurrent Read) concurrent

CW (Concurrent Write) concurrent

CRCW (Concurrent Read Concurrent Write) concurrent

EW (Exclusive Write) guarded

ER (Exclusive Read) guarded

EREW (Exclusive Read Exclusive Write) guarded

The student_schedule class can further describe how its attributes and services can be used by using
property labels:

attributes

StudentNumber : string {frozen}
Term : string {changeable}
StudentSchedule : map <string,vector<course> > {changeable}

operations

scheduleDayOfWeek(&X : vector<course>, Day : string) :
 void {guarded}
studentNumber() : string {isQuery, concurrent}

StudentNumber is a string constant. Once an object assigns a value, it cannot be changed. If the
student_schedule object is used for the same student but for different terms, then Term and
StudentSchedule would be modifiable attributes. The scheduleDayOfWeek() operation accepts a vector
of courses for a particular day of the week stored in the string Day. This operation is guarded. It inserts
a student schedule for a particular day of the week into the map object StudentSchedule, changing the
state of the object. Synchronization is built into the object by using mutexes. The studentNumber()
operation has two properties: isQuery and concurrent. It returns the constant StudentNumber and is safe
for simultaneous access. Calling this method does not change the state of the object thus using the
isQuery property.

Another important property that can be shown is the visibility of attributes and operations. A visibility
property describes who can access the attribute or invoke the operation. This property uses a character
or symbol to represent the level of visibility. Visibility maps to the access specifiers of C++:

Access Specifiers Visibility Symbols

public (+) Anyone has access.

protected (#) The class itself and its descendants have access.

private (-) Only the class itself has access.

The symbol is prepended to the service, method, or attribute name.

10.1.1.2 Ordering the Attributes and Services

It may be best when representing a class with many attributes and operations to organize them within

their compartments. Order helps to identify and navigate through the attributes and operations. The
organization can be alphabetical, by access, or by category. Alphabetical order is not helpful in
identifying what attributes or operations can be called (if the documentation is targeted to users of the
system) or which of them are not defined (if documentation is used in the development process).
Ordering by access is very useful. It communicates to the user which attributes and operations are
publicly accessible. Knowing which members are protected will assist users who need to extend or
specialize the class through inheritance. This can be done by using the visibility symbols, +, -, and #, or
by using the C++ access specifiers, protected, public, and private.

There are several ways to categorize the attributes and operations. The minimal standard interface
defines categories for operations that in turn define attributes that support these operations. The
minimal standard interface is based on the concept that all classes should define certain operations and
services in order for a class to be useful. These operations are:

• default constructor

• destructor

• copy constructor

• assignment operations

• equality operations

• input and output operations

• hash operations

• query operations

These can be used as categories to classify the operations of a class. Other categories can be used to
help organize attributes and operations:

attributes

static
const

operations

virtual
pure virtual
friend

These categories should be used based upon what best describes the services offered by the class. The
category name is embraced in left and right double angle brackets, (<<...>>). Figure 10-3 shows the two
ways attributes and operations can be organized for the student_schedule class: (a) using the visibility
symbols, access specifiers, and (b) using categorization based on the minimal standard interface.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig03

Figure 10-3. Two ways attributes and services can be organized in a class diagram.

10.1.1.3 Template Classes

A template class is a mechanism that allows a type to be a parameter in the definition of the class. The
template defines services that manipulate whatever datatype that is passed to it. The parameterized class
is created in C++ by using the template keyword:

template <class Type > classname {...};

Type parameter represents any type passed to the template. Type can be a built-in datatype or a user-
defined class. When Type is declared, the template is bound by the element passed to it as the
parameterized type. For example, the student_schedule class has a map container that contains vectors

of course objects for each day of the week. Both the map and the vector are template classes:

map <string,vector<course> > StudentSchedule;

The map container has string as a key and vector as the value. The vector container contains a user-
defined course object. The map container can map any datatype to any other datatype and vector
containers can contain any datatype:

map <int, vector <string> > Maps a number to a vector of strings

map <int, string> > Maps a number to a string

vector <student_schedule> A vector of student_schedule objects

vector <map <int,string> > A vector of maps that maps a number to a string

Template classes are also represented as rectangular boxes. The parameterized type is represented as a
dashed box displayed in the upper right-hand corner. The template class can be unbound or bound.
When representing an unbound template class, the dashed box displays a capital T to represent the
unbound parameterized type. There are two ways to represent a bound template class. One approach is
to use the class symbol containing the C++ syntax for declaring and binding a template class:

vector <string>

This is called implicit binding. Another approach uses a dependency stereotype, bind. The stereotype
specifies the source instantiating the template class by using the actual parameterized type. This is
called explicit binding. The template object is the instantiation of the template class. It has a
dependency relationship with the template class. The stereotype specifies the name of the parameter
types. Inside the dashed box, datatypes are displayed. The template object can also be considered as a
refinement of the template class. Refinement is a general term to indicate a greater level of detail of
something that already exists. The stereotype indicator <<bind>> refines the template class by
instantiating the parameterized type. Figure 10-4 depicts the ways a template class can be represented,
unbound and bound, for a map container.

Figure 10-4. The ways to represent a bound and unbound template class.

10.1.2 The Relationship between Classes and Objects

The UML defines three types of relationships between classes:

• dependencies

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig04

• generalizations

• associations

Dependency defines a relationship between two classes. When one class depends on another class, this
means a change to the independent class may affect the dependent class. Generalization is a relationship
between a general construct and a more specific type of that construct. The general construct is the
parent or superclass and the more specific construct is the child or subclass. The child inherits the
properties, attributes, and operations of the parent and may define other attributes and operations of its
own. The child is derived from the parent and can be used as a substitute for the parent class. A class
that has no parent is called the root or base class. Association is a structural relationship that specifies
that objects of one type are connected to objects of another type. Associations between objects are
bidirectional. For example, if object 1 is associated with object 2, then object 2 is associated with object
1. An association between two elements (classes, etc.) is called a binary association. An association
between n elements is called n-ary association.

Table 10-2. Stereotypes That Can Be Applied to Dependencies

Dependency

Description

stereotype << bind >> Stipulates that the source instantiates the template target using the actual
parameters.

stereotype << friend >> Stipulates that the source is given visibility into the target.

stereotype << instanceOf >> Stipulates that the source is an instance of the target; used to define
relationships between classes and objects.

stereotype << instantiate >> Stipulates that the source creates instances of the target; used to define
relationships beween classes and objects.

stereotype << refine >> Stipulates that the source is a greater level of detail than the target; used
to define relationships between derived and base classes.

stereotype << use >> Stipulates that the source depends on the public interface of the target.

stereotype << become >> Stipulates that the target object is the same object as the source, but at a
later time in the object's lifetime; target may have different values,
states, etc.

stereotype << call >> Stipulates that the source object invokes the target's method.

stereotype << copy >> Stipulates that the target object is an exact independent copy of the
source object.

Dependency

Description

stereotype << access >> Stipulates that the source package is the given the right to reference the
elements of the target package.

stereotype << extend >> Stipulates that the target use case extends the behavior of the source use
case.

stereotype << include >> Stipulates that the source use case can include the behavior of the target
use case at a location named by the source use case.

Dependency, generalization, and association are actually classifications of relationships. There are
many types of dependencies, generalizations, and associations that exist and can be defined. Each
relationship classification has its own symbol of representation. That symbol is a solid or dashed line
segment between the elements and may be accompanied with some type of arrowhead. To further
define that relationship to a specific type, stereotypes or adornments are used in conjunction with the
line segment. Stereotypes are labels used to further describe a UML element. It is rendered as a name
enclosed by guillemets and placed above or next to the element. For example:

<<bind>>

was placed next to the arrow, which depicts dependency when describing the template object in Figure
10-4. Adornments are textual or graphical items added to an element's basic representation and are used
to document details about that element's specifications. For example, an association is depicted as a
solid line between elements. Aggregation is a type of association that expresses a "whole–part"
relationship. To depict aggregation, a hollow diamond adorns the solid line at the whole end.

Dependency is rendered as a dashed directed line (has a arrow) pointing to the construct being
depended on. Use a dependency relationship when one construct uses another. Generalization is
rendered as a solid directed line with a large open arrowhead pointing to the parent or superclass. Use a
generalization relationship when one construct is derived from another construct. Association is
rendered as a solid line connecting the same or different constructs. Use an association relationship
when one construct is structurally related to another. Table 10-2 lists some of the stereotypes and
constraints that can be applied to dependencies. These stereotypes are used to show dependencies
between classes, interactive objects, states, and packages. Tables 10-3 and 10-4 list the stereotypes and
constraints that can be applied to generalizations and associations. If any of the stereotypes use
graphical adornments, they are shown.

Table 10-3. Stereotypes and Constraints That Can Be Applied to Generalizations

Generalization

Description

stereotype << implementation
>>

Stipulates that the child inherits the implementation of the parent but
does not make public nor support the parent's interfaces.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10table04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10table03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig04

Generalization

Description

constraint {complete} Stipulates that all children in the generalization have been named and
no more additional children can be derived.

constraint {incomplete} Stipulates that not all children in the generalization have been named
and additional children can be derived.

constraint {disjoint} Stipulates that the parent's objects may have no more than one of its
children as a type.

constraint {overlapping} Stipulates that the parent's objects may have more than one of its
children as a type.

Table 10-4. Stereotypes, Constraints, and Adornments That Can Be Applied to Associations

Association

Description

type navigation

Describes a one-direction association where object 1 is associated
with object 2 but object 2 is not associated with object 1.

type aggregation

Describes a containment (whole–part relationship) where the part is
not associated with just one whole for its lifetime.

type composition

Describes a containment (whole–part relationship) where the part
can only be associated with one whole for its lifetime.

constraints {implicit} Stipulates that the relationship is conceptual.

constraints {ordered} Stipulates that the objects at one end of the association has an order.

property {changeable} Describes what can be added, deleted, and changed between two
objects.

property {addOnly} Decribes new links that can be added to an object on the opposite
end of the association.

Association

Description

property {frozen} Describes a link that once added to an object on the opposite end of
the association, cannot be changed or deleted.

Associations have another level of detail that can be applied to a general association or stereotype listed
in Table 10-4:

name An association can have a name that is used to describe the nature of the relationship. A
direction triangle can be added to the name to ensure its meaning. The triangle points in
the direction the name is intended to be read.

role A role is the face the class at the near end of the association presents to the class at the
other end of the association.

multiplicity Multiplicity notation can be used to state how many objects may be connected across an
association. Multiplicity can be shown at both ends of an association.

navigation Navigation across an association can be directed where object 1 is associated with object
2 but object 2 is not associated with object 1.

10.1.2.1 Interface Classes

An interface class is used to modify the interface of another class or set of classes. The modification
makes the class easier to use, more functional, safer, or semantically correct. An example of an
interface class are the container adaptors that are part of the Standard Template Library. The adaptors
provide a new public interface for the deque, vector, and list containers. Example 10.1 shows the stack
class. It is used as an interface class to modify a vector class.

Example 10.1 Using the stack class as an interface class.

template < class Container >
class stack{
//...
public:
 typedef Container::value_type value_type;
 typedef Container::size_type size_type;
protected:
 Container c;
public:
 bool empty(void) const {return c.empty();}
 size_type size(void) const {return c.size(); }
 value_type& top(void) {return c.back(); }
 const value_type& top const {return c.back(); }
 void push(const value_type& x) {c.push.back(x); }
 void pop(void) {c.pop.back(); }
};

The stack is declared by specifying the Container type:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10table04

stack < vector< T> > Stack;

In this case, the Container is a vector but any container that defines these operations:

empty()
size()
back()
push.back()
pop.back()

can be used as the implementation class for the stack interface class. The stack class supplies the
semantically correct interface traditionally accepted for stacks.

There are multiple ways to depict an interface. A circle with the name of the interface class outside the
circle is one way to represent an interface class. This is depicted in Figure 10-5(a), showing the stack as
an interface class. The class symbol can also be used to show the operations of the stack class, Figure
10-5(b). Here the stereotype indicator <<interface>> is displayed above the name of the class to denote
that this is an interface class. The letter I can be prepended to the name of the interface class and all of
its operations to further distinguish it from other classes.

Figure 10-5. Ways to represent an interface class.

Realization can be used to show the relationship between the stack and the vector class. Realization is a

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig05

semantic relationship between classes in which one specifies a contract (interface class) and the other
class carries it out (implementation class). In our example, the stack class specifies the contract and the
vector class carries it out. A realization relationship is depicted as a dashed line between the two classes
with a large open arrowhead pointing to the interface class or the class that specifies the contract, which
is depicted in Figure 10-5(c). It is read "The stack class is realized by the vector class." The relationship
between the interface class and its implementer can also be depicted with the interface lollipop notation,
as shown in Figure 10-5(d). The stack class can be the interface to or realized by a vector, list, or deque.

10.1.3 The Organization of Interactive Objects

As you can see, classes and interfaces can be used as building blocks to create more complex classes
and interfaces. In a distributed or parallel system, there may be many large and complex structures
collaborating with other structures, thus creating a society of classes and interfaces working together to
accomplish the goals of the system. In the UML, this is called a collaboration. These building blocks
can include both the structural and behavioral elements of the system. A particular task requested by a
user may involve many objects working together to accomplish that task. Those same objects working
with other elements are used to accomplish other tasks. This collection of elements, together with their
interactions, form a collaboration. The collaboration has two parts: a structural part, which focuses on
the way the collaborating elements are organized and constructed, and a behavioral part, which focuses
on the interaction between the elements. This will be discussed in the next section.

A collaboration is depicted as an ellipse with dashed lines containing the name of the collaboration. A
collaboration name is unique. It is a noun or short noun phrase based on the vocabulary of the system
being modeled. Zooming inside the collaboration ellipse is the structural and behavioral parts of the
collaboration. Figure 10-6 shows an example of the structural part of the course adviser system. The
structural part of the collaboration consists of any combination of classes and interfaces, components
and nodes. In Figure 10-6, a system may contain many collaborations. A single collaboration is unique
in the system but the elements of a collaboration are not. The elements of one collaboration may be
used in another collaboration using a different organization.

Figure 10-6. A collaboration diagram for a course adviser system.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec1.htm#ch10fig05

10.2 Visualizing Concurrent Behavior

The behavioral view of a system focuses on the dynamic aspects of that system. This view examines
how the elements in the system behave as it interacts with other elements of the system. Here is where
concurrency will emerge as elements interact with other elements. The diagramming techniques
discussed in this section are the ones used to model:

• the lifetime of the behavior of an object

• the behavior of objects that work together for a particular purpose

• flows of control focusing on action or sequence of actions

• synchronization and communication between elements

This section also covers diagraming techniques used to model distributed objects.

10.2.1 Collaborating Objects

Collaborating objects are objects involved with each other to perform some specific task. They do not
form a permanent relationship. The same objects can be involved with other objects working together to
perform other tasks. Collaborating objects can be represented in a collaboration diagram. Collaboration
diagrams have a structural part and an interactive part. The structural part has already been discussed.
The interaction part is a graph where all of the participating objects are vertices. The connections
between the objects are the arcs. The arcs can be adorned with messages passed between the objects,
method invocations, and stereotype indicators that express more details about the nature of the
connection.

The connection between two objects is a link. A link is a type of association. When two objects are
linked, actions can be performed between them. The action may result in a change of the state of one or
both objects. These are examples of the types of actions that can take place:

create An object can be created.

destroy An object can be destroyed.

call An operation of an object can be invoked by another object or itself.

return A value is returned to an object.

send A signal may be sent to an object.

When any method is invoked, the parameters and the return value can be expressed. Other actions can
take place if specified.

These actions can take place if the receiving object is visible to the calling object. Stereotypes can be
used to specify why the object is visible:

association The object is visible because an association exists (very general).

parameter The object is visible because it is a parameter to the calling object.

local The object is visible because it has local scope to the calling object.

global The object is visible because it has global scope to the calling object.

self The object calls its own method.

Other stereotypes and adornments appropriate for associations can be expressed.

When a method is invoked, this may cause a number of other methods to be invoked by other objects.
The sequence in which the operations are performed can be shown by using a sequence number
combination and a colon separator prepended to the method. The sequence number combination
expresses what sequence the method is associated with and the time order number in which the
operation takes place. For example, Figure 10-7 shows a collaboration diagram that uses the sequence
numbers.

Figure 10-7. A collaboration diagram using sequence numbers.

In Figure 10-7, MainObject performs two operations in sequence:

1: <<create>>
2: Value := performAction(ObjectF)

In operation 1, MainObject creates ObjectA. ObjectA is local to the MainObject by containment. This
initiates the first sequence of operations in a nested flow of control. All operations apart from this
sequence use the number 1 followed by the time order number in which the operation takes place. The
first operation of sequence 1 is:

1.1: initialize()

ObjectA invokes its own operation. This is expressed by linking the object to itself and by using the
{self} stereotype indicator. The ObjectA::initialize() operation also causes the beginning of another
sequence of actions:

1.1.1: initializeB()
1.1.2: initializeC()

in which two other objects local to ObjectA initialize methods are called. The operation:

2: performAction(ObjectD)

is the beginning of another nested sequence. ObjectD is passed to ObjectA. ObjectA invokes ObjectD's
operation:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig07

2.1: doAction()

ObjectA can invoke this operation because ObjectD is a parameter (passed by MainObject), as the
stereotype {parameter} indicates. A value is returned to ObjectA and a value is returned to MainObject.
Besides sequence number combinations, these nested flows of control are further enhanced by using a
line with a solid arrowhead pointing in the direction of the flow of the sequence.

10.2.1.1 Processes and Threads

A process is a unit of work created by the operating system. It has one or more flows of control
executing within its address space. Each process has at least one thread, the main thread, but can have
many threads executing within its address space. Each thread represents a process's flow of control.
Multiple processes can execute concurrently. Threads within the address space of a process can execute
concurrently with threads of other processes.

When using the UML, each independent flow of control is considered an active object. An active object
is an object that owns a process or thread. Each active object can initiate control activity. An active
class is a class whose objects are active. Active classes can be used to model a group of processes or
threads that share the same data members and methods. The objects of your system may not have a one-
to-one correlation with active objects. As discussed in Chapters 3 and 4, when dividing your program
up into processes and threads along object lines, an object's methods may execute in a separate process
or execute on separate threads. Therefore, when modeling such an object, it may be represented by
several active objects. This relationship between static and active objects can be represented by using
an interaction diagram. Your system may have several PVM or MPI tasks or processes. Each of them
can be represented directly as an active object.

The UML represents an active object or class the same way a static object is represented, except it has a
heavier line tracing the perimeter of the rectangle. Two stereotypes can also be used:

process
thread

These stereotype indicators can be displayed to show the distinction between the two types of active
objects. Figure 10-8 shows a PVM task as an active class and an active object. A collaboration diagram
can consist of active objects.

Figure 10-8. An active object and class.

10.2.1.2 Showing the Multiple Flows of Control and Communication

In a concurrent and distributed system, there will be multiple flows of control. Each flow of control is
based on a process or a thread controlling the activity. These processes and threads may be executing

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch04.htm#ch04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03

on a single computer system with multiple processors or the processes may be distributed among
several different computers. An active object or class is used to represent each flow of control. When
the active object is created, an independent flow of control is initiated. When the active object is
destroyed, the flow of control is terminated. Modeling the multiple flows of control in your system will
help in the management, synchronization, and communication between them.

In a collaboration diagram, sequence numbers and solid arrows are used to identify flows of control. In
a collaboration diagram that consists of active objects in a concurrent system, the name of the active
object is preprended to the sequence numbers of the operations peformed by the active object. Active
objects can invoke methods in other objects and suspend execution until the function returns or can
continue to execute. Arrows are used not to just show the direction of the flow of control but the nature
of it. A solid arrowhead is used to represent a synchronous call and a half-stick arrowhead is used to
represent an asynchronous call. Since more than one active object can invoke the operation of a single
object, the method properties:

sequential
guarded
concurrent

can be used to describe the synchronization property of that method.

Figure 10-9 shows a collaboration of several active objects. In this diagram, these objects are working
together to produce a student schedule. The blackboard object is used to record and coordinate the
preliminary work and resultant schedule produced by the active object problem solvers, in this case
called agents:

Figure 10-9. A collaboration diagram of static and active objects in the course adviser system.

MajorAgent Produces a list of major courses available.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig09

MinorAgent Produces a list of minor courses available.

FilterAgent Filters the list of courses and produces a list of possible courses.

ScheduleAgent Produces several schedules based on the list of possible courses.

The schedule_of_courses object contains all the courses available.

The blackboard and schedule_of_courses objects are accessed concurrently by several agents. Both
objects are visible to all the agents in this collaboration. The MajorAgent, MinorAgent, FilterAgent,
and ScheduleAgent invoke methods of the blackboard object. MajorAgent and MinorAgent invoke
methods of the schedule_of_courses object. MajorAgent and MinorAgent have a similar sequence of
calls to the blackboard and schedule_of_courses objects:

MajorAgent1:currentDegreePlan()
MajorAgent2:coursesTaken()
MajorAgent3:scheduleOfCourses()
MajorAgent4:suggestionsForMajor()

MinorAgent1:currentDegreePlan()
MinorAgent2:coursesTaken()
MinorAgent3:scheduleOfCourses()
MinorAgent4:suggestionsForMinor()

As you can see, the name of the active object that invokes these operations are prepended to the
sequence number. Both objects are concurrently invoking blackboard and schedule_of_courses
operations. All these operations have concurrent synchronization and are safe to call simultaneously.
masterList() and possibleCourses() have a guarded property. The objects supplying these courses may
be writing them as these objects are attempting to read them. They are guarded by only allowing
sequential access (EREW).

10.2.2 Message Sequences between Objects

Where a collaboration diagram focuses on the structural organization and interaction of objects working
together to perform a task, operation, or realize a use case, a sequence diagram focuses on the time
ordering of method invocation or procedures involved in a particular task, operation, or use case. In a
sequence diagram, the name of each object or construct involved is displayed in its own rectangular
box. The boxes are placed at the top along the x-axis of the diagram. You should only include the major
players involved and the most important function calls because the diagram can quickly become too
complicated. The objects are ordered from left to right starting from the object or procedure that
initiates the action to the most subordinate objects or procedures. The calls are placed along the y-axis
from top to bottom in time order. Vertical lines are placed under each box representing the lifeline of
the object. Solid arrowhead lines are drawn from the lifeline of one object to the lifeline of another
representing a function call or method invocation from the caller to the receiver. Stick arrowhead lines
are drawn from the receiver back to the caller representing a return from a function or method. Each
function call is labeled at the minimum with the function or method name. The arguments and control
information, like the condition in which the method is invoked, can also be displayed. For example:

[list != empty]
getResults()

The function or method will not be performed unless the condition is true. Methods that are to be
invoked several times on an object, like reading values from a structure, are preceded by an iteration
marker (*).

Figure 10-10 shows a sequence diagram of some of the objects involved in the course adviser system.
Only some of the objects are shown to avoid a complicated diagram. When using the sequence diagram

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig10

for concurrent objects or procedures, activation symbols are used. An activation symbol is a rectangle
that appears on the object's lifeline. This indicates the object or procedure is active. These are used
when an object makes a call to another object or procedure and does not block. This shows that the
object or procedure is continuing to execute or be active. In Figure 10-10, the blackboard object is
always active. It spawns a schedule_agent object and does not block. The schedule_agent calls
blackboard.masterList() and waits for the method to return the list of courses. A return arrow is used to
indicate the method has returned. The schedule_agent then calls one of its own methods
createSchedules(). To indicate an object has called one of its own methods, a self-delegation symbol is
used. This is a combination of an activation symbol and a call arrow. An activation symbol is
overlapped on the existing activation symbol. A line proceeds from the original activation symbol with
an arrow pointing to the added activation symbol. Once schedule_agent posts its results by calling
blackboard.possible-Schedule(), the blackboard object kills it. This is indicated with the large X at the
end of its lifeline. A call arrow from the blackboard object points to this X, indicating it has killed the
object. The blackboard object spawns a filter_agent object and does not block. The filter_agent calls
blackboard.possibleSchedules() and waits for the method to return the schedules. The filter_agent then
calls one of its own methods filterCourses(). Once filter_agent posts its results, it deletes itself. The
blackboard object calls its own organizeSolution() and updateRecords() then deletes itself.

Figure 10-10. A sequence diagram of some of the objects involved in the course adviser system.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig10

10.2.3 The Activities of Objects

The UML can be used to model the activities performed by objects involved in a specific operation or
use case. This is called an activity diagram. It is a flowchart showing the sequential and concurrent
actions or activities involved in a specific task, step-by-step. The arrows trace the flow of control for the
activities represented in the diagram. Collaboration diagrams emphasize the flow of control from object
to object, sequence diagrams emphasize the flow of control in time order, and the activity diagram
emphasizes the flow of control from one action or activity to another. The actions or activities change
the state of the object or returns a value. The containment of the action or activity is called an action or
activity state. They represent the state of the object at a particular instant in the flow of control.

Actions and activities differ. Actions cannot logically be decomposed or interrupted by other actions or
events. Examples of actions are creating or destroying an object, invoking an object's method, or calling
a function in a procedure. An activity can be decomposed into other activities or even another activity
diagram. An example of an activity is a program, a use case, or a procedure. Activities can be
interrupted by an event or other activities or actions.

An activity diagram is a graph in which the nodes are actions or activities and the arcs are triggerless
transitions. Triggerless transitions require no event to cause the transition to occur. The transition
occurs when the previous action or activity has completed. The diagram comprises decision branches,
starts, stops, and synchronization bars that join or fork several actions or activities. Both action and
activity states are represented the same way. To represent an action or activity state, the UML uses the
standard flowchart symbol used to show the enter and exit point of the flowchart. This symbol is used
regardless of the type of action or activity occurring. We prefer to use the standard flowchart symbols
that distinguish input/output actions (parallelogram) from processing or transformation actions
(rectangle). The description of the action or activity as a function call, expression, phrase, use case, or
program name is displayed in the action symbol used. An activity state may in addition show the entry
and/or exit action. The entry action is the action that takes place when the activity state is entered. The
exit action is the action that takes place just before exiting the activity state. They are the first and last
actions to be executed in the activity state, respectively.

Once an action has completed, a transition occurs in which the next action takes place immediately. The
transition is represented as a directed line from one state with a stick arrow pointing to the next state. A
transition pointing to a state is inbound and a transition leading from a state is outbound. Before the
outbound transition occurs, the exit action, if it exists, executes. After an inbound transition, the entry
action for the state, if it exists, executes. The start of the flow of control is represented as a large solid
dot. The first transition leads from the solid dot to the first state in the diagram. The stopping point or
stop state of the activity diagram is represented as a large solid dot inside a circle.

Activity diagrams, like flowcharts, have a decision symbol. The decision symbol is a diamond with one
inbound transition and two or more outbound transitions. The outbound transitions are guarded
conditions that determine the path of the flow of control. The guarded condition is a simple boolean
expression. All of the outbound transitions should cover all of the possible paths from the branch.
Figure 10-11 shows the decision symbol used in determining whether a knowledge source should be
constructed.

Figure 10-11. The decision symbol used in determining whether a knowledge source should be constructed.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig11

You may find that there exists more than one flow of a sequence of actions or activities occurring
concurrently after an action or activity has completed. Unlike a flowchart, the UML defines a symbol
that can be used to represent the instant where multiple flows of control occur concurrently. A
synchronization bar is used to show where a single path branches off or forks into parallel paths and
where parallel paths join. It is a thick horizontal line in which there can be multiple outbound
transitions (forking) or multiple inbound transitions (joining). Each transition represents a different
path. Outbound transitions from a synchronization bar signify an action or activity state has caused
multiple flows of control to occur. Inbound transitions into a synchronization bar signify the multiple
flows of control need to be synchronized. A synchronization bar is used to show the paths are waiting
for all paths to meet and join into a single flow or path. Figure 10-12 shows an example of forking and
joining.

Figure 10-12. An example of forking and joining from or to the synchronization bar.

In Figure 10-12, creating MajorAgent invokes its constructor, which forks three flows of control. After
these three actions have completed, they are joined again into a single flow of control in which the
action "produce list of major courses" is executed.

The diagram can be divided into separate sections called swimlanes. In each swimlane, the actions or
activities of a particular object, component, or use case occurs. Swimlanes are vertical lines that
partition the diagram into sections. A swimlane for a particular object, component, or use case specifies
the focus of activities. An action or activity can only occur in a single swimlane. Transitions and
synchronization bars can cross one or more swimlanes. Actions or activities in the same lane or
different lanes but at the same level are concurrent. Figure 10-13 shows the activity diagram with
swimlanes.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig13
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig12
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig12

Figure 10-13. An activity diagram with swimlanes showing a sequence of actions in the course advisor system.

The purpose of this activity diagram is to model the sequence of actions involved in a blackboard object
producing the master list for our course adviser system. In Figure 10-13, the blackboard object first
makes the decision whether the MajorAgent object should be constructed. If so, the constructor for
MajorAgent is invoked. This causes a fork of three flows of control. Two of the actions are executed by
the blackboard object, "get current degree plan" and "get courses taken," and one action is executed by
the ScheduleofCourses object, "get schedule of courses." These are all input actions, as the symbol
represents. The multiple paths are joined again and MajorAgent performs an action "produce list of
major courses." The blackboard performs an action "receive list of major courses" followed by the
deletion of the MajorAgent object. The blackboard object "produces master list of courses," then the
activities stop.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig13

10.2.4 State Machines

State machines depict the behavior of a single construct specifying the sequence of transformations
during its lifetime as it responds to internal and external events. The single construct can be a system, a
use case, or an object. State machines are used to model the behavior of a single entity. An entity can
respond to events such as procedures, functions, operations, and signals. An entity can also respond to
elapses in time. Whenever an event takes place, the entity responds by performing some activity or
taking some action resulting in a change of the state of the entity or the production of some artifact. The
action or activity performed will depend upon the current state of the entity. A state is a condition the
entity is in during its lifetime as a result of performing some action or responding to some event.

A state machine can be represented in a table or directed graph called a state diagram. Figure 10-14
shows a UML state diagram for the state machine of a process. Figure 10-14 shows the states some
process progresses go through while it is active in the system. The process can have four states: ready,
running, sleeping, and stopped. There are eight events that cause the four states of the process. Three of
the events only occur if a condition is met. The block event occurs only if the process requests I/O or it
is waiting for an event to occur. If the block event occurs, it triggers the process to transform from a
running state to a sleeping state. The wakeup event occurs only if the event takes place or the I/O has
been completed. If the wakeup event occurs, it triggers the process to transform from a sleeping state
(source state) to a ready state (target state). The exit event occurs only if the process has executed all its
instructions. If the exit event occurs, it triggers the process to transform from a running state to a
sleeping state. The remaining events are external events and not under the control of the process. They
occur for some external reason triggering the process to transform from a source to a target state.

Figure 10-14. State diagram for processes.

The state diagrams are used to model the dynamic aspects of an object, use case, or system. The
sequence, activity, and interactive collaboration diagrams and now the state diagram are used to model
the behavior of the system or object when it is active. Structural collaboration and class diagrams are
used to model the structural organization of an object or system. State diagrams are good to use to
describe the behavior of an object regardless of the use case. They should not be used to describe the
behavior of several interacting or collaborating objects. They should be used to describe the behavior of
an object, system, or use case that goes through a number of transformations and more than one event
may cause a single transformation to occur. These are constructs that are very reactive to internal and
external events.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig14
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig14

In the state diagram, the nodes are states and the arcs are transitions. The states are represented as
rounded-corner rectangles in which the name of the state is displayed. The transitions are lines
connecting the source and target states with a stick arrow pointing to the target state. There are initial
and final states. The initial state is the default starting point for the state machine. It is represented as a
solid black dot with a transition to the first state of the state machine. The final state is the ending state
of the state machine, indicating it has completed or the system, use case, or object has reached the end
of its lifeline. It is represented as a solid dot embedded in a circle.

Table 10-5. Parts of a State

Parts of a
State

Description

Name The unique name of the state that distinguishes it from other states; a state may have
no name.

Entry / exit
actions

Actions executed when entering the state (entry state) or executed when exiting the
state (exit action).

Substates A nested state; the substates are the disjointed states that can be activated sequentially
or concurrently. The composite or superstate is the state that contains the substates.

Internal
transitions

Transitions that occur within the state that are handled without causing a change in
the state.

Self-
transitions

Transitions that occur within the state that are handled without causing a change in
the state but causes the exit then the entry actions to execute.

Deferred
events

A list of events that occurs while the object is in that state but is queued and handled
when the object is in another state.

A state has several parts. Table 10-5 lists the parts of a state. A state can be represented simply by
displaying the name of the state at the center of the state symbol. If other actions are to be shown inside
the state symbol, the name of the state should appear at the top in a separate compartment. The actions
and activities are listed below this compartment and are displayed in this format:

label [Guard] / action or activity

For example:

do / validate(data)

The do is the label used for an activity to be performed while the object is in this state. The
validate(data) function is called with data as the argument. If an action or activity is a call to a function
or method, the arguments can be displayed.

The Guard is an expression that evaluates to true or false. If a condition evaluates to true, the action or
activity takes place. For example:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10table05

exit [data valid] / send(data)

The exit action send(data) is guarded. The expression data valid is evaluated to be true or false. Upon
exiting the state, if the expression is true, then the send(data) function is called. The Guard is always
optional.

Transitions occur when an event takes place. This causes the object, system, or use case to transform
from one state to another. There are two transitions that can occur that does not cause a change in the
state of the object, system, or use case: self-transition and internal transition.

With a self-transition, when a particular event occurs, this triggers the object to leave the current state.
When exiting, it performs the exit action (if any), then performs whatever action is associated with the
self-transition (if any). The object reenters the state and the entry action (if any) is performed. With an
internal transition, the object does not leave the state and therefore no entry or exit actions are
performed. Figure 10-15 shows the general structure of a state with exit and entry actions, do activity
along with internal and self-transitions. A self-transition is represented as a directed line that points
back to the same state.

Figure 10-15. The general structure of a state with an exit action, entry action, do activity, and internal– self-
transitions.

A transition between different states indicates that there is a relationship or path that exists between
them. From one state an event can occur or a condition can be met that causes the object to be
transformed from one state (source state) to another state (target state). The event triggers the transition
of the object. A transition may have several concurrently existing source states. If so, they are joined
before the transition occurs. A transition may have several concurrently existing target states in which a
fork has occurred. Table 10-6 lists the parts of a transition. A transition is rendered as a directed line
from the source state pointing to the target state. The name of the event trigger is displayed next to the
transition. Like actions and activities, events for transitions can also be guarded. A transition can be
triggerless, meaning no special event occurs that causes the transition to take place. Exiting the source
state, the object immediately makes the transition and enters the target state.

Table 10-6. Parts of a Transition

Parts of a
Transition

Description

Source state The original state of the object; when a transition occurs the object leaves the source
state.

Target state The state the objects enter after a transition occurs.

Event trigger The event that causes the transition to occur. A transition may be triggerless, in

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10table06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig15

Parts of a
Transition

Description

which the transition occurs as soon as the object has completed all activities in the
source state.

Guard condition A boolean expression associated with an event trigger that when evaluated to True,
the transition occurs.

Action An action executed by the object that takes place during a transition; it may be
associated with an event trigger and/or guard condition.

10.2.4.1 Concurrent Substates

A substate can be used to further simplify the depiction of modeling the behavior of a concurrent
system. A substate is a state contained inside another state called a superstate or composite state. This
representation means a state can be further broken down into one or more substates. These substates can
be sequential or concurrent. With concurrent substates, each state machine represented exists in parallel
as different but concurrently existing flows of control. This means the object is engaged in two
independent sets of behavior. This is true for our blackboard object. As it is processing each possible
schedule, it has to also update its appropriate structures and perform other maintenance. Each substate
is contained in a separate compartment. The substates are synchronized and joined before exiting the
composite state. When one substate has reached its final state, it waits for the other state to reach its
final state, then the substates are joined back into one flow. Figure 10-16 shows a state diagram for the
blackboard object that produces a student schedule.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig16

Figure 10-16. State diagram for the blackboard object.

In Figure 10-16, the schedule production is a composite state. It has concurrent substates called filtering
and maintenance. Each substate is separated by a dashed line and is represented by its own state
machine, each having an initial and final state. In the filtering substate, the object goes through the time
conflict filtering, balancing, and then personalizing states. In the maintenance substate, the object goes
through one state: updating. When both substates have reached their final states, filtering and
maintenance are joined before exiting the composite state schedule production.

10.2.5 Distributed Objects

Distributed objects are objects executing on different processors on different machines. A deployment
diagram is used to model the view of the system that shows the physical relationships between the
software and hardware components in the delivered system. They are used to show how the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig16

components and objects are routed in the distributed system. Components can be executable programs,
libraries, or databases. You may want to specify where a particular component or object resides in the
system. Determining how to distribute the concurrent components of your system will be difficult.
Modeling how the components are distributed will help in managing the configuration, functionality,
and throughput of the system.

A deployment diagram consists of nodes and the objects or components that reside on the nodes. A
node is a computational unit or a piece of hardware that has some memory and processing capability,
whether it be a device, a computer, a mainframe, or a cluster of computers. The nodes are related by
dependency. These dependencies represent how the components communicate with each other. The
direction of the dependency indicates which component is aware of the other component. Even if there
is communication in both directions, one component may not be aware of whom they are
communicating with.

There are two ways to model the location of components or objects in a UML deployment diagram:
nesting or tagged value.

They reflect the approach of listing the components that reside on a node in the node symbol or
displaying the location of the components in the component symbol. Nodes are a part of a deployment
diagram. The node symbol is a cube. The cube can have two separate compartments: one contains the
stereotype indicator describing the type of node and the other contains the list of components that reside
on that node. The approach uses the component symbol and displays a location tag assigning the name
of the node where the component resides. A location tag has this format:

{location = name of node}

The location tag can be a part of any diagram in which the location of the component is appropriate
(e.g., collaboration, object, or activity diagram). Figure 10-17 shows the two approaches of showing the
location components in a distributed system. In Figure 10-17, (a) shows the node symbol listing the
components that reside on it and (b) shows the active object symbol using the location tag.

Figure 10-17. Approaches to show the location of a component in a distributed system.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig17
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec2.htm#ch10fig17

10.3 Visualizing the Whole System

A system is composed of many elements, including subsystems organized into a collaboration to
accomplish some purpose. It is an aggregation of constructs joined in some regular interaction. The
diagraming techniques discussed in this chapter allow the developer to model a single system from
different viewpoints, from different levels, and from different flows of control to assist in the design
and development of the system. In this section, we discuss modeling and documenting the system as a
whole. This means at the highest level the major components or functional elements can be depicted.
The diagraming techniques discussed in this section are the ones used to model the delivered system
and the architecture of the system. Although this is the last section in this chapter, modeling and
documenting the whole system would be the first level of designing and developing a system.

10.3.1 Visualizing Deployment of Systems

The deployment of a system is the last step in system development. Deployment is the delivery of the
system. When a system is to be deployed, you may want to model the actual physical components of
the runtime version of your system. A deployment diagram depicts the configuration of runtime
processing elements and the software components that execute on them. The software components are
actual executable modules such as active objects (processes), libraries, databases, and so on. A
deployment diagram consists of nodes and components. The components used in a deployment diagram
are runtime entities. Runtime entities are the physical implementations of logical elements. A class is a
logical element that may be implemented as one or several components. A class may be divided into
processes or threads. Each process or thread can be a component in a deployment diagram. The
components of a class may be executed on different nodes on a single machine (threads/processes) or
different machines (processes).

A node is represented by a cube. Nodes are connected by dependencies or associations. Components
and nodes can be connected by dependencies as well. As discussed earlier, a node can list its
components or a component can be depicted separate from a node showing the relationship between
them. A component can be represented as a rectangle with tags on the left side. The name of the
component is contained inside the symbol.

Components can be grouped together to create larger chunks such as packages or subsystems. Figure
10-18 shows a deployment diagram. In Figure 10-18, the users connect to the system via intranet. The
nodes are the part of a cluster of PCs. They are grouped into a package. The user connects to the cluster
as a whole. Each node lists the components that reside on them. The communication between nodes is
by means of a network node.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec3.htm#ch10fig18
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec3.htm#ch10fig18
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec3.htm#ch10fig18

Figure 10-18. A deployment diagram using packages.

10.3.2 The Architecture of a System

When modeling and documenting the architecture of a system, the view of the system is at the highest
level. Booch, Rumbaugh, and Jacobson define architecture as:

The set of significant decisions about the organization of a software system, the selection of
the structural elements and their interfaces by which the system is composed, together with
their behavior as specified in the collaboration among those elements, the composition of
these structural and behavioral elements into progressively larger subsystems, and the
architectural style that guides this organization—these elements and their interfaces, their
collaborations, and their composition.

Modeling and documenting the architecture will capture the system's logical and physical elements
along with the structure and behavior of the system at the highest level.

The architecture of the system is a description of the system from a distinct view that focuses on the
structure and organization of the system from that aspect. The views are as follows:

use case Describes the behavior of the system presented to end users.

process Describes the processes and threads used in the system's mechanisms of concurrency
and synchronization.

design Describes the services and functions provided to the end user.

implementation Describes the components used to create the physical system.

deployment Describes the software components and the nodes on which they are executing in the
delivered system.

As you can see, these views overlap and interact with each other. Use cases can be used in the design
view. Processes can show up as components in the implementation view. Software components are
used in both implementation and deployment views. When designing the architecture of the system,
diagrams that reflect each of these views should be constructed.

A system can be decomposed into subsystems and modules. The subsystems or modules will be further
broken down into components, nodes, classes, objects, and interfaces. In the UML, subsystems or
modules used at the architectural level of documentation are called packages. A package can be used to
organize elements into a group that describes the general purpose of those elements. A package is
represented as a rectangle with a tab on the upper left corner. The package symbol contains the name of
the package. The packages in the system can be connected by means of composition, aggregation,
dependency, and associations relationships. Stereotype indicators can be used to distinguish one type of
package from another. Figure 10-19 shows the packages involved in the course adviser system. The
system package uses a <<system>> indicator to distinguish it from the User Interface Client and Logic
Server subsystems, which use the <<subsystem>> indicator. Because they are subsystems, they are
related to the system by aggregation relationship.

Figure 10-19. Packages used in the course adviser system.

Packages can contain other packages. If a package contains other packages, then the name of the
package is placed in the tab. Figure 10-19 also shows the content of each subsystem.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec3.htm#ch10fig19
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch10lev1sec3.htm#ch10fig19

Summary

A model of a system is the body of information gathered for the purpose of studying the system.
Documentation is a tool used in modeling a system. The UML, Unified Modeling Language, is a
graphical notation used to design, visualize, model, and document the artifacts of a software system
created by Grady Booch, James Rumbaugh, and Ivar Jacobson. It is the de facto standard for
communicating and modeling object-oriented systems. The UML can be used to model concurrent and
distributed systems from the structural and behavioral perspectives.

UML diagrams can be used to model to most basic units, the object, to the whole system. An object is
the basic unit used in many UML diagrams. Dependency, inheritance, aggregation, and composition are
some of the relationships that can exist between objects. Interaction diagrams are used to show the
behavior of an object and identify concurrency in the system. Objects can interact with other objects by
communicating and invoking methods. Collaboration diagrams depict the interactions between objects
working together to perform some particular task. Sequence diagrams are used to represent the
interactions between objects in time sequence. Statecharts are used to depict the actions of a single
object over its lifetime. Objects that are distributed can be tagged with the location of the node on
which it resides.

Deployment diagrams are used to model the delivered system. The basic units of a deployment diagram
are nodes and components. A node represents hardware and components are software. Nodes can be
depicted to show what objects or components reside on them. When modeling the whole system, the
basic unit is a package. A package can be used to represent systems and subsystems. Packages can have
relationships with other packages such as composition or some type of association.

Chapter 11. Designing Components That Support Concurrency
"As we cross the divide to instantiate ourselfs into our computational technology, our
indentity will be based on our evolving mind file. We will be software, not hardware."

—Ray Kurzweil, The Age of Spiritual Machines

In this Chapter

• Taking Advantage of Interface Classes

• A Closer Look at Object-Oriented Mutual Exclusion and Interface Classes

• Maintaining the Stream Metaphor

• User-Defined Classes Designed to Work with PVM Streams

• Object-Oriented Pipes and fifos as Low-Level Building Blocks

• Framework Classes Components for Concurrency

• Summary

As a rule of thumb the requirement for parallelism and concurrency within a piece of software should
be discovered and not introduced. Sometimes the goal of speeding up a program is not enough
justification to force parallellism into logic that is naturally sequential. The parallelism within a design
should be a natural consequence of the requirements of a system. Once concurrency is identified in the
system requirements, then architectures and algorithms that support parallelism should be considered.
In other cases the need for parallelism will emerge within an existing system that was originally
designed with only sequential processing in mind. This is often the case for systems that started as
single-user systems and grew into multiuser systems or systems that have evolved functionally far
beyond the original specifications. In these systems the requirement for parallelism is after the fact and
the system architecture must be augmented to support concurrency. In this book we are concerned with
describing techniques for implementing natural parallelism. That is, once we know we need parallelism,
how do we do it using C++?

We present an architectural approach to managing parallelism within a program. We take advantage of
the C++ support for object-oriented programming and genericity. Particularly C++'s support for
inheritance, polymorphism, and templates is used to cleanly implement architectures and components
that support concurrency. Object-oriented programming techniques supply support for 10 class types
shown in Table 11-1.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11.htm#ch11table01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec7.htm#ch11lev1sec7
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec6.htm#ch11lev1sec6
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11lev1sec5
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec4.htm#ch11lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec3.htm#ch11lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec2.htm#ch11lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec1.htm#ch11lev1sec1

Table 11-1. Types of Object-Oriented Classes

Types of
Classes

Description

Template
classes

A parameterized type containing generic code that can use or manipulate any type; an
actual type is the parameter for the code body.

Container
class

A class used to hold objects in memory or external storage.

Virtual base
class

A base class where during multiple inheritance, the class is the indirect and/or direct
base of a derived class; only one copy of the class is shared by all the derived classes.

Abstract class A class that supplies the interface for derived classes that can only be used as a base
class; used as the layout for the construction of other classes.

Interface class A class used to adjust the interface of other classes.

Node class A class that has added new services or functionality beyond the services inherited
from its base class.

Domain class A class created to simulate some entity within a specific domain; the meaning of the
class is relative to the domain.

Aggregate
class

A class that contains other classes; has a "whole–part" relationship with other classes.

Concrete
class

A complete class whose implementation is defined and instances of the class can be
declared; not intended to be a base class and no attempt to create operations of
commonality.

Framework
class

A class or collection of classes that has a predefined structure and represents a
generalized pattern of work.

These class types prove to be especially useful for designs that require concurrency. This is because
these class types aid with the building-block approach. We start with primitive components, using them
to build synchronization classes. We use the synchronization classes to build concurrency-safe
container classes and framework classes. The framework classes are the building blocks for higher level
parallel architectures such as multiagent systems and blackboards. At each level the complexity of the
parallel and distributed programming is reduced with the help of the various class types in Table 11-1.

We start our discussion with the interface class. An interface or adapter class is used to modify or
enhance the interface of another class or set of classes. The interface class may also act as a wrapper
around one or more functions that are not members of any particular class. This use of the interface

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11.htm#ch11table01

class allows us to provide an object-oriented interface to software that is not necessarily object-oriented.
Furthermore, interface classes allow us to simplify the interfaces of function libraries such as POSIX
threads, PVM and MPI. We can either wrap a non-object-oriented function in an object-oriented
interface; or we might want to wrap a piece of data, encapsulate it, and give it an object-oriented
interface. In addition to simplifying the complexity of some function libraries, the interface classes are
used to present a consistent API (Application Programmer Interface) to the developers. For example,
C++ programmers that have grown accustomed to the advantages of the iostreams classes tend to think
of input and output in terms of object-oriented streams. The learning curve is minimized when new
input and output techniques can be presented within the iostream metaphor. For instance, we might
present the MPI message passing library as a collection of streams:

mpi_stream Stream1;
mpi_stream Stream2;

Stream1 << Message1 << Message2 << Message3;
Stream2 >> Message4;
//...

In this way, the programmer can focus on the logic of the program without getting bogged down in the
syntax requirements of the MPI library.

11.1 Taking Advantage of Interface Classes

It is often advantageous to use encapsulation to hide the details of function libraries and to provide self-
contained components that can be reused. Let's take for example the mutex that we discussed in Chapter
7. Recall that a mutex is a special kind of variable used for synchronization. Mutexes are used to
provide safe access to a critical section of data or code within a program. There are six basic functions
that can be performed on a pthread_mutex_t (POSIX Threads Mutex) variable.

Synopsis
[View full width]

#include <pthread.h>

pthread_mutex_destroy(pthread_mutex_t *mutex);
pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t
 *attr);

pthread_mutex_lock(pthread_mutex_t *mutex);
pthread_mutex_timedlock(pthread_mutex_t *mutex);
pthread_mutex_trylock(pthread_mutex_t *mutex);
pthread_mutex_unlock(pthread_mutex_t *mutex);

Each of these functions take at least a pointer to a pthread_mutex_t variable. An interface class can be
used to encapsulate access to the pthread_mutex_t variable and to simplify the function calls that access
the pthread_mutex_t variable. In Example 11.1, we can declare a class called mutex.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec1.htm#ch11ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/noccc##PLID0
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07.htm#ch07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07.htm#ch07

Example 11.1 Declaration of the mutex class.

class mutex{
protected:
 pthread_mutex_t *Mutex;
 pthread_mutexattr_t *Attr;
public:
 mutex(void)
 int lock(void);
 int unlock(void);
 int trylock(void);
 int timedlock(void);
};

Once this mutex class is declared, we can use it to define mutex variables. We can declare arrays of
these mutexes. We use these variables as members of user-defined classes. By encapsulating the
pthread_mutex_t variable and its functions, we can take advantage of the object-oriented programming
techniques. These mutex variables can now be used as parameter arguments and function return values.
And since the functions are now bound to the pthread_mutex_t variable, wherever we pass the mutex
variable the functions are also available.

The member functions for the class mutex are defined by wrapping the calls to the corresponding
Pthread routines, for instance:

Example 11.2 Member functions for the mutex class.

mutex::mutex(void)
{

 try{
 int Value;
 Value = pthread_mutexattr_int(Attr);
 //...
 Value = pthread_mutex_init(Mutex,Attr);
 //...
 }
}

int mutex::lock(void)
{
 int RetValue;
 RetValue = pthread_mutex_lock(Mutex);
 //...
 return(ReturnValue);
}

We also protect the pthread_mutex_t * and the pthread_mutexattr_t * through encapsulation. In other
words, when we invoke the lock(), unlock(), trylock(), and so on methods, we don't have to worry about
which mutex variable or which attribute variables these functions will be applied to. The availability of
information hiding through encapsulation allows the programmer to write safer code. With the free
floating versions of Pthread mutex functions, any pthread_mutex_t variable may be passed to these
functions. Simply passing the wrong mutex to one of these functions can lead to deadlock or indefinite
postponement. Encapsulating the pthread_mutex_t variable and the pthread_mutexattr_t variable within
the mutex class gives the programmer complete control over which functions have access to those
particular variables.

Now we can use an embedded interface class like mutex within other userdefined classes to provide
thread-safe classes. Let's say that we wanted to make a thread-safe queue and a thread-safe pvm_stream
class. The queue is used to store incoming events for multiple threads within a program. Some of the
threads have the responsibility of sending messages to various PVM tasks. The PVM tasks and the
threads are executing concurrently. The multiple threads share a single PVM stream and a single event
queue. Figure 11-1 shows the relationship between threads, PVM tasks, event queue, and pvm_stream.

Figure 11-1. The relationship between threads, PVM tasks, event queue, and the pvm_stream class within a PVM
program.

The queue in Figure 11-1 is a critical section because it is shared between multiple executing threads.
The pvm_stream in Figure 11-1 is also a critical section because it is shared between multiple executing
threads. If these critical sections are not synchronized and protected, then we can end up with corrupted
data in the queue and pvm_stream. The fact that multiple threads can update either the queue or the
pvm_stream introduces an environment for race conditions. To help manage the race conditions we
design our queue and pvm_stream class with built-in lock and unlock functionality. The lock and
unlock functionality is supplied by our mutex class. Figure 11-2 shows the class diagram for our user-
defined x_queue and pvm_stream classes.

Figure 11-2. The class diagram for our userdefined x_queue class and pvm_stream class.

Notice that the x_queue class contains a mutex class. This is a has-a or aggregation relationship

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec1.htm#ch11fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec1.htm#ch11fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec1.htm#ch11fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec1.htm#ch11fig01

between x_queue and mutex, that is, x_queue has a mutex class. Any operation that changes the state of
our x_queue class can cause a race condition if that operation is not synchronized. Therefore, the
operations that add an object to the queue or that remove an object from the queue are candidates for
synchronization. Example 11.3 contains the declaration of our x_queue class as a template class.

Example 11.3 Declaration of the x_queue class.

template <class T> x_queue class{
protected:
 queue<T> EventQ;
 mutex Mutex;
 //...
public:

 bool enqueue(T Object);
 T dequeue(void);
 //...
};

The enqueue() method is used to add items to the queue and the dequeue() method is used to remove
items from the queue. Each of these methods will use the Mutex object. The enqueue() and dequeue()
methods are defined in Example 11.4.

Example 11.4 Defintion of enqueue() method.

template<class T> bool x_queue<T>::enqueue(T Object)
{
 Mutex.lock();
 EventQ.push(Object);
 Mutex.unlock();
}

template<class T> T x_queue<T>::dequeue(void)
{

 T Object;
 //...
 Mutex.lock();
 Object = EventQ.front()
 EventQ.pop();
 Mutex.unlock();
 //...
 return(Object);
}

Now items can be added to and removed from our queue in a multithreaded environment. Thread B in
Figure 11-1 adds items to the queue and Thread A in Figure 11-1 removes items. The mutex class is an
interface class. It wraps the pthread_mutex_lock(), pthread_mutex_unlock(), pthread_mutex_init(), and
pthread_mutex_trylock() functions. The x_queue class is also an interface class because it adapts the
interface for the built-in queue<T> class. First, it changes the push() and pop() method interfaces to
enqueue() and dequeue(). Furthermore, it wraps the insertion and removal of items with the
Mutex.lock() and Mutex.unlock() methods. So in the first case we use the interface class to encapsulate
pthread_mutex_t* and pthread_mutexattr_t* variables. We also wrap several functions from the
Pthread library. In the second case, we use the interface class to adapt the interface of the queue<T>
class. Another advantage of the mutex class is that it can be easily reused in other classes that contain
critical sections or critical regions.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec1.htm#ch11fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec1.htm#ch11fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec1.htm#ch11ex04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec1.htm#ch11ex03

In Figure 11-1 the PVM stream is also a critical section because both Thread A and Thread B have
access to the stream. A possible race condition exists because Thread A and Thread B may both try to
access the stream at the same time. Therefore, we use the mutex class in our user-defined pvm_stream
class to provide synchronization.

Example 11.5 Declaration of pvm_stream class.

class pvm_stream{
protected:
 mutex Mutex;
 int TaskId;
 int MessageId;
 //...
public:
 pvm_stream & operator <<(string X);
 pvm_stream & operator <<(int X);
 pvm_stream &operator <<(float X);
 pvm_stream &operator>>(string X);
 //...
};

As with the x_queue class, the Mutex object is used with the functions that can change the state of a
pvm_stream object. For example, we might define one of the << operators as:

Example 11.6 Definition of the << operator for the pvm_stream class.

pvm_stream &pvm_stream::operator<<(string X)
{

 //...
 pvm_pkbyte(const_cast<char *>(X.data()),X.size(),1);
 Mutex.lock();
 pvm_send(TaskId,MessageId);
 Mutex.unlock();
 //...
 return(*this);
}

The pvm_stream class uses Mutex objects to synchronize access to its critical section in the same
manner as was done with the x_queue class. It's important to note that in both cases the pthread_mutex
functions are hidden. The programmer does not have to be concerned about their syntax. A simpler
lock() and unlock() interface is used. Furthermore, there is no confusion about which pthread_mutex_t
* is being used with the pthread_mutex functions. In addition to these advantages, the programmer may
declare multiple instances of the mutex class without having to call Pthread mutex functions over again.
We made reference to the Pthread functions once within the method definitions of the mutex class. Now
only the methods of the mutex class need be called.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec1.htm#ch11fig01

11.2 A Closer Look at Object-Oriented Mutual Exclusion and Interface Classes

To confront some of the complexity with writing and maintaining programs that require concurrency,
we try to streamline and simplify the API to the parallel libraries. Some systems may require the use of
the Pthreads library, the MPI library, the standard semaphore, and shared memory functions as part of a
single solution. Each of these libraries and functions have their own protocols and syntax. However,
often they have similar functionality. We can use interface classes, inheritance, and polymorphism to
present a simplified and consistent interface to the programmer. We can also hide the details of library-
specific implementation from our applications. If the application only relies on the methods used in our
interface classes, then our application is shielded from implementation changes, library updates, and
other under-the-hood restructuring. Ultimately the work that you do in providing interface classes to
concurrency components and function libraries and function data will allow you to reduce the
complexity of parallel programming. Let's take a closer look at how we can approach the design of
interface classes that support concurrency.

11.2.1 Semi-Fat Interfaces that Support Concurrency

The basic POSIX semaphore is used to synchronize access to a critical section between two or more
processes. The basic POSIX thread is used to synchronize access to a critical section between two or
more threads. In both cases, there are synchronization variables involved and a number of functions
available on the synchronization variables. The MPI library and the PVM library both contain message-
passing primitives. Both have the capabilities of spawning tasks. However, the interfaces of these two
libraries are different. The application programmer wants to focus on the logic and structure of the
program. This is difficult when the semantics of a program are obscured by multiple libraries that
happen to perform similar functions but whose syntax and protocols are very different. What is needed
is a generalized interface that can be used across libraries.

There are at least a couple of approaches to designing an interface for a family of classes or a collection
of classes. The object-oriented approach starts with the general and moves to the specific by means of
inheritance. That is, we take the minimal core set of characteristics and attributes that every member of
the family of classes should have and, through lineage of inheritance, we specialize those characteristics
for each class. In this approach, the interface grows more narrow as you move down the class hierarchy.
The second approach is often used in template collections. Template-based approaches start with the
specific and move to the general through fat interfaces. The fat interface includes a generalization of all
of the characteristics and attributes under discussion (see Stroustrup, 1997). If we were to apply narrow
and fat interfaces to our concurrency libraries, the narrow interface approach would take intersection
between each library, generalize it, and put it in a base class. The fat interface approach would take the
union of the functionality within each library, generalize it, and put in a base class. The set intersection
would produce a smaller, less useful class. The set union would produce a large, possibly unwieldy
class. For our discussion we are interested in a position somewhere in the middle. We want semi-fat
interfaces. We start with a narrow approach and generalize as much as we can within a single class
hierarchy. We then use the narrow interface as a basis for a collection of classes that are not related by
inheritance but that are related by function. The narrow interface acts as a sort of policy to constrain
how fat a semi-fat interface can become. In other words, we don't want a union of every characteristic
and attribute under discussion; we only want a union of the things that are logically related to our
narrow interface. Let's illustrate this point with a simple design of interface classes for the Pthread
mutex, Pthread read-write lock variable, and the POSIX semaphore.

Regardless of the implementation details, the operations of lock, unlock, and trylock are characteristic
of synchronization variables. So we make a base class that will act as a pattern for a family of classes.
The synchronization_variable class is declared in Example 11.7.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec2.htm#ch11ex07

Example 11.7 Declaration of the synchronization_variable class.

class synchronization_variable{
protected:
 runtime_error Exception;
 //...
public:
 int virtual lock(void) = 0;
 int virtual unlock(void) = 0;
 int virtual trylock(void) = 0;
 //...
};

Notice that the methods of the synchronization_variable class are declared virtual and are initialized to
0. This means these methods are pure virtual methods, making the synchronization_variable class an
abstract class. An object cannot be directly created from any class that has one or more pure virtual
functions. In order to use this class a new class must be derived from it and the new class must provide
definitions for each of the pure virtual functions. The abstract class acts as a kind of policy that says
what functions a derived class must define. It provides an interface blueprint for derived classes. It
doesn't dictate how the methods should be implemented, only that the methods must be present and
cannot be pure virtuals. We can get hints of the proposed behavior from the names of the methods. The
blueprint interface class provides an interface without any implementation. This type of class is used to
provide a foundation for future classes. The blueprint class guarantees that the interface will have a
certain look (Caroll & Ellis, 1995). The synchronization_variable class provides a blueprint interface
policy for our family of synchronization variables. We use inheritance to provide implementations for
the interface. The Pthread mutex is a good candidate for an interface class, so we define a mutex class
derived from synchronization_variable:

Example 11.8 Declaration of a mutex class that inherits the synchronization_variable class.

class mutex : public synchronization_variable{
protected:
 pthread_mutex_t *Mutex;
 pthread_mutexattr_t *MutexAttr;
 //...
public:
 int lock(void);
 int unlock(void);
 int trylock(void);
 //...
};

The mutex class will provide implementations for each of the pure virtual functions. Once the functions
are defined, the policy suggested by the abstract base class has been met. The mutex class is not
considered an abstract class, therefore mutex and any of its descendants can be instantiated as objects.
Each of the methods of mutex wraps the corresponding Pthread function. For instance:

int mutex::trylock(void)
{
 //...
 return(pthread_mutex_trylock(Mutex);
 //...
}

provides an interface to the pthread_mutex_trylock() function. The lock(), unlock(), and trylock()
interface simplifies the Pthread function calls. Our goal is to use encapsulation and inheritance to

eventually define a complete family of mutex classes. The inheritance process is a specialization
process. The derived class provides additional attributes or characteristics that distinguish it from its
ancestors. Each attribute or characteristic added to the derived class specializes it. Now we can design a
specialization of the mutex class through inheritance by adding the notion of a read/write mutex class.
Our generic mutex class is designed to protect a critical section from access. Once a thread has locked
the mutex, it has access to the critical section the mutex protects. Sometimes this is too extreme. There
are times when it is okay to allow multiple threads to access the same data at the same time, so long as
none of the threads modify or change the data in any way. That is, there are times that we may want to
relax the lock on the critical section and only lock out access to actions that want to modify or change
the data and allow access to actions that only read or copy the data. This is called a read lock. The read
lock allows concurrent read access to a critical section. The critical section may already be locked by
one thread and another thread may also obtain a lock so long as it does not want to modify the data. The
critical section may be locked for writing by some thread, and another thread may request a lock for
reading the critical section.

The blackboard architecture is a good example of a structure that can take advantage of read mutexes
and the stronger, more generic mutex. The blackboard is a common region shared by concurrently
executing routines. The blackboard is used to hold solutions to some problem that the group of routines
is collaboratively solving. As each routine makes progress toward the solution to the problem, it writes
its progress to the blackboard. Each routine also reads the blackboard to see if there are any results
generated by the other routines that might be useful. The blackboard structure is a critical section. We
really only want one routine at a time to update the blackboard. On the other hand, we can allow any
number of routines to simultaneously read the blackboard. Also, if we have multiple routines reading
the blackboard, we don't want the blackboard updated until all the routines that are reading are done.
The read mutex is an appropriate mutex for this situation because it can lock access to the blackboard
and only allow blackboard readers while denying access to blackboard writers. However, the
blackboard will need to be updated if a solution to the problem is ever to be achieved. When the
blackboard is being updated, we do not want any readers to have access to the blackboard. We want to
block the readers until the routine that is updating the blackboard is done. Therefore, we need a write
mutex. Only one routine may hold a write mutex at a time. So we distinguish between a mutex that is
locked for reading and no writing and a mutex that is locked for writing and no reading. With a read
mutex we can have multiple concurrent reads, and with a write mutex we may only have one writer.
This is part of the CREW (Concurrent Read Exclusive Write) approach to parallel programming.

Synopsis
#include <ptrhead.h>

int pthread_rwlock_init(pthread_rwlock_t *,
 const pthread_rwlockattr_t *);
int pthread_rwlock_destroy(pthread_rwlock_t *);
int pthread_rwlock_rdlock(pthread_rwlock_t *);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
int pthread_rwlock_wrlock(pthread_rwlock_t *);
int pthread_rwlock_trywrlock(pthread_rwlock_t *);
int pthread_rwlock_unlock(pthread_rwlock_t *);
int pthread_rwlockattr_init(pthread_rwlockattr_t *);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *,
 int *);
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *, int);

To design our specialization of the mutex class, we need to add the ability to perform read locks and
write locks. The pthreads library has a read/write mutex variable and attribute variable:

pthread_rwlock_t and pthread_rwlockattr_t

These variables are used in conjunction with the 11 pthread_rwlock() functions. We use our interface
class rw_mutex to encapsulate the pthread_rwlock_t and pthread_rwlockattr_t variables and to wrap the
Pthread read/write mutex functions.

Example 11.9 Declaration of rw_mutex class that contains pthread_rwlock_t and pthread_rwlockattr_t objects.

class rw_mutex : public mutex{
protected:
 struct pthread_rwlock_t *RwLock;
 struct pthread_rwlockattr_t *RwLockAttr;
public:
 //...
 int read_lock(void);
 int write_lock(void);
 int try_readlock(void);
 int try_writelock(void);
 //...
};

The rw_mutex class inherits the mutex class. Figure 11-3 shows the class relationships between our
rw_mutex class, mutex class, synchronization_variable class and our runtime_error class.

Figure 11-3. The class relationships between rw_mutex, mutex, synchronization_variable, and runtime_error classes.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec2.htm#ch11fig03

So far we have a somewhat narrow interface. We are only interested in providing the core minimum set
of attributes and characteristics needed to generalize our mutex class using the mutex types and
functions from the Pthread library. However, once we are done with this narrow interface for this mutex
class we use that interface as a basis for our semi-fat interface. The narrow interface typically is used
with classes that are all related through inheritance in some way. The fat interfaces tend to be used with
classes that are related by functionality and not by inheritance. We can use the interface class to
simplify the interface on classes or functions that belong to different libraries but have similar
functionality. The interface class will provide the programmer with a consistent look and feel. We take
each of the libraries or classes that have similar functionality, collect all of the common functions and
variables, then generalize that functionality into a large class that contains all of the required functions
and attributes. This will define a class with a fat interface. However, if we just include the functions and
data we are interested in, we (e.g., rw_mutex class) then have a semi-fat interface. It has some of the
advantages of the fat interface by allowing us to access objects that are only related by functionality and
it restricts the set of methods the programmer has to deal with to the methods contained in the narrow
interface class. This can be very important when integrating large function libraries like MPI and PVM
with the POSIX facilities for concurrency. The combination of the MPI, PVM, and POSIX facilities
represents hundreds of functions that all have very similar goals. Taking the time to streamline this
functionality into interface classes will allow the programmer to reduce some of the complexity
involved with parallel and distributed programming. Also, these interface classes become reusable
components that support concurrency.

To see how we approach our semi-fat interface, lets provide an interface class for the POSIX
semaphore. Although the semaphore is not part of the Pthread library, it certainly has similar uses
within a multithreaded environment. However, it can be used in an environment that includes
concurrently executing processes as well as threads. So in some cases it is a more general
synchronization variable than our mutex class.

We might define our semaphore class in Example 11.10 as:

Example 11.10 Declaration of semaphore class.

class semaphore : public synchronization_variable{
protected:
 sem_t *Semaphore;
public:
 //...
 int lock(void);
 int unlock(void);
 int trylock(void);
 //...
};

Synopsis
<semaphore.h>

int sem_init(sem_t *, int, unsigned int);
int sem_destroy(sem_t *);

sem_t *sem_open(const char *, int, ...);
int sem_close(sem_t *);
int sem_unlink(const char *);
int sem_wait(sem_t *);
int sem_trywait(sem_t *);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec2.htm#ch11ex10

int sem_post(sem_t *);
int sem_getvalue(sem_t *, int *);

Notice that it has the same interface as our mutex class. What's the difference? First there are several
important POSIX semaphore functions. Although the interfaces of mutex and semaphore are the same,
the implementation of the lock(), unlock(), trylock(), and so on functions will be calls to the POSIX
semaphore functions. For instance:

Example 11.11 Definitions of lock(), unlock(), and trylock() methods for the semaphore class.

int semaphore::lock(void)
{
 //...
 return(sem_wait(Semaphore));
}
int semaphore::unlock(void)
{
 //...
 return(sem_post(Semaphore));
}

So the lock(), unlock(), trylock(), and so on, functions will wrap POSIX semaphore functions instead of
Pthread functions. It is very important to note that a semaphore and a mutex are not the same thing.
However, they can be used in similar situations. Often from the point of view of instructions that are
implementing parallelism, the lock() and the unlock() mechanisms serve the same purpose. Table 11-2
shows some of the fundamental differences between a mutex and a semaphore.

While the differences in semantics in Table 11-2 are important, they are often not enough to justify a
completely different interface to semaphore and mutexes. Therefore, we keep our lock(), unlock(), and
trylock() semi-fat interface with the caveat that the programmer must know the differences between a
mutex and a semaphore. This is similar to the situation that arises with the fat interfaces of the container
classes such as deque, queue, set, multiset, and so on. The container classes are related by interface but
their semantics are different in certain areas. Using the notion of an interface class, synchronization
components can be designed for mutexes, condition variables, read/write mutexes, and semaphores.
Once we have these components, we can design concurrency-safe container classes, domain classes,
and framework classes. We can also use the interface classes to provide a single interface to different
versions of the same function library, where both versions need to be used within the same application
for some reason. Sometimes the interface class can be used to bridge the gap between deprecated,
obsolete functions and new functionality. We often want to insulate the application programmer from
the difference between operating systems. When the System V semaphores or POSIX semaphores are
used, the programmer can be provided with a consistent API using an interface class.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec2.htm#ch11table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec2.htm#ch11table02

Table 11-2. Fundamental Differences between Mutexes and Semaphores

Characteristics of Mutexes Characteristics of Semaphores

Mutexes and condition variables are
shared between threads.

Semaphores are typically shared between processes, but
may also be shared between threads.

A mutex is unlocked by the same threads
that locked it.

A semaphore post can be performed by other than the
original thread or process that held it.

A mutex is either locked or unlocked. A semaphore is managed by its reference count state.

 The POSIX standard includes named semaphores.

11.3 Maintaining the Stream Metaphor

Besides using interface classes to simplify and to create new fat interfaces for the parallel and message-
passing libraries, we may also want to extend existing interfaces. For instance, the object-oriented
stream metaphor can be extended to pipes, fifos, and the message passing libraries like PVM and MPI.
These components are used to accomplish IPC (Inter-Process Communication), ITC (Inter-Thread
Communication), and in some cases OTOC (Object-to-Object Communicaton). When communication
occurs between concurrently executing threads or processes, then the communication channel may be a
critical section. That is, if two or more routines are attempting to update the same pipe, fifo, or message
buffer at the same time, then a race condition is present. If we are going to extend the object-oriented
stream interface to include components from the PVM or MPI library, then we need to make sure that
the streams we design are concurrency safe. Here is where our synchronization components that were
designed as interface classes come in handy. Let's look at a simple pvm_stream class.

Example 11.12 Declaration of pvm_stream class that inherits mios class.

class pvm_stream : public mios{
protected:
 int TaskId;
 int MessageId;
 mutex Mutex;
 //...
public:
 void taskId(int Tid);
 void messageId(int Mid);
 pvm_stream(int Coding = PvmDataDefault);
 void reset(int Coding = PvmDataDefault);
 pvm_stream &operator<<(string &Data);
 pvm_stream &operator>>(string &Data);
 pvm_stream &operator>>(int &Data);
 pvm_stream &operator<<(int &Data);
 //...
};

This stream class will be used to encapsulate the state of the active buffer in a PVM task. The inserter
operator << and the extractor operator >> will be used to send and retrieve messages between PVM
processes. Here we only show operators for string and int types. The interface for this class is far from
complete. Since this class could possibly be used with any datatype, we have to expand the inserter and
extractor definitions. Since we plan to use the pvm_stream class within a multithreaded program, we
want to make sure that the pvm_stream object is thread safe. Therefore, we include a mutex class as a
member of our pvm_stream class. The pvm_stream class also encapsulates the active buffer for the
PVM task. The stream can direct the message to a particular PVM task. The goal is to use the ostream
and istream classes as a guide for the type of functionality that the pvm_stream class should have.
Recall that istream and ostream classes are translator classes. They translate datatypes into generic
streams of bytes for output and from generic streams of bytes to specific datatypes on input. Using the
istream and ostream classes, the programmer does not have to get bogged down in details of what
datatype is being inserted or extracted from a stream. We want the pvm_stream to behave in the same
manner. The PVM has a different function for every type that needs to be packed into or unpacked from
a send or receive buffer. For instance:

pvm_pkdouble()
pvm_pkint()
pvm_pkfloat()

are used to pack doubles, ints, and floats. There are similar functions for the other datatypes that C++
uses. We would like to retain our stream metaphor where input and output is seen as a generic stream of
bytes moving into or out of the program. Therefore, we define the << inserter operator and the >>
extractor operator for every type we wish to exchange between PVM tasks. Furthermore, we also model
the stream state after istream and ostream classes. The istream and ostream classes have an ios
component that is used to hold the state of the stream. The stream may be in an error state, or the stream
may be in one of several different numeric states such as octal, decimal, and hexadecimal. The stream
may be in a good state, a locked state, an end-of-file state, and so on. The pvm_stream class should
have a component that maintains the state of the stream and should have methods that set, reset, and
report the PVM stream state. Our pvm_stream class contains a mios component for this purpose. The
mios component maintains the state of the stream and the active send and receive buffer. Figure 11-4
contains a class diagram showing the relationships between the major classes in the iostream class
library and how the pvm_stream class compares.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec3.htm#ch11fig04

Figure 11-4. The class diagram showing the relationship between the major classes in the iostream class library and
the class diagram for the pvm_stream class.

Notice that the istream and ostream classes inherit an ios class. The ios class maintains the stream state
and buffer state of the istream and ostream class. Our mios class plays the same role for the
pvm_stream class. The istream and ostream classes contain the definitions for the inserter << and
extractor >> operators. The operators are defined by our pvm_stream class. So although our
pvm_stream class is not related to the iostream classes by inheritance, it is related by interface. We use
the interface of the iostream classes to dictate a semi-fat interface for the pvm_stream and mios classes.
Notice in Figure 11-4 that the mios class is inherited by the pvm_stream class. We want to maintain the
stream metaphor with the pvm_stream class. The notion of an interface class is used to accomplish this.

11.3.1 Overloading the <<, >> Operators for PVM Streams

Let's take a look at how the << inserter operators and >> extractor operators are defined for the
pvm_stream class. The << inserter operator is used to wrap the pvm_send and pvm_pk routines. A
method definition that looks something like:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec3.htm#ch11fig04

Example 11.13 Definition of <<operator for the pvm_stream class.

pvm_stream &pvm_stream::operator<<(int Data)
{
 //...
 reset();
 pvm_pkint(&Data,1,1);
 pvm_send(TaskId,MessageId);
 //...
 return(*this);
}

is provided for each type that will be used with the pvm_stream class. The reset() method is inherited
from the mios class. This method is used to clear or initialize the send buffer. TaskId and MessageId are
data members of the pvm_stream class and are set with the taskId() and messageId() methods. The
inserter method allows us to send data to a PVM task with the standard stream notation:

int Value = 2004;
pvm_stream MyStream;
//...
MyStream << Value;
//...

The >> extractor operators are used in a similar manner to receive messages from PVM tasks. The >>
operator is used to wrap the pvm_recv() and pvmupk routines. Extractor operators can be defined as:

Example 11.14 Definition of operator >> for the pvm_stream class.

pvm_stream &pvm_stream::operator>>(int &Data)
{
 int BufId;
 //...
 BufId = pvm_recv(TaskId,MessageId);
 StreamState = pvm_upkint(&Data,1,1);
 //...
 return(*this);
}

This type of definition will allow us to receive messages from PVM tasks using the extractor operator.

int Value;
pvm_stream MyStream;

MyStream >> Value;

Because the operator returns a reference to the pvm_stream, the insertion and extraction operators may
be strung together:

Mystream << Value1 << Value2;
Mystream >> Value3 >> Value4;

Using this syntax, the programmer is isolated from the more cumbersome syntax of the pvm_send,
pvm_pk, pvm_upk, and pvm_recv routines and the more familiar object-oriented stream metaphor can
be used. In this case, the stream represents a message buffer and the items that are inserted and
extracted from the streams represent messages that are being exchanged between PVM processes.
Recall that each PVM process has a separate address space. So not only do the << insertion and >>
extraction operators disguise the pvm_send and pvm_recv calls, they also mask the underlying socket

activity. Since the pvm_stream class might be used in a multithreaded environment, the insertion and
extraction operators need to be thread safe.

The class diagram in Figure 11-4 shows that the pvm_stream class contains a mutex class. The mutex
class can be used to protect the critical sections that are present in the pvm_stream class. The
pvm_stream class encapsulates access to the send buffer and the receive buffer. Figure 11-5 shows how
threads and the pvm_stream class interact with the pvm_send and pvm_receive buffers.

Figure 11-5. The interaction between the threads, the pvm_stream class, and the pvm_send and pvm_receive buffers.

Not only are the send and receive buffers critical sections, the mios class used to store the state of the
pvm_stream class is also a critical section. The mutex class can be used to protect this component as
well.

The Mutex object can be used in the call to the insertion and extraction operators.

Example 11.15 Definition of operator << and operator >> for the pvm_stream class.

pvm_stream &pvm_stream::operator<<(int Data)

{
 //...
 Mutex.lock();
 reset();
 pvm_pkint(&Data,1,1);
 pvm_send(TaskId,MessageId);
 Mutex.unlock();
 //...
 return(*this);

}

pvm_stream &pvm_stream::operator>>(int &Data)
{
 int BufId;
 //...
 Mutex.lock();
 BufId = pvm_recv(TaskId,MessageId);
 StreamState = pvm_upkint(&Data,1,1);
 Mutex.unlock();
 //...
 return(*this);
}

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec3.htm#ch11fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec3.htm#ch11fig04

This kind of scheme can be used to make the pvm_stream class thread safe. We don't show the
exception handling code or the extra processing that would be included to prevent indefinite
postponement or deadlock. The idea here is to focus on the components and architectures that can be
used to support concurrency. The mutex interface class and the pvm_stream class can be reused and
both support concurrency programming. For our purposes, the pvm_stream objects are assumed to be
used by the receiving and the sending PVM task. However, this is not a strict requirement. In order for
the user to use the pvm_stream class concept with user-defined classes, the insertion operator (<<) and
the extraction operator (>>) must be defined for the user-defined class.

11.4 User-Defined Classes Designed to Work with PVM Streams

To see how the user-defined class can be used with the pvm_stream class, we will improve on the PVM
palette producing routines introduced in Chapter 6. The palette class represents a simple collection of
colors. For convenience, we store the colors in a vector<string> named Colors.

We begin by declaring a spectral_palette class that contains friend declarations for the << inserter and
>> extractor operators.

Example 11.16 Declaration of spectral_palette class.

class spectral_palette : public pvm_object{
protected:
 //...
 vector<string> Colors;
public:
 spectral_palette(void);
 //...
 friend pvm_stream &operator>>(pvm_stream &In,
 spectral_palette &Obj);
 friend pvm_stream &operator<<(pvm_stream &Out,
 spectral_palette &Obj);
 //...
};

Notice this spectral_palette class in Example 11.16 inherits a pvm_object class. The pvm_object class
provides the spectral_palette class with member access to a task id and message id. Recall that the task
id and message id are used in many PVM routines. With the definition of the << operator and >>
operator, spectral_palette objects can be sent between concurrently executing PVM tasks. The
technique used with the spectral_palette class is a simplified approach that can be used with any user-
defined class. Since the pvm_stream class will have operators for the built-in datatypes and for
containers that hold built-in datatypes, a user-defined class need only define the << operator and >>
operator to translate its representation to either a built-in datatype or a standard container that holds
built-in datatypes. For instance, the << operator for the spectral_palette class is defined in Example
11.17.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec4.htm#ch11ex17
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec4.htm#ch11ex17
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec4.htm#ch11ex16
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06.htm#ch06

Example 11.17 Definition of operator<< for the spectral_palette class.

pvm_stream &operator<<(pvm_stream &Out, spectral_palette &Obj)
{
 int N;
 string Source;
 for(N = 0;N < Obj.Colors.size();N++)
 {
 Source.append(Obj.Colors[N]);
 if(N <Obj.Colors.size() - 1){
 Source.append(" ");
 }
 }
 Out.reset();
 Out.taskId(Obj.TaskId);
 Out.messageId(Obj.MessageId);
 Out << Source;
 return(Out);
}

Let's closely examine the definition of this insertion operation in Example 11.17. Since the pvm_stream
class only works with built-in types, the goal of the user-defined << operator is to translate the user-
defined object into a sequence of user-defined datatypes. This translation process is one of the primary
responsibilities of the stream classes. Here, the spectral_palette class will be translated into a string of
colors separated by a blank. The list of colors is stored in a string named Source. This translation
process allows the class to be used with the pvm_stream << operator that has been defined for the string
datatype. Once these operators are defined, the programmer's API is considerably more consistent than
it would be if the native versions of the Pthread library, POSIX semaphore library, and MPI library
routines were called. A spectral_palette object can be sent to another PVM task using an << insertion
operator as:

Example 11.18 Using the pvm_stream and spectral_palette objects.

pvm_stream TaskStream;
spectral_palette MyColors;

//...
TaskStream.taskId(20001);
TaskStream.messageId(1);
//...
TaskStream << MyColors;
//...

The MyColors object is sent to the appropriate PVM task. Figure 11-6 contains the components used to
support the TaskStream and MyColors objects. Each component in Figure 11-6 can be refined and
optimized individually. Each layer provides an additional level of insulation from the complexity of
these components. At the highest level the programmer is only concerned about the application domain.
This high level of abstraction allows the programmer to naturally represent the parallelism that the
application domain requires without getting bogged down in syntax and complicated function call
sequences. The components in Figure 11-6 represent the beginnings of a class library that can be used
for PVM programs and multithreaded PVM programs. These same techniques can be used to
communicate between concurrently executing tasks that are not part of a PVM. There are many
applications that require concurrency but that do not need the complete machinery of the PVM
environment. For these applications the exec(), fork(), or pvm_spawn() functions are sufficient.
Applications that only require a few concurrently executing processes and client-server applications are

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec4.htm#ch11fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec4.htm#ch11fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec4.htm#ch11fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec4.htm#ch11ex17

good examples. Interprocess communication is also required for these non-PVM or non-MPI
applications. We would also like to maintain the stream metaphor for concurrently executing processes
created with the fork-exec sequence or pvm_spawn. The notion of the object-oriented stream can be
extended to cover pipes and fifos.

Figure 11-6. The components used to support the TaskStream and MyColors objects.

11.5 Object-Oriented Pipes and fifos as Low-Level Building Blocks

To arrive at a design for object-oriented pipes, we start with basic characteristics and behavior that all
pipes have in common. A pipe is a channel of communication between two or more processes. In order
for the processes to communicate, they will transmit some sort of information between them. The
information may represent data or commands to be performed. Typically, the information is translated
into a sequence of data and inserted into the pipe and retrieved by a process on the other side of the
pipe. The data is reassembled into meaningful data by the retrieving process. Whatever the data
represents, there must be somewhere to store the data while it is in transit from one process to another.
We call the storage area for the information a data buffer. Insertion and extraction operations are
needed to place data into and extract data from the buffer. Before any insertion into the data buffer or
extraction from a data buffer can begin, the data buffer must first exist. Object-oriented piping facilities
must support an operation that creates and initializes a data buffer. Once the communications between
processes have been completed, the data buffer used to hold the information will no longer be
necessary. This means that our object-oriented pipe must be able to remove the data buffer after it is no
longer needed. This suggests there are at least five basic components that any object-oriented piping
facility should have:

• Buffer

• Insertion operation

• Extraction operation

• Creation/initialization operation

• Destruction operation

In addition to these five basic components, a pipe will have two ends. One end of the pipe will be for
inserting data. The other end of the pipe will be for extracting data. These two ends can be accessed
from different processes. To complete our notion of a pipe we must include an input port and an output
port, which could be connected to separate processes. This gives seven basic components needed to
describe our object-oriented pipe:

• Input port

• Output port

• Buffer

• Insertion operation

• Extraction operation

• Creation/initialization operation

• Buffer destruction operation

These components represent minimal core requirements for our description of a pipe. Once we have the
basic components, we can identify how existing system APIs or data structures can be used to help us
design an object-oriented pipe. In the same way that we use encapsulation and operator overloading to
design a pvm_stream, we use the same techniques to wrap the pipe and fifo functions.

Notice that five of the seven basic components are common to many basic I/O data structures and
container types. Most UNIX/Linux file services support:

• Buffers

• Buffer insertion operations

• Buffer extraction operations

• Buffer creation operations

• Buffer destruction operations

We use the notion of C++ interface classes to encapsulate the functionality provided by UNIX/Linux
system services. We build object-oriented versions of the input/output services. Whereas we had to start
from scratch with the pvm_stream class for the PVM library, here we can take advantage of the existing
C++ standard library and the iostreams. Recall that the iostreams class library supports an object-
oriented model of input and output streams. Furthermore, this object-oriented library has support for the
data buffer notion and all the operations upon the data buffer. Figure 11-7 shows a simple class diagram
of the iostream class.

Figure 11-7. Class diagram for the major components of the iostream class.

The major components of the iostream class can be described by three kinds of classes: a buffer
component, a translation component, and a state component (see Hughes & Hughes, 1999). The buffer
component is used as a holding area for bytes that are in transit. The translation component is
responsible for translating anonymous sequences of bytes into the appropriate datatypes and data
structures, and for translating data structures and data-types in anonymous sequences of bytes. The
translation component is responsible for providing the programmer with a stream of bytes metaphor
where all I/O regardless of source or destination is treated as a stream of bytes. The state component
encapsulates the state of the object-oriented stream. The state component maintains what type of
formatting is applicable to the data bytes that are in the buffer component. The state component also

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11fig07

maintains whether a stream has been opened in the append mode, create mode, exclusive read,
exclusive write, or whether numbers will be interpreted as hexadecimal, octal, or binary. The state
component also can be used to determine the error state of I/O operations on the buffer component. By
querying the state component the programmer can determine if the buffer component is in a good or
bad state. These three components are objects and can be used together to form a complete object-
oriented stream, or separately as support objects in other tasks.

Five of the basic requirements for our pipe are already implemented in the iostreams class library. All
we need to add is the notion of the input port and output port. To do this, we can examine the system
services that support the use of pipes. The UNIX/Linux system calls create a pipe.

Example 11.19 Using system call to create a pipe.

int main(int argc, char *argv[])
{
 //...
 int Fd[2];
 pipe(Fd);
 //...
}

The pipe function call is used to create a pipe data structure, which can be used between parent and
child processes to communicate. If the call to pipe is successful, it will return two file descriptors. File
descriptors are integers used to identify successfully opened files. In this case, the descriptors are stored
in the array Fd. Fd[0] will be open for reading, and Fd[1] will be open for writing. Once these two file
descriptors are created, they can be used with regular read() and write() functions. The write()
function will cause data to be inserted into the pipe via Fd[1], and the read() function will cause data to
be extracted from the pipe via Fd[0]. Because the pipe() function returns file descriptors, access to a
pipe can be accomplished using system file services. The sysconf(_SC_OPEN_MAX) system call can
be used to determine the maximum allowable file descriptors open by a process. The
pathconf(_PC_PIPE_BUF) call can be used to find the size of the pipe.

These two file descriptors represent our logical input port and output port, respectively. We also use
these two file descriptors to provide links to the iostream class library. Specifically, they provide a link
to the buffer class. The buffer component of the iostream classes has three families of classes. Table 11-
3 lists the three types of buffer classes and their descriptions.

Table 11-3. Three Types of Buffer Classes

Types of Buffer
Classes

Description

basic_streambuf Describes the behavior of various stream buffers in order to control input and
output sequences of characters.

basic_stringbuf Associates input and output sequences with a sequence of arbitrary characters that
can be initialized from or made available as a string object.

basic_filebuf Associates input and output sequences of characters with a file.

We are interested in the filebuf class. Whereas the basic_streambuf class is used as an object-oriented

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11table03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11table03

buffer in I/O from standard in and standard out, and the basic_stringbuf class is used for object-oriented
memory buffers, the filebuf class is used as object-oriented buffers for files. By examining the interface
for the filebuf class and the interface for its translator classes, ifstream, ofstream, and fstream, we can
find a way to connect the file descriptors returned from the pipe() system call to the iostream objects.
Figure 11-8 shows the class diagrams for the fstream family of classes.

Figure 11-8. The class diagrams for the fstream family of classes.

Notice that the ifstream, ofstream, and fstream classes all contain the filebuf class. Therefore, we can
use any class from the fstream family of classes to help us in creating object-oriented pipe facilities. We
can connect the file descriptors returned by the pipe() system call either through constructors, or
through the attach() member function.

Synopsis
#include <fstream>

// UNIX systems
ifstream(int fd)
fstream(int fd)
ofstream(int fd)

// gnu C++
void attach(int fd);

11.5.1 Connecting Pipes to iostream Objects Using File Descriptors

There are three iostream classes that we can use to connect to a pipe. They are ifstream, ofstream, and
fstream. An ifstream object is used for input and an ofstream object is used for output. An fstream
object can be used for both input and output. Although direct support for file descriptors and the
iostreams is not yet part of the ISO standard, most UNIX and Linux C++ environments support
iostream access to file descriptors. The GNU C++ iostreams library supports a file descriptor in one of
the ifstream, of-stream, and fstream constructors and with the attach() method of the ifstream and
ofstream classes. UNIX compilers such as Sun's C++ compiler supports file descriptors through one of
the ifstream, ofstream, and fstream constructors. So the sequence of code:

//...

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11fig08

int Fd[2];
Pipe(Fd);
ifstream IPipe(Fd[0]);
ofstream OPipe(Fd[1]);

will create to object-oriented pipes. IPipe will be an input stream and OPipe will be an output stream.
Once these streams are created they can be used to communicate between concurrently executing
processes using the stream metaphor and the inserter << and >> extractor operators. For the C++
environments that support the attach() method, the file descriptor can be attached to an ifstream,
ofstream, or fstream object using the syntax:

Example 11.20 Creating a pipe and using the attach() function.

int Fd[2];
ofstream OPipe;
//...
pipe(Fd);
//...
OPipe.attach(Fd[1]);
//...
OPipe << Value << endl;

This usage of object-oriented pipes assumes the existence of some child process that can read the pipe.
Program 11.1 uses the fork command to create two processes. The parent process sends a value to the
child process using an iostreams-based pipe.

Program 11.1

 1 #include <unistd.h>
 2 #include <iostream.h>
 3 #include <fstream.h>
 4 #include <math.h>
 5 #include <sys/wait.h>
 6
 7
 8
 9
10 int main(int argc, char *argv[])
11 {
12
13 int Fd[2];
14 int Pid;
15 float Value;
16 int Status;
17 if(pipe(Fd) != 0){
18 cerr << "Error Creating Pipe " << endl;
19 exit(1);
20 }
21 Pid = fork();
22 if(Pid == 0){
23 ifstream IPipe(Fd[0]);
24 IPipe >> Value;
25 cout << "Value Received From Parent " << Value << endl;
26 IPipe.close();
27 }
28 else{
29 ofstream OPipe(Fd[1]);
30 OPipe << M_PI << endl;

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog01

31 wait(&Status);
32 OPipe.close();
33
34 }
35
36 }

Recall that when a fork() call is made, the return value of 0 belongs to the child process. In Program
11.1 the pipe is created on line 17. On line 29 the parent process opens the pipe for writing. The file
descriptor Fd[1] is the write end of the pipe. This end of the pipe is attached to an ofstream object
through the constructor on line 29. The read end of the pipe is attached to an ifstream object on line 23.
The child process opens the pipe for reading. The child process has access to the file descriptor because
along with the parent's environment, file descriptors are also inherited. Therefore, any files that are
open in the parent will be opened in the child unless explicit instructions are given to the operating
system using the fcntl system call. Besides open files being inherited, the position markers within the
files remain where they are during the spawning of the child process so that the child process also has
access to the position marker. When the position is moved in the parent, the marker in the child process
is also moved. In this case, we were able to accomplish the stream metaphor without creating an
interface class. Simply by attaching the pipe's file descriptors to the ofstream and ifstream objects we
are able to use the << inserter and >> extractor operators. Likewise, any class that has the >> extraction
or << insertion operators defined can be extracted from or inserted into the pipe without requiring any
further work from the programmer. The parent inserts the value M_PI into the pipe on line 30. The
child extracts the value from the pipe using the >> operator on line 24. The details for executing and
compiling this program are contained in Program Profile 11.1.

Program Profile 11.1
Program Name

program11-1.cc

Description

Program 11.1 demonstrates the use of an object-oriented stream metaphor with anonymous system
pipes. The program uses the fork() program to create two processes that will communicate using the
<< inserter and >> extractor operators.

Headers Required

<wait.h>, <unistd.h>, <iostream.h>, <fstream.h>, <math.h>

Compile and Link Instructions

c++ -o program11-1 program11-1.cc

Test Environment

Solaris 8, SuSE Linux 7.1

Execution Instructions

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11sb05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog01

./program11-1

The gnu C++ compiler also supports the attach() method. We could use this method to connect the file
descriptors to the ifstream and ofstream objects. For instance:

Example 11.21 Connecting file descriptors to an ofstream object.

int main (int argc, char *argv[])
{
 int Fd[2];
 ofstream Out;
 pipe(Fd);
 Out.attach(Fd[1]);
 //...
 // Interprocess Communication
 //...
 Out.close();
}

The Out.attach(Fd[1]) call attaches an ofstream object to a pipe file descriptor. Now any information
that is inserted into the Out object is actually being written to a pipe. Using extractors and insertors to
perform automatic format translation is a major advantage of using the fstream family of classes in
conjunction with the pipe communication. The ability to use userdefined extractors and insertors
removes some of the difficulty encountered with pipe programming. So instead of requiring the explicit
enumeration of data sizes of everything written and read from the pipe we use the number of elements
to control read/write access, which makes the entire process simpler. In addition, this cost savings
makes the parallel programming efforts easier. The technique we recommend is to use architecture to
support a divide-and-conquer approach to parallelization. Once the correct components are in place, the
programming becomes easier. For instance, since the pipe is tied to ofstream and ifstream objects, we
are able to use the information retained by the ios component to determine the state of the pipe. The
translation components of the iostreams can be used to perform automatic conversions as the data is
inserted into one end of the pipe and extracted out of the other end. Using the pipes with the iostreams
also allows the programmer to integrate the standard containers and algorithms with pipe inter-process
communication. Figure 11-9 shows the relationship between the ifstream, ofstream, extractor, insertor,
pipe, and the inserter and extractor when iostreams are used for interprocess communication.

Figure 11-9. The relationships between ifstream and ofstream objects, pipe, and the inserter and extractor when the
iostreams are used for interprocess communication.

The fstream family of classes can also use the read() and write() member functions to read data to a

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11fig09

pipe, and write data from a pipe.

11.5.2 Accessing Anonymous Pipes Using the ostream_iterator

We can also use the pipe with the ostream_iterator and istream_iterator. These iterators are generic
object-oriented pointers. The ostream_iterator will allow you to transfer entire containers (i.e., lists,
vectors, sets, queues, etc.) across the pipe. Without the use of iostreams and ostream_iterator,
transferring containers of objects would be a very tedious and error-prone process. Table 11-4 lists the
set of operations that are available on the ostream_iterator and istream_iterator class.

Table 11-4. Set of Operations Available on the ostream_iterator and istream_iterator

Iterators Operations Description

istream_iterator a == b Equivalence relation

 a != b Nonequivalence relation

 *a Dereference

 ++ r Preincrementation

 r ++ Postincrementation

ostream_iterator ++ r Preincrementation

 r ++ Postincrementation

Typically, these iterators are used with the iostreams classes and the standard algorithms. The
ostream_iterator is a sequential write-only iterator. Once an item has been accessed, the programmer
cannot go back to it without starting the iteration over. The pipe is treated like a sequence container
when used with these iterators. This means that when the pipe is connected to the iostreams through
ostream_iterator and the file descriptors, we can apply standard algorithm type processing to the input
from a pipe or the input to a pipe. The reason these iterators can be used in conjunction with pipes is the
connection between the iterators and the iostream classes. The diagram in Figure 11-10 shows the
relationship between the I/O iterators and the iostream classes.

Figure 11-10. The relationship between the I/O iterators and the iostream classes.

Figure 11-10 also shows how these classes interact with the notion of our object-oriented pipe. Let's

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11fig10
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11fig10
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11table04

take a close look at how the ostream_iterator is used with an ostream object. If a pointer is incremented,
we expect it to point at the next location in memory. When the ostream_iterator is incremented, it
moves or points to the next position in the output stream. When we assign a value to a dereferenced
pointer, we are placing that value at the location that the pointer points to. When we assign a value to an
ostream_iterator, we are placing that value in the output stream. If that output stream is connected to
cout, then the value will be displayed on the standard out. If we declare an ostream_iterator object such
as:

ostream_iterator<int> X(cout,"\n");

Then X is an object of type ostream_iterator. The increment operation:

X++;

causes X to move to the next position in the output stream. The statement:

*X = Y;

causes Y to be displayed on standard out. This is because the assignment operator = has been
overloaded to use an ostream object. The declaration:

ostream_iterator<int> X(cout, "\n");

caused X to be constructed with a cout as the stream. The other argument in the constructor is the
delimiter that will automatically be placed after every int that is inserted into the stream. The
declaration for the ostream_iterator looks like this:

Example 11.22 Declaration of the ostream_iterator class.

template <class _Tp>
class ostream_iterator {
protected:
 ostream* _M_stream;
 const char* _M_string;

public:
 typedef output_iterator_tag iterator_category;
 typedef void value_type;
 typedef void difference_type;
 typedef void pointer;
 typedef void reference;

ostream_iterator(ostream& __s) : _M_stream(&__s), _M_string(0) {}
ostream_iterator(ostream& __s, const char* __c)
 : _M_stream(&__s), _M_string(__c) {}
 ostream_iterator<_Tp>& operator=(const _Tp& __value) {
 *_M_stream << __value;
if (_M_string) *_M_stream << _M_string;
 return *this;
}
ostream_iterator<_Tp>& operator*() { return *this; }
ostream_iterator<_Tp>& operator++() { return *this; }
ostream_iterator<_Tp>& operator++(int) { return *this; }
};

The constructor for the ostream_iterator accepts a reference to an ostream object. The ostream_iterator
class has an aggregate relationship with the ostream class. The istream_iterator has just the opposite use

of the ostream_iterator. It is used with istream objects instead of ostream objects. If istream_iterator and
ostream_iterator objects are connected to iostream objects that in turn are connected to pipe file
descriptors, then every time the istream_iterator is incremented, the pipe is being read, and every time
the ostream_iterator is incremented, the pipe is being written. To demonstrate how these components
work together, we have two programs: Programs 11.2 and 11.2b that use anonymous pipes to
communicate. Program 11.2 is the parent and Program 11.2b is the child. The parent uses the fork() and
execl() system calls to create the child process. Although file descriptors are inherited by the child, their
values are immediately available to Program 11.2b because an execl() call has been made.

Program 11.2

10 int main(int argc, char *argv[])
11 {
12
13 int Size,Pid,Status,Fd1[2],Fd2[2];
14 pipe(Fd1); pipe(Fd2);
15 strstream Buffer;
16 char Value[50];
17 float Data;
18 vector<float> X(5,2.1221), Y;
19 Buffer << Fd1[0] << ends;
20 Buffer >> Value;
21 setenv("Fdin",Value,1);
22 Buffer.clear();
23 Buffer << Fd2[1] << ends;
24 Buffer >> Value;
25 setenv("Fdout",Value,1);
26 Pid = fork();
27 if(Pid != 0){
28 ofstream OPipe;
29 OPipe.attach(Fd1[1]);
30 ostream_iterator<float> OPtr(OPipe,"\n");
31 OPipe << X.size() << endl;
32 copy(X.begin(),X.end(),OPtr);
33 OPipe << flush;
34 ifstream IPipe;
35 IPipe.attach(Fd2[0]);
36 IPipe >> Size;
37 for(int N = 0; N < Size;N++)
38 {
39 IPipe >> Data;
40 Y.push_back(Data);
41 }
42 wait(&Status);
43 ostream_iterator<float> OPtr2(cout,"\n");
44 copy(Y.begin(),Y.end(),OPtr2);
45 OPipe.close();
46 IPipe.close();
47 }
48 else{
49 execl("./program11-2b","program11-2b",NULL);
50 }
51
52 return(0);
53 }

In lines 21 and 25, the setenv() system call is used to pass the values of file descriptors to the child. This
is possible because the child process inherits the environment of the parent process. We can set

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02b
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02b
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02b
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02a

environment variables within a program using the setenv() system calls. So, in this case, we set:

Fdin=filedesc;
Fdout=filedesc;

The child process then uses the getenv() system call to retrieve the values of Fdin and Fdout. The value
in Fdin will be the read end of the pipe for the child and the value of Fdout will be the write end. Using
the setenv() and getenv() system calls provide a simple form of IPC between parent and child processes.
The pipes are created on line 14. On line 29 the parent attaches to one end of the pipe for writing using
the attach() method. Once the attach is performed, any data inserted into the OPipe ofstream object will
be written to the pipe. An ostream_iterator is connected to the OPipe object on line 30 using:

ostream_iterator<float> OPtr(OPipe,"\n");

This causes the iterator OPtr to refer to OPipe. The "\n" will be inserted as a delimiter after every
insertion. Using OPtr we may insert any number of float values to the pipe. We can attach more than
one iterator with different types to pipe. However, this does require that on the receiving end data is
extracted using the appropriate types. In Program 11.2 the number of elements is first inserted into the
pipe using:

OPipe << X.size() << endl;

The actual elements are sent using one of the C++ standard algorithms.

copy(X.begin(),X.end(),OPtr);

The copy() algorithm copies the contents of its container into the container associated with the target
iterator. Here the target iterator is OPtr. OPtr is connected to the OPipe so copy() causes the entire
contents of the container to be written to the pipe in one line of code. This demonstrates how the
standard algorithms can be used to help with the communication in parallel programming or distributed
programming environments. Here the copy is sending information from one process to another process
in a different address space. These processes are executing concurrently and the copy() algorithm
makes the communication between the processes considerably easier. We emphasize this approach
because everything that can be done to make the logic for a parallel or distributed program simpler
should be done. Interprocess communication is one of the issues that complicates parallel and
distributed programming. The C++ algorithms, the iostreams, and the ostream_iterator help to reduce
that complexity. The flush manipulator on line 33 ensures that the data is moved along the pipe.

Program Profile 11.2
Program Name

program11-2.cc

Description

Program uses the iostreams and the ostream_iterator to send the contents of a vector container over an
anonymous pipe.

Headers Required

[View full width]

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/noccc##PLID21
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02a

<algorithm>, <fstream>, <vector>, <iterator>, <stdlib.h>, <string
.h>,<unistd.h>

Compile and Link Instructions

c++ -o program11-2 program11-2.cc

Test Environment

SuSE Linux 7.1, 6.2

Execution Instructions

./program11-2

In Program 11.2b on line 36 the child will get the number of elements to be retrieved from the pipe first
and then it uses the istream object IPipe to retrieve the objects from the pipe.

Program 11.2b

11 class multiplier{
12 float X;
13 public:
14 multiplier(float Value) { X = Value;}
15 float &operator()(float Y) { X = (X * Y);return(X);}
16 };
17
18
19 int main(int argc,char *argv[])
20 {
21 char Value[50];
22 int Fd[2];
23 float Data;
24 vector<float> X;
25 int NumElements;
26 multiplier N(12.2);
27 strcpy(Value,getenv("Fdin"));
28 Fd[0] = atoi(Value);
29 strcpy(Value,getenv("Fdout"));
30 Fd[1] = atoi(Value);
31 ifstream IPipe;
32 ofstream OPipe;
33 IPipe.attach(Fd[0]);
34 OPipe.attach(Fd[1]);
35 ostream_iterator<float> OPtr(OPipe,"\n");
36 IPipe >> NumElements;
37 for(int N = 0;N < NumElements;N++)
38 {
39 IPipe >> Data;
40 X.push_back(Data);
41 }
42 OPipe << X.size() << endl;
43 transform(X.begin(),X.end(),OPtr,N);
44 OPipe << flush;
45 return(0);
46
47 }

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02b

The child process retrieves the items from the pipe, inserts them into a vector class, and then performs a
mathematical transformation on each element of the vector as it is sending it back to the parent. The
mathematical transformation occurs on line 43 using the standard C++ transform algorithm and a user-
defined multiplier class. The transform algorithm applies an operation to each element in a container
and then inserts the results into the target container. Here, the target container is Optr, which is
connected to an OPipe object. The required headers for Program 11.2b are shown in Program Profile
11.2b.

Program Profile 11.2b
Program Name

program11-2b.cc

Description

Child process that is launched by Program 11.2. This program uses an if-stream object to receive the
contents of a container that are sent from Program 11.2. The program uses a ostream_iterator object
and the standard transform algorithm to send information back through the pipe to the parent.

Headers Required

[View full width]

<iostream>, <algorithm>, <fstream>, <vector>, <iterator>, <stdlib
.h>, <string.h>, <unistd.h>

Compile and Link Instructions

c++ -o program11-2b program11-2b.cc

Execution Instructions

This program is spawned by Program 11.2.

Although the iostreams classes, istream_iterator, and ostream_iterator make pipe programming easy,
they do not change the behavior of the system pipe construct. The blocking issues and the issues
concerning the correct order to open and close the pipes discussed in Chapter 5 still apply. The
underlying mechanisms of the same object-oriented programming techniques reduce the complexity of
parallel and distributed programming.

11.5.3 fifos (Named Pipes), iostreams, and the ostream_iterator Classes

The techniques we used to implement object-oriented anonymous pipes had two setbacks. First, any
processes involved in interprocess communication need access to the file descriptors returned from the
pipe() system call. So there is the issue of getting these file descriptors to all of the processes involved.
This was straightforward because the processes that were created in Programs 11.1, 11.2a, and 11.2b
had parent–child relationships, which leads us to the second problem. The processes using unnamed
pipes need to be related, although this requirement could be subverted with a descriptor-passing
scheme. The fifo (First In-First Out) structure is the solution to the problem. Its most important
advantage is it can be accessed by unrelated processes. The processes do need to be on the same

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02b
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05.htm#ch05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/noccc##PLID26
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11sb07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11sb07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog02b

machine but otherwise don't require any relationship. The processes may be running programs
implemented in different languages using different programming paradigms (e.g., generic and object-
oriented). Crowd computations and other peer-to-peer configurations can take advantage of fifo
(sometimes called the named pipe) because in the UNIX and Linux environment the fifo has a user-
defined file-name in the system and is somewhat of a permanent structure (in contrast to anonymous
pipes). The fifo is a one-way structure, that is, the user of a named pipe in the UNIX environment
should open it for either reading or writing, but not both. Named pipes created in the UNIX
environment remain in the file system until they are explicitly removed using unlink() from within a
program, or some form of deletion at the command prompt such as the rm command. Named pipes are
given the equivalent of a file-name when they are created. Any process that knows the name of a pipe
and has the necessary access permissions can open, read, and write the pipe.

To connect the anonymous pipes to the ifstream and ofstream objects, we used the nonstandard file
descriptor connection. File descriptors and the iostreams are not yet tightly coupled by the ISO C++
standard. We are a lot safer using the fifo. The special file type fifo is accessed through a filename in
the file system. The connection with the C++ ifstream and ofstream classes is supported. So in the same
way that we simplified IPC using iostream classes with the anonymous pipe, we make fifo access easy.
So the fifo that has the same basic functionality as the anonymous pipe allows us to extend the
communication between unrelated classes. However, each program involved will still have to know the
names of the fifos. It seems like the same restriction as we encountered with the file descriptors.
However, the fifo is a definite improvement. First, only the system determines what the available file
descriptors are when the anonymous pipe is opened. This is out of the programmer's control. Second,
there is a limit to the number of file descriptors the system has. Third, since fifos are user-defined
names, there is no limit to the names that may be used. The file descriptors must belong to previously
and successfully opened files. fifo names are just names. The fifo name is user-specified; file
descriptors are system-specified. Filenames are associated with ifstream, fstream, and ofstream objects
using either the constructor or the open() method. Program 11.3a uses the constructor to associate the
ofstream and ifstream objects with the fifo.

Program 11.3

14 using namespace std;
15
16 const int FMode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
17
18 int main(int argc, char *argv[])
19 {
20
21 int Pid,Status,Size;
22 double Value;
25 mkfifo("/tmp/channel.1",FMode);
26 mkfifo("/tmp/channel.2",FMode);
28 vector<double> X(100,13.0);
29 vector<double> Y;
30 ofstream OPipe("/tmp/channel.1",ios::app);
31 ifstream IPipe("/tmp/channel.2");
32 OPipe << X.size() << endl;
33 ostream_iterator<double> Optr(OPipe,"\n");
34 copy(X.begin(),X.end(),Optr);
35 OPipe << flush;
36 IPipe >> Size;
37 for (int N = 0;N < Size; N++)
38 {
39 IPipe >> Value;
40 Y.push_back(Value);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a

41 }
42
43 IPipe.close();
44 OPipe.close();
45 unlink("/tmp/channel.1");
46 unlink("/tmp/channel.2");
47 cout << accumulate(Y.begin(),Y.end(),-13.0) << endl;
48
49 return(0);
50 }

There are two fifos in Program 11.3a. Recall that fifos are one-way communication components. So if
processes are to exchange data, at least two fifos are necessary. In Program 11.3a the fifos are called
channel.1 and channel2. Notice on line 16 the permissions flags that will be set for the fifos. These are
the most generic settings for UNIX/Linux setting. These permissions indicate that the owner of the fifo
has read and write access and all others have read-only access to the fifo. On line 30 channel.1 is open
for output only. We could have also accomplished this by:

OPipe.open("/tmp/channel.1", ios::app);

This says that the fifo will be opened in append mode. Program 11.3a uses the copy() algorithm to
insert the objects into the OPipe fstream object and indirectly into the fifo. We could also use a fstream
object here if we declare it as:

fstream OPipe("/tmp/channel.1", ios::out | ios::app);

This restricts the communication to output only in append mode. If we don't use the ios::app flag, the
ofstream object on line 30 will make a failed attempt at creating the fifo. Unfortunately, this will not
work. Creation of fifos is the province of the mkfifo() routine. Lines 40 and 41 Program 11.3a deletes
the fifos from the file system. At this point in the processing any processes that happen to still have the
fifo open will continue to be able to access it. However, the name will be removed. So those processes
will not be able to call open() or construct any new ofstream or ifstream objects based on the filename
that has been unlinked. On lines 32-34, ostream_iterator and ofstream objects are used to insert items
into the fifo. Notice that Program 11.3a does not do any forking and does not have any child processes
to communicate with. Program 11.3 depends on some other program to read from channel.1 or at least
to write to channel.2. If there is no program executing at the time to access the fifo, then Program 11.3a
will block. The implementation specifics are contained in Program Profile 11.3a.

Program Profile 11.3a
Program Name

program11-3.cc

Description

Uses an ostream_iterator object and an ofstream object to send a container object through a fifo.
Extracts information from a fifo using an ifstream object.

Headers Required

<unistd.h>, <iomanip>, <algorithm>, <fstream.h>, <vector>,
<iterator>

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11sb08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a

<strstream.h>, <stdlib.h>, <sys/wait.h>, <sys/types.h>,
<sys/stat.h>
<fcntl.h>, <numeric>

Compile and Link Instructions

c++ -o program11-3 program11-3.cc

Test Environment

SuSE Linux 7.1, gcc 2.95.2, Solaris 8, Sun Workshop 6

Execution Instructions

./program11-3 & program11-3b

Notes

Start Program 11.3a first. Program 11.3b has a sleep statement to account for the lack of real
synchronization.

Program 11.3b reads from channel.1 and writes to channel.2.

Program 11.3b Reads from channel1 and write to channel2.

10 using namespace std;
11
12 class multiplier{
13 double X;
14 public:
15 multiplier(double Value) { X = Value;}
16 double &operator()(double Y) { X = (X * Y);return(X);}
17 };
18
19
20 int main(int argc,char *argv[])
21 {
22
23 double Size;
24 double Data;
25 vector<double> X;
26 multiplier R(1.5);
27 sleep(15);
28 fstream IPipe("/tmp/channel.1");
29 ofstream OPipe("/tmp/channel.2",ios::app);
30 if(IPipe.is_open()){
31 IPipe >> Size;
32 }
33 else{
34 exit(1);
35 }
36 cout << "Number of Elements " << Size << endl;
37 for(int N = 0;N < Size;N++)
38 {
39 IPipe >> Data;
40 X.push_back(Data);

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03b
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03b
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a

41 }
42 OPipe << X.size() << endl;
43 ostream_iterator<double> Optr(OPipe,"\n");
44 transform(X.begin(),X.end(),Optr,R);
45 OPipe << flush;
46 OPipe.close();
47 IPipe.close();
48 return(0);
49
50 }

Notice that Program 11.3a opens channel.1 for output and Program 11.3b opens channel.1 for input.
Keep in mind that fifos are one-way communication mechanisms. Don't try to send data both ways!
Another advantage of using iostreams in conjunction with fifos is that you have access to the iostream
methods as they would be applied to the fifo. For instance, on line 30 we use the basic_filebuf ()
method is_open() to determine whether the fifo is open. If it isn't Program 11.3b doesn't continue any
further. The implementation specifics for Programs 11.3a and 11.3b are provided in Program Profiles
11.3a and 11.3b.

Program Profile 11.3b
Program Name

program11-3b.cc

Description

This program reads objects from the fifo using a ifstream object. It uses the ostream_iterator and the
standard transform algorithm to send information through the fifo.

Headers Required

<unistd.h>, <iomanip>, <algorithm>, <fstream.h>, <vector>
<iterator>, <strstream.h>,<stdlib.h>, <sys/wait.h>,
<sys/types.h>, <sys/stat.h>, <fcntl.h>, <numeric>

Compile and Link Instructions

c++ -o program11-3b program11-3b.cc

Test Environment

SuSE Linux 7.1, gcc 2.95.2, Solaris 8, Sun Workshop 6.0

Execution Instructions

program11.3 & program11-3b

Notes

Start Program 11.3a first. Program 11.3b has a sleep statement to account for the lack of real
synchronization.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03b
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11sb09
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11sb08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11sb08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03b
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03b
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03b
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec5.htm#ch11prog03a

11.5.3.1 fifo Interface Classes

In addition to simplifying the IPC using iostreams, istream_iterator, and ostream_iterator, we can also
simplify matters by encapsulating the fifo into a fifo class.

Example 11.23 Declaration of the fifo class.

class fifo{
 mutex Mutex;
 //...
protected:
 string Name;
public:
 fifo &operator<<(fifo &In, int X);
 fifo &operator<<(fifo &In, char X);
 fifo &operator>>(fifo &Out, float X);
 //...
};

Using this technique, we can easily create fifos in the constructor. We can pass them easily as
parameters and return values. We can use them in conjunction with the standard container classes. The
construction of such a component greatly reduces the amount of code needed to use fifos. It provides
opportunities for type safety and generally allows the programmer to work at a higher level.

11.6 Framework Classes Components for Concurrency

A framework is a class or collection of classes that has a predefined structure and represents a
generalized pattern of work. In the same manner that programs provide general solutions to specific
problems, frameworks provide specific solutions to classes of problems. That is, an application
framework captures the general flow of control for an entire range of programs that all solve or
represent problems in a similar fashion. Put another way, an application framework represents a single
solution to a family of problems. Frameworks are generic mini self-contained applications. The
framework serves as a blueprint for the mini-application. It embodies the fundamental structure or
skeleton that the application will have without providing the application details. The framework class
specifies the relationships, responsibilities, patterns of work, and protocols between software parts in an
object-oriented architecture without providing the implementation details. For instance, we can design a
language processor class that captures the general pattern of work for an entire range of applications.
The specific pattern of work that the language processor captures is the work involved in taking some
input language and translating that language to some output form. This framework consists of a few
common software parts:

• Validation components

• Tokenizer components

• Parser components

• Syntax analysis components

• Lexical analysis components

These software parts can be combined to form a very familiar pattern of work:

Example 11.24 Declarations for the language_processor class and definition for the process_input method.

class language_processor {
 //...
protected:
 virtual bool getString(void) = 0;
 virtual bool validateString(void) = 0;
 virtual bool parseString(void) = 0;
 //...
public:
 bool process_input(void);
};

bool language_processor::process_input(void)
{
 getString();
 validateString();
 parseString();
 //...
 compareTokens();
 //...
}

First, the language_processor class is an abstract base class because it contains pure virtual functions:

virtual bool getString(void) = 0;
virtual bool validateString(void) = 0;
virtual bool parseString(void) = 0;

This means it is not meant to be used directly. It serves as a blueprint for derived classes. The other
important thing to note is the process_input() method. This method captures the general pattern of work
that the language_processor class is meant to generalize. In many ways this is what distinguishes
framework classes from other types of classes. The framework not only contains generalized structure
and relationships between components, it also captures predefined patterns of work and sequences of
action. It provides the skeleton for the pattern of work without providing the implementation details. In
this case, the pattern of work is specified by a set of pure virtual functions. So the framework class does
not specify how these things are to be done—it only specifies that they should be done and they should
be done in a certain order. The derived class has to provide the implementations for the pure virtual
functions. The framework class emphasizes the responsibilities of the derived class. Framework classes
by definition are contract classes. They require two parties in order to work properly. The framework
class does its part but the derived class must provide the implementation details for the pure virtual
functions. The commonly found sequence of actions performed by the process_input() method are
found in:

Compilers Command interpreters

Natural language processors Encryption/decryption routines

Compression/decompression File transfer protocols

Graphical user interfaces Device control, etc.

So by properly designing the language_processsor class, the pattern of work for an entire range of
applications is captured. If the sequence can be properly recorded and tested and debugged, then a wide
range of applications can be developed faster by reusing the language_processor framework class.

The notion of a framework class is also useful in developing applications that have concurrency
requirements. Specifically, the use of agent frameworks and blackboard frameworks captures the basic
structure of concurrency and patterns of work within those structures. Michael Wooldridge, in
Reasoning About Rational Agents, gives us a generalized agent control loop:

Algorithm: Agent control Loop

B = B0
while true do
 get next percept p
 B = brf(B,p)
 I = deliberate(B)
 = plan(B,I)
 execute()

end while

This pattern of work is performed by a wide range of rational agents. If you are developing a program
that uses rational agents, then the chances are good that this sequence of actions will be found in your
program. This is exactly the type of sequence of action that frameworks are good at capturing. For the
agent control loop, the brf(), deliberate(), plan() functions will be pure abstract virtual. The agent
control loop specifies what order these functions should be called and how they should be called, and
the fact that they should be called. However, what the functions actually do will be determined by a
derived class. Once this agent control loop is properly defined, then an entire class of problems has
been solved. It turns out that systems consisting of multiple agents executing concurrently are becoming
a standard for implementing parallel programming applications. These systems are often called
multiagent systems. We discuss agent-oriented architectures in Chapter 12. It is important to note that
agent framework classes help to reduce the complexity of developing multiagent systems and
multiagent systems are becoming the preferred architecture for implementing medium- to large-scale
applications that require concurrency or massive parallelism.

In addition to providing the pattern of work that will be useful for parallel or distributed systems, the
framework class can capture the structure with respect to synchronization components such as object-
oriented mutexes, semaphores, and message streams. The blackboard stucture is a useful medium for
multiple agents to communicate through. The blackboard will be a critical region because multiple
agents will be able to read and write to it simultaneously. Therefore, the framework class should
provide the basic structure for the relationships between the agents, the synchronization components,
and the blackboard. For instance, Example 11.25 contains two methods that the framework could use to
access the blackboard.

Example 11.25 Definition of recordMessge() and getMessage() methods for the agent_framework class.

 int agent_framework::recordMessage(void)
{

 Mutex.lock();
 BlackBoardStream << Agent[N].message();
 Mutex.unlock();
}

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec6.htm#ch11ex25
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12.htm#ch12

int agent_framework::getMessage(void)
{

 Mutex.lock();
 BlackBoardStream >> Values;
 Agent[N].perceive(Values);
 Mutex.unlock();
}

Here the framework class will protect the access to the blackboard by using synchronization objects. So
when agents read messages from or write messages to the blackboard, the synchronization is already
provided by the framework. The programmer does not have to worry about synchronizing blackboard
access. Figure 11-11 contains the basic structure of our agent framework and how the framework
relates to a blackboard.

Figure 11-11. The basic structure of the agent_framework class and how it relates to the blackboard.

Notice that the framework encapsulates the object-oriented mutexes and condition variables. The agent
framework in Figure 11-11 will use either MPI or PVM message streams to communicate in a MPI- or
PVM-based system. Recall these message streams were designed as interface classes and allow the
programmer to use the iostream metaphor to access the PVM or MPI class. If MPI or PVM are not
used, the agents can communicate using sockets, pipes, or even shared memory. In either case, we

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec6.htm#ch11fig11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec6.htm#ch11fig11

recommend that the synchronization primitives be implemented using interface classes since that will
make them simpler to use. The blackboard in Figure 11-11 is object-oriented and takes advantage of the
genericity provided by template classes. This also simplifies the concurrency requirements. The agents
executing concurrently provide an effective model for parallel and distributed programming.

Summary

The challenges to parallel programming introduced in Chapter 2 can be reasonably approached using
the building blocks that we introduced in this chapter. The importance of the interface class in
simplifying the use of function libraries cannot be overstated. The interface class introduces consistency
of API by wrapping the function calls of libraries such as MPI or PVM. Type safety and reuse is
introduced through interface classes. The interface class allows the programmer to work with a familiar
metaphor, as in the case of PVM streams or MPI streams. IPC is simplified by connecting pipe or
message streams to iostreams and overriding the << inserter and >> extractor operators for user-defined
classes. The ostream_iterator class proves to be very useful in sending entire container objects and their
contents between processes. The ostream_iterator and istream_iterator also provide the glue between
the standard algorithms and IPC components and techniques. Since a large number of parallel or
distributed applications use the message-passing model, any technique that simplifies passing various
datatypes between processes will simplify the programming required for the application. Using
iostreams, the ostream_iterator and istream_iterator does this simplification. The framework class is
introduced here as the basic building block of concurrency applications. We consider classes like the
mutex classes, condition variable classes, and the stream classes to low-level components that should be
hidden from the programmer within the framework class (where possible!). When building medium- to
large-scale applications that require concurrency, the programmer should not have to focus on these
low-level components. Ideally, the framework will be the base-level building block for concurrency
approaches, which we introduce in the remainder of this book. The framework will provide us with
patterns for peer-to-peer and client-server interaction. We can have numeric frameworks, database
frameworks, agent frameworks, blackboard frameworks, GUI frameworks, and so on. The approach
that we advocate for implementing concurrency requirements builds applications from a collection of
frameworks that already have the proper synchronization components wired into the proper
relationships. In Chapters 12 and 13, we take a closer look at frameworks that support concurrency. We
also introduce the use of standard C++ algorithms, containers, and function objects to manage the
creation and spawning of multiple tasks or threads in applications that require concurrency.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13.htm#ch13
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12.htm#ch12
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch02.htm#ch02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11lev1sec6.htm#ch11fig11

Chapter 12. Implementing Agent-Oriented Architectures
Much remains to be done before we understand how people construct their problem
representations and the role those representations play in problem solving. But we know
enough already to suggest that the representations people use—both propositional and
pictorial—can be simulated by computers.

—Herbert A. Simon, Machine as Mind (Android Epistemology)

In this Chapter

• What are Agents?

• What is Agent-Oriented Programming?

• Basic Agent Components

• Implementing Agents in C++

• Multiagent Systems

• Summary

If sequential (procedure-based) programming solutions were practical in every situation, then there
would be no need for parallel or distributed programming techniques. In many situations, sequential
programming techniques are simply inadequate for the demands and the sophistication of today's
computer users. As developers scramble for new approaches to meet the growing challenges that user
requirements present, alternative software models are created. Better ways to organize and think about
how software should be constructed are discovered. Structured programming was presented as an
improvement over procedureless goto/jump-filled programming. Object-oriented programming was
presented as an improvement over structured programming. In many ways agents and agent-oriented
programming is an improvement over object-oriented programming. Agents present yet another (more
sophisticated) method for organizing and thinking about distributed/parallel programs.

12.1 What are Agents?

There was a lot of controversy over what constituted an object when object programming was initially
introduced. There is a similar controversy over exactly what constitutes an agent. Many proponents
define agents as autonomous, continuously executing programs that act on behalf of a user. However,
this definition can be applied to some UNIX daemons, or even some device drivers. Others add the
requirements that the agent must have special knowledge of the user, must execute in an environment
inhabited by other agents, and must function only within the specified environment. These requirements
would exclude other programs considered to be agents by some. For instance, many e-mail agents act
alone and may function in multiple environments. In addition to agent requirements, various groups in
the agent community have introduced terms like softbot, knowbot, software broker, and smart object to
describe agents. We define the term agent iteratively in this chapter. We start with some simple, agreed-
upon partial definitions and construct a definition that is practical for C++ programmers.

One commonly found definition defines an agent as an entity that functions continuously and
autonomously in an environment in which other processes take place and other agents exist. Although it
is tempting to accept this definition and move on, we cannot because it too easily describes other kinds
of software constructions. Many object-oriented components function continuously and autonomously
in an environment in which other processes take place and other objects exist. In fact, many CORBA-
based client-server systems fit this description! So if we exchange the word object for agent in this
definition it accurately describes many object-oriented systems. A look at a more formal source, the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec6.htm#ch12lev1sec6
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec5.htm#ch12lev1sec5
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec3.htm#ch12lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec2.htm#ch12lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec1.htm#ch12lev1sec1

Foundation for Intelligent Physical Agents (FIPA) specification defines the term agent accordingly:

An Agent is the fundamental actor in a domain. It combines one or more service capabilities
into a unified and integrated execution model which can include access to external software,
human users and communication facilities.

While this definition has a more structured feel, it also needs further clarification because many servers
(some object-oriented and some not) fit this definition. This definition as is would include too many
types of programs and software constructs to be useful. Although we rely on the FIPA specification
where we discuss agents, this basic definition requires further work.

12.1.1 Agents: A First-Cut Definition

One of the reasons that the word object can in so many instances replace the word agent in so many
definitions and descriptions of agent is because agents are inherently based on objects. In fact, our
initial requirement on the definition for an agent is that it first fit the definition of an object,[1] that is,
we designate an agent as a certain kind of object. This chapter is largely about what makes an agent
different from other classes of objects. In the same sense that C++ has support for interface classes,
container classes, and framework classes, we can also designate agent classes. This brings us to our
second requirement on the definition of agents within a C++ environment. In C++ an agent is
implemented using the notion of a class. The different types of classes are distinguished by how they
function or how they are structured. For instance, a container class describes an object used to hold or
contain other objects. An interface class is used to describe an object that transforms or adapts the
interface of another object. A framework class describes an object that contains a pattern of work that is
common to a family of other objects. An agent class will be used to define objects that have what
Yohav Shoham (1997) describes as a mental state: "The mental state will contain such components as
beliefs, capabilities, choices, and commitments." This mental state is often partially summarized by the
Belief Desires and Intentions (BDI) model. We extend the BDI model to include actions. So in our first-
cut definition of agents, we define an agent as a piece of software meeting the following three
requirements:

[1] When we use the term object in the definition of agent we include its AI cousins: actor
and frame.

1. A certain type of object (not all objects are agents)

2. Implemented using the notion of a class (encapsulation, inheritance, and polymorphism are
important for agents!)

3. Contains a set of behaviors and attributes that must include beliefs, desires, intentions, and
actions

For our purposes, agents are by definition rational software components. Before we define agents
further, lets look at the types of agents that are commonly implemented.

12.1.2 Types of Agents

Several categories of agents have emerged. Although not every agent fits into one of these categories,
the categories are generally descriptive of the majority of agents in practical use. Table 12-1 contains
five major categories of agents. Obviously there are hybrid agents that fit into more than one category
at the same time. There are no hard and fast rules that determine which agents fit into any particular
category. These categories are presented for convenience and as a starting point when trying to classify
agents that you may have to develop or work with.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec1.htm#ch12table01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec1.htm#ch12fn01

Table 12-1. Five Major Categories of Agents

Agent Categories Description

Interface agents Represent the next generation of human–computer interaction. These agents
provide new user interfaces to the computer.

Search agents Perform various types of information retrieval.

Monitor/control
agents

Patrol, observe, audit, manage, and monitor devices and conditions, data, and
processes.

Acquisition agents Authorized to acquire some good or service on behalf of the user.

Decision support
agents

Provide analysis, information synthesis, condition and data interpretation,
planning, and evaluation.

Table 12-1 represents a functional breakdown of the agent categories. It does not specify any particular
components that the agents must have. It only specifies the types of activities that the agents engage in.
In fact, these categories are not the exclusive domain of agents. Other classes of software such as expert
systems and object-oriented systems have categorizations very similar to these. In some cases, the only
difference is that we are talking about agents as opposed to objects or expert systems.

12.1.3 What is the Difference between Objects and Agents?

One of the fundamental requirements for an agent is that it first meets the conditions of object
orientation. So agents and objects have more things in common than many of the agent proponents
would like to admit. It is the function and construction of the object that places it into the agent column.
Objects are by definition self-contained and exhibit a certain amount of autonomy. Once the degree of
autonomy crosses a certain threshold and the object is given cognitive data structures such as those
found in the BDI model, then the object is an agent. An autonomous rational object is an agent.[2] An
object is considered rational when it has:

[2] We intentionally avoid the term intelligent. It is not currently known whether we will
ever produce intelligent software. However, we can undoubtedly produce rational software
based on well understood, logical formalisms.

• Methods that implement some form of deduction, induction, or abduction

• Data members that are implementations of cognitive data structures

Keep in mind that in object-oriented programming, the routines defined for a class are called methods
and in C++ they are called member functions. The variables or data components defined for a class are
called attributes and in C++ they are called data members. If some of the member functions are used to
perform deduction, induction, or abduction on the data members that are implementations of cognitive
data structures, then the object is rational. If the rational object also crosses a certain threshold of
autonomy, then it is an agent.

Cognitive data structures are structures used to represent mental constructs like beliefs, intentions,
commitments, decisions, moods, and knowledge. For instance, we could designate a believe structure

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec1.htm#ch12fn02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec1.htm#ch12table01

using a C++ set:

set<statements> Beliefs;

struct statement {
//...
 float ArrivalTime;
 float DepartureTime;
 string Destination;
 //...

};

where the statements are about schedule some form of public transportation. A collection of these
statements is stored within set<statements> and represents the agent's beliefs. This is what we mean by
data members that are implementations of cognitive data structures. The agent would declare the data
member accordingly:

S 12.1. Deduction, Induction, and Abduction
Deduction, induction, and abduction are processes used to draw conclusions from a set of statements
or a collection of data. The process of deduction allows the reasoner to deduce a conclusion from a set
of statements. If the statements are true and the reasoner follows the proper rules of inference, then the
conclusion is said to be necessarily true or that it follows by necessity. For instance:

All three-sided figures are triangles.

This is a three-sided figure.

This is a triangle. Conclusion arrived at by deduction

The rules of inference are guidelines and restrictions that determine how the reasoner may move from
one statement to another. The rules of inference determine when statements are logically equivalent
and the conditions under which one statement may be transformed into another. Sidebar Figure 12-1
contains the eight most basic rules of inference.

. Sidebar Figure 12-1 Rules of inference taken from the back inside cover of COPI symbolic reasoning.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec1.htm#ch12sbfig01

The process of induction allows the reasoner to induce the conclusion from a set of statements taken to
be facts. For instance:

It rained yesterday.

It rained the day before.

It rained all last week.

It will rain tomorrow. Conclusion arrived at by induction

Whereas the conclusions in the deductive process are said to be necessarily true (if the rules of
inference were applied correctly), the conclusions in an inductive process have only a probability of
being true. How close that probability is to 100% will depend on the nature and context of the
statements and data they are drawn from. The process of abduction allows the reasoner to draw the
most plausible conclusion based on a set of statements or data. For instance:

Articles of the defendant's clothing were found at the scene of the crime.

The defendant and the deceased recently had a violent argument.

The defendant's DNA was found at the scene of the crime.

The defendant is the perpetrator of the crime Conclusion arrived at by abduction

Deduction, induction, and abduction are the three fundamental processes found in logic. They provide
for logic what calculation and arithmetic provide for mathematics. The ability to correctly move from
premises (statements, data, and facts) to conclusions is the process that we call reasoning.

class agent {
 //...
 set<statements> Beliefs;
 //...
};

The agent class uses deduction, induction, or abduction to process its Beliefs in order to form
intentions, commitments, or plans. A closer look at our definition of agents states that if it is a rational
autonomous object, it is an agent. If it is not rational, then its not an agent, it's just an object. The degree
of autonomy is another area of debate and we will examine it closely later in this chapter.

12.2 What is Agent-Oriented Programming?

Agent-oriented programming is the process of assigning the work a program has to one or more agents.
The WBS (Work Breakdown Structure) consists only of agents. If all the work that a program does can
be assigned to one or more agents, then it is a pure agent-oriented program and all of the design and
development involved only requires agent-oriented programming. In many situations, agents will be
involved with other kinds of objects and systems that are not agent-oriented and therefore the entire
programming effort is not called agent-oriented programming, which is often the case when agents are
involved with database servers, application servers, and other types of object-oriented systems. Whether
producing software systems that are completely agent-oriented or only partially agent-oriented, agent-
oriented programming produces rational object-oriented software components.

12.2.1 Why Agents Work for Distributed Programming

Practical distributed programs rise out of necessity. Typically, there is some resource located on another
computer or network separated from the program that needs it. These resources often take the form of
databases, Web servers, e-mail servers, application servers, printers, and large storage devices. The
resources are usually managed by a piece of software called a server. The software that needs access to
the resources is referred to a client. The fact that the resources are located on different computers than
the client leads to distributed architectures. In most cases, it does not make sense to attempt to combine
these programs into one large program that runs on a single computer and in a single address space.
Furthermore, there are many programs developed at different times, by different developers, and for
different purposes that end up taking advantage of each other's services. The application that uses these
programs evolved over time and the result was a distrusted application. Since these programs are
separate, they will each have their own address space and resources. When these programs are used
together to form a single application or collectively solve a program they form a distributed program. It
turns out that the distributed program architecture provides very flexible architectures that can be used
for large-scale applications. In so many practical applications, the requirements for distribution are
discovered after the fact. However, good software engineering and design techniques can be used to
identify when applications should be distributed. Once you know that you need to develop a distributed
application, the next question is how it should be distributed. What model should be used? Although
there are very many different client-server and peer-to-peer models available in this book, we focus on
only two: blackboard architectures and multiagent architectures.

Both of these architectures can take advantage of agents because agents are inherently self-contained,

autonomous, and rational software structures. Because agents are rational it means they know their
purpose. Regular objects have a purpose and agents know what that purpose is. Identifying the purpose
of each aspect of a piece of software is a natural process. It is straightforward to recognize the purpose
of a piece of software during the design phase. Assigning that purpose to an agent is an easy form of
software decomposition. The WBS becomes a matter of which class of agent to delegate the work to.
Since the agent is the unit of modularity in an AOP (agent-oriented program), the work of distribution
is reduced to finding means for multiple agents to communicate. The process of designing the original
agent class hides the effort required for identifying the WBS of a distributed program. Once we get over
the hurdles that agents are really rational objects, we can then take advantage of the CORBA
specification to design truly distributed multiagent systems. CORBA hides the complexity of
distributed programming and communication over networks, intranets, and the Internet. Chapter 8
contains a simple overview of distributed programming using CORBA. Since agents are objects, the
entire discussion of CORBA is applicable. Chapter 6 introduces the PVM (Parallel Virtual Machine).
PVM can also be used to greatly simplify the communication between agents executing on different
processes or on different computers. Agents can be implemented as CORBA objects, or they can be
assigned to separate PVM processes. In both cases, the communication is simple and straightforward.
When two or more agents are involved within a single application they are multiagent systems. The
agents may still use CORBA, PVM, or the MPI (Message Passing Interface) to communicate if they are
on the same computer. Agents within different processes may also use traditional methods of IPC such
as fifos, shared memory, and pipes to communicate. There are three fundamental challenges in
distributed programming:

1. Identifying the WBS of the distributed solution

2. Implementing effective and efficient communication between the distributed components

3. Dealing with exceptions, errors, and partial failures

While there is nothing inherent within the notion of an agent class to deal with item 2, items 1 and 3 are
almost implicit in the agent design itself. Each agent's rationality defines its purpose and thereby the
part that it is to play in the software solution. Since agents are self-contained and autonomous, a good
agent class design will include the necessary fault tolerance.

12.2.2 Agents and Parallel Programming

Agents deployed in an environment where multiple processors or concurrently executing threads offer
the same advantages as they do in distributed programming, with the addition that cooperation between
agents is much easier to program. The PVM and MPI environments can also be used for message
passing between agents that are collectively solving some kind of problem. Again, the rationality of the
agents makes it easier to understand to design the WBS for parallelism. The common obstacles
encountered in parallel programming are:

1. Dividing the work effectively and efficiently between two or more software components

2. Coordinating the concurrently executing software components

3. Designing appropriate communication (where needed) between the components

4. Dealing with exceptions, errors, and partial failures (if the agents are on separate computers)

Multiagent parallel architectures tend to be loosely coupled, that is, the communication and the
interdependency is minimal. Each agent knows its purpose and has methods to accomplish its purpose.
Whereas obstacle 3 is not inherently dealt with by the agent class, obstacles 1, 2, and 4 are easily
managed by the implicit capabilities of the agent classes. For example, the impact of obstacle 2 is
reduced because each agent is rational, has a purpose, and has the ways and means to accomplish its
purpose. So the responsibility is shifted away from some coordination and control algorithm to the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06.htm#ch06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08.htm#ch08

actions of each agent. The impact of obstacle 4 is reduced because agents are self-contained, rational,
and autonomous and a good class design will include the necessary fault tolerance. Since the agent's
state is encapsulated, the responsibility to protect critical sections within the agent object is the
responsibility of the agent class. The agent will enforce its own data access policies. Table 12-2 shows
the state access polices from which agents can choose.

Table 12-2. State Access Policies

Read-Write Algorithm Types Meaning

EREW Exclusive Read Exclusive Write

CREW Concurrent Read Exclusive Write

ERCW Exclusive Read Concurrent Write

CRCW Concurrent Read Concurrent Write

Each agent's class will determine which access policy is acceptable in a multiagent environment. In
some cases, combinations of the access policies in Table 12-2 are implemented. This makes the parallel
programming easier. The developer can work at a higher level without having to worry about mutexes,
semaphores, and so on. Multiagent solutions allow the developer to work at a higher level without
getting bogged down with the minutia of coordinating every function call and data access. Each agent
has a purpose. Each agent is rational and therefore has a logic for achieving its purpose. The
programming process looks alot more like task delegation as opposed to the typical task coordination
paradigms for traditional parallel programming. Since agent-oriented programming is a specific kind of
object-oriented programming, agents use a more declarative mode of parallel programming than the
traditional procedural-based programming that is often implemented in languages such as Fortran or C.
The developer specifies what needs to be done and which agents should do it and the parallelism almost
takes care of itself. There is always some amount of coordination and communication programming
required, but agent-oriented programming keeps it to a minimum. However, all these advantages
depend on the existence of agent classes. Someone has to design and code the agent classes. Let's now
look at what an agent class will contain.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec2.htm#ch12table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec2.htm#ch12table02

12.3 Basic Agent Components

An agent is declared using the class keyword. The components of an agent will consist of C++ data
members and member functions. Figure 12-1 shows the logical layout of an agent class.

Figure 12-1. Logical layout of an agent class.

The class attributes and methods in Figure 12-1 refer to the typical initialization, read, and write
methods that any object would have. The attributes would include state variables that define the object.
The methods would include constructors, destructors, assignment operators, exception handlers, and so
on. If we stopped with these attributes and methods we would have only a traditional object. The
cognitive data structures and the inference methods make up the rational component. It is the rational
component that transforms an object into an agent.

12.3.1 Cognitive Data Structures

A data structure is a set of rules for logically organizing data and the rules for accessing that logical
organization. It is a method of organization that specifies both how the data should be conceptually
structured and how access operations are allowed to be applied to that structure. Whereas datatypes and
ADTs (abstract datatypes) focus on what, data structures focus on how. For example, the integer
datatype specifies an entity that has a data component and a number of arithmetic operations (i.e.,
addition, subtraction, multiplication, division, modulo, etc.). That data component does not have a
fractional part. The data component consists of negative and positive numbers, and so on. The datatype
specification does not mention how the integers should be used or accessed. On the other hand, a data
structure specification such as a stack specifies a list of elements stored in a LIFO (last-in-first-out)
order. The stack data structure also specifies that elements may only be taken out one at a time from the
top of the stack, that is, the last element inserted must be removed before any other elements can be
accessed. So not only does the stack data structure specify how the elements are organized, it also
specifies how the elements are accessed (i.e., visited, read, changed, deleted, etc.). Cognitive data
structures restrict the rules for organizing and accessing data to those found in the fields of logic and
epistemology. The rules of inference, the methods of inference (i.e., deduction, induction, and
abduction), the notions of epistemic data, knowledge, justification, belief, premises, propositions,
fallacies, and conclusions are the defining features of cognitive data structures.[3] Whereas algorithms
for sorting, searching, and iterating are commonplace for traditional data structures, inference methods
are more commonplace for cognitive data structures. The ADTs used with cognitive data structures
often include:

[3] Mentalistic concepts such as imagination, paranoia, anxiety, happiness, sadness, and so
on are intentionally excluded from our definition of cognitive data structures. Our focus is
on rational epistemic software, not intelligent software.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec3.htm#ch12fn03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec3.htm#ch12fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec3.htm#ch12fig01

Questions Events

Facts Time

Propositions Fallacies

Beliefs Purpose

Statements Justification

Conclusions

Of course, other datatypes can be used with a cognitive data structure but these are characteristic of
programs that use rational software components such as agents. These ADTs are normally implemented
as datatypes using the struct or class keywords. For instance:

struct question{
 //...
 string RequiredInformation;
 target_object QuestionDomain;
 string Tense;
 string Mood;
 //...
};

class justification{
 //...
 time EventTime;
 bool Observed;
 bool Present;
 //...
};

The C++ template and container classes can be used to organize cognitive data structures such as
knowledge. For instance:

class preliminary_knowledge{
 //...
 map<question,belief> Opinion;
 map<conclusion,justification> SimpleKnowledge;
 set<propositions> Argument;
 //...
};

12.3.1.2 Inference Methods

The inference methods in Figure 12-1 refer to deduction, induction, and abduction. (See Sidebar 12.1
for an explanation of these methods.) While inference methods are called for in an agent architecture,
there is no specific mention on how the inference methods are implmented. Deduction, induction, and
abduction are high-level processes. The details of how to implement these processes are up to the
software developer. Inference is the process of deriving logical conclusions from premises known or

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec1.htm#ch12sb01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec3.htm#ch12fig01

assumed to be true. There is no one right way to implement an inferencing process, sometimes called an
inference engine. However, there are several commonly used methods for implementing inference.
Forward-chaining or backward-chaining techniques can be used. Means–end analysis techniques can be
used. Graph traversal algorithms such as DFS (Depth First Search) and BFS (Breadth First Search) can
also be used. There is a host of theorem-proving techniques that can be used to implement inference
methods and inference engines. The important point to note here is that an agent class will have one or
more inference methods. Table 12-3 contains descriptions for the most basic techniques used to
implement the inference methods.

Table 12-3. Tables for Descriptions of the Most Basic Inference Implementation Techniques

Inference Implementation
Techniques

Description

Backward Chaining Purpose- or goal-driven approach in which a process starts from a
proposition, statement, or hypothesis and searches for supporting
evidence.

Forward Chaining Data-driven approach that starts from available data or facts and moves
toward conclusions.

Means-end Analysis Uses a set of operators to solve one subproblem at a time until the entire
problem is solved (opportunistic).

These techniques are well understood and widely available in many libraries, frameworks, and some
programming languages. These techniques are the building blocks for the basic inference methods. To
see how this inferencing works lets use one of the rules of inference Modus Ponens and build a simple
inference method to support it. Take the following statement: If there is a bus trip from Detroit to New
York then John will go on vacation. If we establish that there is a bus trip from Detroit to New York,
then we know that John will go on vacation. The Modus Ponens form of this is:

P Q

P

Q

where:

P = If there is a bus trip from Detroit to New York

Q = John will go on vacation

We could design a simple decision support agent to tell us whether John will go on vacation or not.
That agent would need to know something about possible bus trips. Let's say we have a list of bus trips:

Toledo to Cleveland Detroit to Chicago Youngstown to New York

Cleveland to Columbus Cincinnati to Detroit Detroit to Toledo

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec3.htm#ch12table03

Columbus to New York Cincinnati to Youngstown

Each of these trips represents commitments by the ABC Bus Company. If our agent has access to the
ABC Bus Company's schedule, then this list of trips can be used to represent part of our agent's beliefs.
The question is, how do we get from a list of trips to beliefs? First, lets design a simple statement
structure.

struct existing_trip{
 //...
 string From;
 time Departure;
 string To;
 time Arrival;
 //...
};

Next let's use a container class that will represent our agent's beliefs about bus trips.

set<existing_trips> BusTripKnowledge;

If the bus trip is contained in the set BusTripKnowledge, then our agent believes that the bus trip will
take place from a certain origin to a certain destination at a certain time. So we might construct a trip
accordingly:

//...
existing_trip Trip;
Trip.From.append("Toledo");
Trip.To.append("Cleveland");
Trip.Departure("4:30");
Trip.Arrival("5:45");
BusTripKnowledge.insert(Trip);
//...

If we place each trip into the BusTripKnowledge set, then our agent's beliefs about the ABC Bus
Company's trips are complete. Notice that there is no single trip from Detroit to New York. However,
John can get to New York from Detroit if he takes the following bus trips:

Detroit to Toledo

Toledo to Cleveland

Cleveland to Columbus

Columbus to New York

So while the ABC Bus Company does not provide a one-stop trip, it does provide a multistop trip. The
problem is how does our agent know this? The agent needs some way to conclude based on what it
knows about bus trips that there is a trip from Detroit to New York. We use a simple chaining process.
We search our BusTripKnowledge for the first trip leaving from Detroit. We find one: Detroit to
Chicago. We check the To attribute of this trip. If it is equal to "New York", we stop because we have
found a trip. If it is not, we save this trip on a stack. We then search through the trips to see if there is
another trip whose From attribute = "Chicago". We find that there are no buses leaving from Chicago.
Therefore, we pop the Detroit to Chicago trip from the stack. We note that we have used this trip, and
we search for the next trip leaving from Detroit to anywhere. We find a trip: Detroit to Toledo. We
check to see if the To attribute = "New York", and since it does not, we save this trip on a stack. We
then search through the trips to see if there is another trip whose From attribute = "Toledo". Here we
find one: Toledo to Cleveland. We then place this trip on the stack. We then search through the trips to

see if there is another trip whose From attribute = "Cleveland". At each trip we check the To attribute.
If the To attribute = "New York", then the trips on the stack represent a bus trip from Detroit to New
York, with the starting trip at the bottom of the stack and the ending trip on the top of the stack. If we
go through the entire list and none of the To attributes = "New York", or we run out of To attributes for
the trip on top of the stack, then we pop the top element of the stack and search for the next item whose
From attribute is equal to the To attribute of the element on the top of the stack. This process is repeated
until either the stack is empty or we've found a trip. This process uses a simplified DFS technique to
determine if there is a trip from point A to point B.

Our simple agent would use this DFS technique to establish the existence of the trip from Detroit to
New York. Once this fact was established, then the agent would update its beliefs about John. The
agent will now believe that John is going on vacation. Let's say we added another precondition to John's
vacation:

If John adds 15 or more new clients, then his profits > 150000.

If John's profits are > 150000 and there is a bus trip from Detroit to New York, then John
will go on vacation.

Here the agent must establish whether John's profits are > 150000 and whether there is a bus trip from
Detroit to New York. To establish whether John's profits are > 150000, the agent must first establish
whether John has added 15 or more new clients. Suppose we convince the software agent that John has
added 23 new clients. Then the agent can infer that John's profits are > 150000. From
BusTripKnowledge the agent was able to infer that there was a trip from Detroit to New York. Using
the beliefs about the bus trips, and the belief about the 23 new clients, the agent uses the process of
forward chaining to deduce that John will go on vacation. We call this forward chaining from the fact
that with 23 new clients added and the bus schedule facts, the agent moved to the conclusion. The
inference form of this process looks like:

A B

(B and C) D

A

C

D

where

A = If John adds 15 or more new clients

B = Profits > 150000

C = There is a bus trip from Detroit to New York

D = John will go on vacation

In this example, the agent believes A and C to be true. Using the rules of inference, B and D are
established to be true. Therefore, the agent will commit to tell us that John will go on vacation. This
kind of processing could be assigned to an agent in a situation where a manager has hundreds or even
thousands of employees and decides to have agent software regularly schedule employee hours. The
manager would then consult the agent to see who was working, who was on sick leave, who was on
vacation, and so on. The agent would be given knowledge and authority to assign work schedules. Each
week the agent would commit to a number of acceptable work schedules, vacations, and sick leaves.
The agent in this case uses simple forward chaining and DFS to make its inferences. To implement this

kind of inferencing we used structs, and stack and set classes. These classes are used to hold
knowledge, propositions, and patterns of reasoning. They allow us to implement our CDS (Cognitive
Data Structures). We used DFS techniques to move through the stack data structures and set structures
to support the process of inference.

The combination of chaining and DFS produces a process whereby one proposition can be affirmed on
the basis of previous propositions that have already been accepted. This is important because our agent
will know that it is inherently correct when it accomplishes its objectives based on inference. This also
affects parallel programming considerations. The fact that the agent is rational and moves according to
rules of inference allows the developer to focus on correctly modeling the task that the agent performs
instead of getting bogged down in attempts to explicitly control the parallelism in the program. The
minimal requirements of parallelization DCS (decomposition, communication, and synchronization) are
in large part addressed by the architecture of the agent. Each agent has a rationale for its behavior. That
rationale will be based on well defined, well understood rules of inference. The decomposition happens
simply as a matter of assigning the agent one or more prime directives. Thinking of the WBS in this
way is natural and ultimately results in parallel or distributed programs that are easier to maintain and
enhance. It is easier to think about communication between agents than communication between
anonymous modules because the boundaries between agents are clear and obvious. Each agent has a
purpose that is immediately apparent. The knowledge or information each agent needs to achieve its
purpose is easily determined. To allow the agents to communicate, the developer can use simple MPI
calls or the object communication facilities that are part of any CORBA implementation. The most
challenging aspect of the communication, namely figuring out:

• what needs to be communicated

• who needs to communicate

• when the communication should occur

• what format the communication should be in

is implied in the design of the agents. All that is left is the physical implementation of the
communication, which is easily handled by any of the libraries that support parallelism that we have
discussed in this book. Finally, the problems of synchronization are reduced because the agent's
rationale tells it when it can and should perform an action. Therefore, the complicated issues of
synchronization are transformed into simpler issues of cooperation. This subtle difference is an
important paradigm shift because it simplifies what the software developer has to think about. Lets look
a little closer at the basic layout of an agent and how we can implement it in C++.

12.4 Implementing Agents in C++

We will explore a simplified variation of our previous example of an agent and demonstrate how it can
be approached in C++. The purpose of this agent is to schedule and book vacations for the owner of the
ABC Auto Repair Company. The owner has dozens of employees and therefore doesn't have time to
figure out when and where to go on vacation. Furthermore, unless the owner is making a certain amount
of profit, vacations are out of the question. So the owner has acquired agent software that will plan and
schedule vacations at various times throughout the year if the conditions are right. As far as the owner
is concerned, the primary selling feature is that the agent runs unattended. Once the agent is installed on
the computer the owner doesn't have to bother with it. When the agent determines that an appropriate
time for a vacation has arrived, the agent will schedule the vacation, book the hotel and transportation,
and then e-mail the owner an itinerary. The only responsibility the owner has is during the setup of the
agent. The owner has to specify where he would like to go and how much profit the business must
make before he can go. Let's look at how this agent could be constructed. Recall from Figure 12-1 that
the rational component of an agent class consists of cognitive data structures and inference methods.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec3.htm#ch12fig01

The cognitive data structures help to capture beliefs, propositions, notions of epistemic data,
knowledge, fallacies, facts, and so on. The agent class uses inference methods to access these cognitive
data structures in the process of problem solving and task performance. The standard C++ library
comes with a set of container classes and algorithms that can be used to implement the CDS and the
inference methods.

12.4.1 Proposition Datatypes and Belief Structures

This agent has beliefs about the performance of the owners auto repair business. The beliefs capture
information about how many customers per hour, the bay utilization per day, and the total sales during
the period. Furthermore, the agent knows that the owner only likes bus trips. Therefore, the agent keeps
up on any available bus trips that the owner might enjoy. In a math-intensive program, the primary
datatypes are integers and floating point numbers. In a graphics-intensive program, the primary
datatypes are pixels, lines, colors, circles, and so on. In an agent-oriented program, the primary
datatypes are propositions, rules, statements, literals, and strings. We will use the object-oriented
support in C++ to build a few datatypes that are native to agent-oriented programming. Example 12.1
shows the declaration for a proposition class.

Example 12.1 Declaration of a proposition class.

template<class C> class proposition {
//...
protected:
 list<C> UniverseOfDiscourse;
 bool TruthValue;
public:
 virtual bool operator()(void) = 0;
 bool operator&&(proposition &X);
 bool operator||(proposition &X);
 bool operator||(bool X);
 bool operator&&(bool X);
 operator void*();
 bool operator!(void);
 bool possible(proposition &X);
 bool necessary(proposition &X);
 void universe(list<C> &X);
 //...
};

A proposition is a statement in which the subject is affirmed or denied by the predicate. A proposition is
either true or false. A proposition can be used to capture any single belief that the agent has. Also, other
information that the agent does not necessarily believe but is offered to the agent will be presented as a
proposition. The proposition is a cognitive datatype. It should be just as functional in an agent-oriented
program as a floating point or integer datatype in a math-oriented program. Therefore, we use the
operator overloading facilities of C++ to provide some of the basic operators that are applicable to
propositions. Table 12-4 shows how the operators are mapped to logic operators.

The proposition class in Example 12.1 is a scaled-down version. The goal of this class is to allow the
proposition datatype to be used just as easily and naturally as any other C++ datatype. Notice that the
proposition class has the declaration:

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12table04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex01

Table 12-4. How the Operators are Mapped to Logical Operators

C++ User-Defined Operators Commonly Used Logical Operators

&& ^

|| v

! ~

possible

necessary

virtual bool operator()(void) = 0;

This is called a pure virtual method. When a class has a pure virtual method, it means the class is an
abstract class and cannot be directly instantiated. This is because there is no definition for the pure
virtual function in the class. The function is only declared, not defined. Abstract classes are used to
define policies and blueprints for derived classes. A derived class must define any pure virtual functions
that it inherits from the abstract class. Here the proposition class is used to define the minimum
capability that any descendant will have. Another important thing to notice about the proposition class
in Example 12.1 is it's also a template class. It contains the data member:

list<C> UniverseOfDiscourse;

This data member will be used to hold the universe of discourse that the proposition belongs to. In
logic, the universe of discourse contains all of the legal things that may be considered during a
discussion. Here, we use a list container. Since the topics under consideration in a universe of discourse
can take on different types, we use a container class. We make the UniverseOfDiscourse protected
instead of private so that it can be accessed by all descendants of the proposition class. The proposition
class also has the capability to deal with logical necessity and possibility, the major themes in modal
logic that are also useful in agent-oriented programming. Modal logic allows the agent to deal with
what is possibly true or what is necessarily true. Table 12-4 lists the primary operators used for logical
possibility and necessity. We provide these methods for exposition purposes only; the implementations
of these methods are beyond the scope of this book. However, they are part of the proposition classes
that the authors use in practice. To make the proposition class usable, we derive a new class that we
name trip_announcement. The trip_announcement class is a statement about the existence of a bus trip
from some point of origin to some destination. For instance: There is a bus trip from Detroit to Toledo.
This makes a statement that is either true or false. If we were concerned with when this statement was
true or false we might imply temporal logic. Temporal logic deals with the logic of time. Agents also
employ temporal reasoning. But here all propositions refer to the current time. This statement asserts
that there is currently a bus trip from Detroit to Toledo. The agent will either be able to verify this and
therefore believe or reject it as a false statement. Example 12.2 shows the declaration of the
trip_announcement class.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12table04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex01

Example 12.2 Declaration of the trip_announcement class.

class trip_announcement : public proposition<trip_announcement>{
//...
protected:
 string Origin;
 string Destination;
 stack<trip_announcement> Candidates;
public:
 bool operator()(void);
 bool operator==(const trip_announcement &X) const;
 void origin(string X);
 string origin(void);
 void destination(string X);
 string destination(void);
 bool directTrip(void);
 bool validTrip(list<trip_announcement>::iterator I,
 string TempOrigin);
 stack<trip_announcement> candidates(void);
 friend bool operator||(bool X,trip_announcement &Y);
 friend bool operator&&(bool X,trip_announcement &Y);
 //...
};

Notice that the trip_announcement class inherits the proposition class. Recall that the proposition class
is a template class and requires a parameter to determine its type. The declaration:

class trip_announcement : public proposition<trip_announcement>
 {...};

provides the proposition class with a type. It is also important to note that the trip_announcement class
defines the operator(). Therefore, trip_announcement is a concrete class as opposed to an abstract class.
We may declare and use the trip_announcement proposition directly within our agent program. The
trip_announcement class adds some additional data members:

Origin
Destination
Candidates

These data members are used to contain the origin and destination of a bus trip. If the bus trip requires
transfers from one bus to another and multiple layovers, then the Candidates data member will contain
the complete route involved. Therefore, the trip_announcement object will be a statement about a bus
trip and the route involved. The trip_announcement class also defines some additional operators. These
operators help to put the trip_announcement class on equal footing with built-in C++ datatypes. In
addition to beliefs about trips, the agent also has beliefs about the performance of areas within the
owner's business. These beliefs differ in structure but are still basically statements that will be either
true or false. So, we again use the proposition class as a base class. Example 12.3 shows the declaration
for the peformance_statement class.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex03

Example 12.3 Declaration for the performance_statement class.

class performance_statement : public proposition<performance_
 statement>{
 //...
 int Bays;
 float Sales;
 float PerHour;
public:
 bool operator() (void);
 bool operator==(const performance_statement &X) const;
 void bays(int X);
 int bays(void);
 float sales(void);
 void sales(float X);
 float perHour(void);
 void perHour(float X);
 friend bool operator||(bool X,performance_statement &Y);
 friend bool operator&&(bool X,performance_statement &Y);
 //...
};

Notice that this class also provides the template class proposition with a parameter:

class performance_statement : public proposition<performance_
 statement> {...}

With this declaration the proposition class is now specified for performance_statements. The
performance_statement class is used to represent beliefs about how many sales, customers per hour, and
bay utilization the owner's business has. Each statement corresponds to a single belief that the agent has
in each area. This information is held in the data members:

Bays
Sales
PerHour

Statements such as: "Location 1 grossed $300,000 in sales, had 10 customers per hour, and had a bay
utilization of 4" can be represented by the performance_statement class. So our agent class has two
categories of beliefs implemented as datatypes derived from the proposition class. Figure 12-2 shows a
UML class diagram for the trip_announcement class and the performance_statement class. These
classes hold the structure of the agent's beliefs.

Figure 12-2. UML class diagram for the trip_announcement class and the performance_statement class.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12fig02

12.4.2 The Agent Class

The classes shown in Figure 12-2 provide the foundation for the CDS of the agent, the basis for what
will make the agent rational. It's the fact that the agent class is rational that distinguishes it from other
types of object-oriented classes. Example 12.4 shows the declaration for the agent class.

Example 12.4 Declaration of the agent class.

class agent{
 //...
private:
 performance_statement Manager1;
 performance_statement Manager2;
 performance_statement Manager3;
 trip_announcement Trip1;
 trip_announcement Trip2;
 trip_announcement Trip3;
 list<trip_announcement> TripBeliefs;
 list<performance_statement> PerformanceBeliefs;
public:
 agent(void);
 bool determineVacationAppropriate(void);
 bool scheduleVacation(void);
 void updateBeliefs(void);
 void setGoals(void);
 void displayTravelPlan(void);
 //...
};

As with the proposition classes, the agent class is a scaled-down version of what would be used in
practice. A complete listing of the declaration of the practical versions of these classes would be three
or four pages. We show enough for exposition purposes. The agent class contains two list containers:

list<trip_announcement> TripBeliefs;
list<performance_statement> PerformanceBeliefs;

The list containers are standard C++ lists. Each list is used to hold a collection of what the agent
currently believes about the world. Our simple agent world is restricted to knowledge about bus trips
and sales performance of his owner's business. The contents of these two containers represent the
complete knowledge and belief set of the agent. If there are statements in these lists that the agent no
longer believes, the agent will remove them. If the agent uncovers new statements during the course of
inference, they are added to these beliefs. The agent has ongoing access to information about bus trips
and the performance of the owner's business. The agent is able to update its beliefs as necessary. In
addition to beliefs, the agent has objectives, which are sometimes represented as desires in the BDI
(Beliefs Desires Intentions) model. The objectives support the primary directives that the agent has
been given by its client. In our case the objectives will be stored in statements:

performance_statement Manager1;
performance_statement Manager2;
performance_statement Manager3;
trip_announcement Trip1;
trip_announcement Trip2;
trip_announcement Trip3;

Keep in mind that this is an oversimplification of how objectives and directives are represented within
an agent class. However, there is enough here to understand how these structures are built. The three
Manager statements contain the performance goals that must be met before the owner can even consider

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12fig02

going on vacation. The three Trip statements contain the bus trips that the owner would like to take if a
vacation is earned. The beliefs together with the directives provide the basic cognitive datatypes that the
agent has. The agent's inference methods combined with these cognitive datatypes form the agent's
CDS (Cognitive Data Structure). The CDS forms the rational component and the distinguishing feature
of an agent class. In addition to containers that hold beliefs and structures that in turn hold directives
and objectives, most practical agent classes will have containers that hold the agent's intentions,
commitments, or plans. The agent gives directives by his client. The agent uses its ability to inference
and acts to fulfill its directives. The inferencing and actions that an agent does often result in a container
that holds intentions, commitments, or plans. Our simple agent doesn't require a container to hold
intentions or plans. However, it does keep track of the route that a bus trip vacation would take. This is
stored in a container called Candidates. The intentions or plans would work similarly. If our agent is
able to achieve its directives, it will schedule the trip and e-mail the owner the specifics. The instant our
agent object is constructed, it goes to work. Example 12.5 shows an excerpt from the agent's
constructor.

Example 12.5 The agent class's constructor.

agent::agent(void)
{
 setGoals();
 updateBeliefs();
 if(determineVacationAppropriate()){
 displayTravelPlan();
 scheduleVacation();
 cout << "Emailed Vacation Approved and Scheduled" << endl;
 }
 else{
 cout << "Emailed Vacation Not Appropriate At this time" << endl;
 }
}

12.4.2.1 The Agent Loop

Many definitions for agents include requirements of continuity and autonomy. The idea is that the agent
continually performs what tasks it is assigned without the need for human intervention. The agent has
the capability to interact and semi-control its environment through a feedback loop. The continuity and
autonomy are often implemented as an event loop where the agent continually receives messages and
events. The agent uses the messages and events to update its internal model of the world, intentions,
and take action. However, autonomy and continuity are relative terms. Some agents need to function
from one microsecond to the next, while other agents only need to perform their services annually. In
fact, with deep space mission software, an agent may have longer than an annual cycle. Multiple years
may pass before the agent performs the next task. Therefore, we don't focus on physical event loops and
constantly active message queues. While these work for some agents, they are not appropriate for
others. We have found the notion of a logical cycle to be the most practical. The logical cycle may or
may not be implemented as an event loop. The logical cycle can be anything from nanoseconds to
years. Figure 12-3 shows a simple overview of a logical agent cycle.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex05

Figure 12-3. Simple overview of a logical agent cycle.

The universe of discourse in Figure 12-3 represents everything our agent can legitimately interact with.
This might include files, information from ports, or data acquisition devices. The information will be
represented as some kind of proposition or statement. Notice that there is a feedback loop from the
agent's outputs back to the agent's inputs. Our agent from Example 12.4 is only needed a few times a
year. Therefore, it is not appropriate to put it in an event loop that constantly runs. Our agent will
simply activate itself periodically during the course of the year to execute its initiatives. Example 12.5
shows the agent's constructor. When the agent activates, it sets some goals, updates its beliefs, and then
determines whether a vacation is appropriate. If the vacation is appropriate, the necessary steps are
taken and the owner is e-mailed. If a vacation is not appropriate at that time, then the owner is e-mailed
with that fact also.

12.4.2.2 The Agent's Inference Methods

This agent has inference capabilities implemented partially by the proposition class descendants and
partially by the method. Recall that the proposition class declared the operator()=0 as a pure virtual.
They force derived classes to implement the operator(). We use this operator to design a proposition so
the proposition itself can determine whether it is true or not, that is, the proposition classes are self-
contained. This is a fundamental tenet of object-oriented programming, namely, that a class is a self-
contained encapsulation of characteristics and behaviors. Therefore, one of the primary behaviors of the
proposition class and its descendants is the capability to determine whether it is true or not. The
operator overloading and function objects are used to accommodate this feature. Example 12.6 shows
an excerpt from the proposition class and its descendant's definitions.

determineVacationAppropriate()

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12fig03

Example 12.6 Excerpts from the definition of the proposition class and its descendants.

template <class C> bool proposition<C>::operator&&(proposition &X)
{
 return((*this)() && X());
}

template <class C> bool proposition<C>::operator||(proposition &X)
{
 return((*this)() || X());
}
template<class C> proposition<C>::operator void*(void)
{
 return((void*)(TruthValue));
}

bool trip_announcement::operator() (void)
{
 list<trip_announcement>::iterator I;
 if(directTrip()){
 return(true);
 }
 I = UniverseOfDiscourse.begin();
 if(validTrip(I,Origin)){
 return(true);
 }
 return(false);
}

The definitions of the || and the && operators for the proposition classes determine whether the
proposition is true or false. Each of these operator definitions ultimately calls the operator() defined for
its class. Notice in Example 12.6 the definition for ||. This operator is defined as:

template <class C> bool proposition<C>::operator||
 (proposition &X)
{
 return((*this)() || X());
}

It allows code to be written as:

trip_announcement A;
performance_statement B;
if (A || B){
 // Do Something
}

When A or B is evaluated, the operator definitions will cause the operator() to be called. Each
proposition class defines behavior for the operator(). For example, the trip_announcement class defines
the operator() as:

bool trip_announcement::operator()(void)
{
 list<trip_announcement>::iterator I;
 if(directTrip()){
 return(true);
 }
 I = UniverseOfDiscourse.begin();
 if(validTrip(I,Origin)){

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex06

 return(true);
 }
 return(false);
}

This code will determine whether there is a trip from some designated origin to some destination. For
example, if the desired type is Detroit to Columbus and the universe of discourse contains:

Detroit to Toledo

Toledo to Columbus

Then a trip_announcement object will report that the statement that there is a trip from Detroit to
Columbus is true, although the universe of discourse does not contain a statement like:

Detroit to Columbus

In fact, the trip_announcement class does check to see if there is a direct route from Detroit to
Columbus. If there is a direct route, then it returns true. If there is no direct route, it attempts to find an
indirect route. This behavior is accomplished by:

if(directTrip()){
 return(true);
}
I = UniverseOfDiscourse.begin();
if(validTrip(I,Origin)){
 return(true);
}

processing in the operator() for the trip_anouncement class. The directTrip() method is straightforward
and simply sequentially searches through the universe to see if there is a statement that says:

Detroit to Columbus

The validTrip() method uses a DFS (Depth First Search) technique to determine if there is an indirect
route. Example 12.7 contains definitions for validTrip() and directTrip():

Example 12.7 Definitions for validTrip and directTrip().

bool trip_announcement::validTrip(list<trip_announcement>::
 iterator I, string TempOrigin)
{
 if(I == UniverseOfDiscourse.end()){
 if(Candidates.empty()){
 TruthValue = false;
 return(false);
 }
 else{
 trip_announcement Temp;
 Temp = Candidates.top();
 I = find(UniverseOfDiscourse.begin()
 UniverseOfDiscourse.end(),Temp);
 UniverseOfDiscourse.erase(I);
 Candidates.pop();
 I = UniverseOfDiscourse.begin();
 if(I != UniverseOfDiscourse.end()){
 TempOrigin = Origin;
 }
 else{

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex07

 TruthValue = false;
 return(false);
 }

 }
 }
 if((*I).origin() == TempOrigin && (*I).destination() == Destination){
 Candidates.push(*I);
 TruthValue = true;
 return(true);
 }
 if((*I).origin() == TempOrigin){
 TempOrigin = (*I).destination();
 Candidates.push(*I);
 }
 I++;
 return(validTrip(I,TempOrigin));
}

bool trip_announcement::directTrip(void)
{
 list<trip_announcement>::iterator I;
 I = find(UniverseOfDiscourse.begin(),UniverseOfDiscourse.end(),*this);
 if(I == UniverseOfDiscourse.end()){
 TruthValue = false;
 return(false);
 }
 TruthValue = true;
 return(true);
}

Both the validTrip() and directTrip() methods make use of the find() algorithm from the Standard C++
library. The UniverseOfDiscourse is a container that contains the agent's beliefs and statements made to
the agent. Recall that one of the first steps the agent took was to updateBeliefs(). The updateBeliefs()
method is what ultimately populates the UniverseOfDiscourse container. Example 12.8 contains the
definition for the updateBeliefs() method.

Example 12.8 Update beliefs.

void agent::updateBeliefs(void)
{
 performance_statement TempP;
 TempP.sales(203.0);
 TempP.perHour(100.0);
 TempP.bays(4);

 PerformanceBeliefs.push_back(TempP);
 trip_announcement Temp;
 Temp.origin("Detroit");
 Temp.destination("LA");
 TripBeliefs.push_back(Temp);
 Temp.origin("LA");
 Temp.destination("NJ");
 TripBeliefs.push_back(Temp);
 Temp.origin("NJ");
 Temp.destination("Windsor");
 TripBeliefs.push_back(Temp);
}

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex08

In practice the beliefs will come from the agent's executing environment (i.e., files, sensors, ports, data
acquisition devices, etc.). In Example 12.8 the information pushed into TripBeliefs and
PerformanceBeliefs represent new statements that the agent is receiving about the available trips and
the performance of one of the auto repair locations. These statements will be evaluated against the
directives or initiatives that the agent has. The setGoals() method establishes what the agent's directives
are. Example 12.9 shows the definition for the setGoals() method.

Example 12.9 The set goals method.

void agent::setGoals(void)
{
 Manager1.perHour(15.0);
 Manager1.bays(8);
 Manager1.sales(123.23);
 Manager2.perHour(25.34);
 Manager2.bays(4);
 Manager2.sales(12.33);
 Manager3.perHour(34.34);
 Manager3.sales(100000.12);
 Manager3.bays(10);
 Trip1.origin("Detroit");
 Trip1.destination("Chicago");
 Trip2.origin("Detroit");
 Trip2.destination("NY");
 Trip3.origin("Detroit");
 Trip3.destination("Windsor");
}

These goals tell the agent that the owner would like to go from either Detroit to Chicago, Detroit to
New York, or Detroit to Windsor. In addition to the trips, the financial objectives are also set. In order
for a vacation to be achieved, one or more of these objectives must be met. After the goals have been
set and the agent updates its beliefs, the next objective is to determine from the goals and the beliefs if a
vacation can be scheduled. The second component of the agent's inference methods is invoked:

determineVacationAppropriate()

This method will pass the UniverseOfDiscourse to each of the proposition objects. It will then use a
statement of the form:

(A v B v C) ^ (Q v R v S) W

which states if at least one of the statements is true from each grouping, then W is true. In the case of
our agent, this means that if at least one of the sales performance goals are met and there is a bus trip
that is satisfactory, then a vacation is appropriate. Example 12.10 shows the definition of the
determineVacationAppropriate() method.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex10
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex09
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex08

Example 12.10 Second inference method.

bool agent::determineVacationAppropriate(void)
{
 bool TruthValue;
 Manager1.universe(PerformanceBeliefs);
 Manager2.universe(PerformanceBeliefs);
 Manager3.universe(PerformanceBeliefs);
 Trip1.universe(TripBeliefs);
 Trip2.universe(TripBeliefs);
 Trip3.universe(TripBeliefs);
 TruthValue = ((Manager1 || Manager2 || Manager3) &&
 (Trip1 || Trip2 || Trip3));
 return(TruthValue);
}

Notice that the TripBeliefs and the PerformanceBeliefs are arguments to the universe() method of the
Trip and Manager objects. This is where the propositions get the UniverseOfDiscourse information.
Prior to the proposition calling their operator(), their UniverseOfDiscourse is populated. In Example
12.10 the statement:

((Manager1 || Manager2 || Manager3) && (Trip1 || Trip2 ||
 Trip3));

causes six propositions to be evaluated by the || operator. The || operator for each proposition executes
the operator() for each proposition. The operator() uses the UniverseOfDiscourse to determine whether
the proposition is true or false. Examples 12.6 and 12.7 show how the operator() is defined for the
trip_announcement class. Keep in mind that the trip_announcement class and the
performance_statement class inherit much of their functionality from the proposition class. Example
12.11 shows how the operator() is defined for the performance_statement class.

Example 12.11 The performance_statement class.

bool performance_statement::operator()(void)
{
 bool Satisfactory = false;
 list<performance_statement>::iterator I;
 I = UniverseOfDiscourse.begin();

 while(I != UniverseOfDiscourse.end() && !Satisfactory)
 {
 if(((*I).bays() >= Bays) || ((*I).sales() >= Sales) ||
 ((*I).perHour() >= PerHour)){
 Satisfactory = true;

 }
 I++;
 }
 return(Satisfactory);
}

The operator() for each proposition class plays a part in the inferencing capabilities of the agent class.
Example 12.6 shows how the operator() is called whenever || or && is evaluated for a proposition class
or one of its descendants. It is the combination of the proposition classes' operator() methods and the
agent's methods that produce the inference methods for the agent class. In addition to the || and &&
operator defined by the proposition class, the trip_announcement class and the performance_statement

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex10
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex10

class define:

friend bool operator||(bool X,trip_announcement &Y);
friend bool operator&&(bool X,trip_announcement &Y);

The friend declarations allow the propositions to be used in longer expressions. If we have:

//...
trip_announcement A,B,C;
bool X;
X = A || B || C;
//...

then A and B will be OR'ed together and the result will be a bool. The next part of the evaluation tries
to || the bool with the trip_announcement datatype:

bool || trip_announcement

Without the friend declararations, this would be a illegal operation. Example 12.12 shows how these
friend functions are defined.

Example 12.12 Operator overloading of || and &&.

bool operator||(bool X,trip_announcement &Y)
{
 return(X || Y());
}

bool operator&&(bool X,trip_announcement &Y)
{
 return(X && Y());
}

Notice that the definitions of these friend functions also call the function operator() with the reference
to Y(). These functions are also defined for the performance_statement class. The goal is to make the
proposition classes as easy to use as the built-in datatypes. The proposition class also defines another
operator that allows the proposition to be used in a natural fashion. Let's examine the code:

//...
trip_announcement A;
if(A){
 //... do something
}
//...

How does the compiler define Test A? The if() statement is looking for an integral type or a bool. A is
neither. We want the compiler to treat A as a statement that is either true or false. The function operator
is not called under this circumstance. So we define the void* operator to give us the desired
functionality. This function operator can be defined accordingly:

template<class C> proposition<C>::operator void*(void)
{
 return((void*)(TruthValue));
}

This definition allows any proposition type presented in standalone fashion to be tested for a truth
value. For example, when our agent class is preparing to send the owner an e-mail containing the route.
The agent needs to determine which trip is available. Example 12.13 shows another excerpt from the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex13
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch12lev1sec4.htm#ch12ex12

agent's trip processing methods.

Example 12.13 displayTravelPlan() method.

void agent::displayTravelPlan(void)
{
 stack<trip_announcement> Route;
 if(Trip1){
 Route = Trip1.candidates();
 }
 if(Trip2){
 Route = Trip2.candidates();
 }
 if(Trip3){
 Route = Trip3.candidates();
 }
 while(!Route.empty())
 {
 cout << Route.top().origin() << " TO " << Route.
 top().destination() << endl;
 Route.pop();
 }
}

Notice that Trip1, Trip2, and Trip3 are tested as if they were bools. The candidates() method simply
returns the route discovered for the trip. The operator overloading capabilities and the template facilities
support the development of reusable inference methods and the CDS. These inference methods and the
CDS make the object a rational object. A C++ programmer uses the classes construct to design agents.
Container objects are often used in conjunction with the built-in algorithms to implement the CDS. A
class that has a CDS is rational. A rational class is an agent.

12.4.3 Simple Autonomy

Since our simple agent class does not require the traditional "agent loop" to do its processing, we need
other means to activate this agent without human intervention and on a period or cyclic basis. There
will be many situations where an agent that you are writing only needs to run sometimes or only under
limited conditions. The UNIX/Linux environments come with the crontab facility. The crontab facility
is the user interface of the UNIX cron system. The crontab utility allows you to schedule one or more
programs to be executed on a cyclic or periodic basis. Crontab jobs can be scheduled to the month,
week, day, hour, and minute. To use crontab a file must be created that contains the schedule for when
the agent is to be activated. The file is a simple text file set up in the following form:

minute hour day month weekday command

Where each column can take on the following values:

minute 0-59

hour 0–23

day 1–31

month 1–12

weekday 1–7 (1 = Mon., 7 = Sun)

command can be any UNIX/Linux command as well as the name of the file that contains your agents

Once this text file is created, it is submitted to the cron system as the command:

$crontab NameOfCronFile

For example, if we have a file named activate.agent that is set up as follows:

15 8 * * * agent1

0 21 * * 6 agent2

* * 1 12 * agent3

and we execute the crontab command:

$crontab activate.agent

Then agent1 will activate everyday at 8:15 A.M., agent2 will activate every Saturday at 9:00 P.M. and
agent3 will activate every 1st of December. The cron files can be added or deleted as necessary.
Cronfiles can contain references to other cron jobs, thus allowing an agent to reschedule itself. In fact,
shell scripts can be used in conjunction with the crontab utility to provide extremely flexible, dynamic,
and reliable activation of agents. See the man pages for a complete description of the crontab facility.

$man crontab or $man at

The crontab and at facilities are the simplest method to automate or regularly schedule agents that don't
require constantly executing event loops. They are reliable and flexible. On the other extreme, the
implementation repositories and object request brokers that we discussed in Chapter 8 can also be used
to implement automatic agent activation. Standard CORBA implementations also provide event looping
capabilities.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08.htm#ch08

12.5 Multiagent Systems

Multiagent systems are systems in which two or more agents cooperate, collaborate, negotiate, or
compete toward the solution to some problem. The C++ software developer has several options for
implementing multiagent systems. Agents can be implemeted in separate threads using the POSIX
thread API. This method divides a single program into multiple threads where each thread contains one
or more agents. Therefore, each agent shares the same address space. This allows the agents to easily
communicate using global variables and simple parameter passing. If the computer the program is
running on contains more than one processor, then the agents can perform their activities in parallel.
Obviously each agent should have the necessary synchronization objects defined, as discussed in
Chapters 5 and 11, and the exception handling components, as discussed in Chapter 7. Multiagents
implemented with multithreading are the easiest approach but limits the agents to a single computer.
The most flexible approach to multiagents is using a CORBA implementation. The CORBA standard
has a MAF (multi-agent facility) specification in addition to the core CORBA specification. The MICO
implementation that we use in the CORBA examples in this book can be used to implement agents that
can interact over the Internet, over intranets, and over local networks. The C++ binding of the CORBA
standard has complete support for the object-oriented metaphor and therefore has inherent support for
agent-oriented programming. In Chapter 13, we discuss how the PVM and MPI libraries can be used to
support agents in a parallel and distributed programming context.

Summary

Agents are rational objects. Agent-oriented programming is another important approach to parallel and
distributed programming. Agent-oriented programming provides a fresh approach to dealing with the
age-old problems of decomposition, communication, and synchronization that are part of every parallel
programming or distributed programming project. The C++ support for operator overloading,
containers, and templates provide effective tools for implementing a wide range of agent classes. Future
massively parallel and large complex distributed systems will rely on agent-oriented implementations
because there is almost no other way to competently approach such systems. While the agent examples
and techniques that we presented in this chapter were introductory, they provide the basis for
understanding how practical agent systems can be built. The POSIX thread API, MICO, PVM, and MPI
libraries that are freely available and widely used can be used to deploy multiagent systems. Multiagent
systems can be used to implement either solutions that require parallel programming or solutions that
require distributed programming. This book advocates two primary architectures for parallel
programming and distributed programming: Agents provide the first architecture, and blackboards
(which assume agents) provide the second. The next chapter provides a discussion of how to use
blackboards to implement parallel and distributed programming solutions.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13.htm#ch13
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch07.htm#ch07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11.htm#ch11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch05.htm#ch05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_22061533.htm

Chapter 13. Blackboard Architectures Using PVM, Threads, and
C++ Components
"The human brain is far more complicated than any computer, and in any event the
benchmark to be attained by some super microchip of the future is to match the
performance, not of an isolated human brain, but of a brain reared in a society comprising
many humans..."

—Timothy Ferris, The Universe and Eye

In this Chapter

• The Blackboard Model

• Approaches to Structuring the Blackboard

• The Anatomy of a Knowledge Source

• The Control Strategies for Blackboards

• Implementing the Blackboard Using CORBA Objects

• Implementing the Blackboard Using Global Objects

• Activating Knowledge Sources Using Pthreads

• Summary

One of the primary goals in parallel programming is to divide the work a program must do into a set of
tasks that may be executed with as much concurrency as necessary. This goal is an elusive one. Finding
the correct WBS (Work Breakdown Structure) that will support parallelism and produce correct and
efficient results can be a challenge. We use a modeling and architectural approach to achieve an
acceptable WBS. In practice the process of modeling the problem and solution as naturally as possible
with either objects or processes reveals any necessary parallelism. The model also identifies where the
parallelism occurs within the problem or the solution. It's not necessary to introduce parallelism into a
solution. If the problem and solution are appropriately modeled, then any necessary parallelism will be
discovered. The blackboard architecture helps with this modeling process. In particular, the blackboard
model helps to organize and conceptualize the concurrency and the communication within a system that
requires parallelism or distributed programming.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec8.htm#ch13lev1sec8
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec7.htm#ch13lev1sec7
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec6.htm#ch13lev1sec6
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13lev1sec5
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec4.htm#ch13lev1sec4
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec3.htm#ch13lev1sec3
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec2.htm#ch13lev1sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec1.htm#ch13lev1sec1

13.1 The Blackboard Model

The blackboard model is an approach to collaborative problem solving. The blackboard is used to
record, coordinate, and communicate the efforts of two or more software-based problem solvers. Hence
there are two primary types of components in the blackboard model: the blackboard and the problem
solvers.

The blackboard is a centralized object that each of the problem solvers has access to. The problem
solvers may read the blackboard and change the contents of the blackboard. The contents of the
blackboard at any given time will vary. The initial content of the blackboard will include the problem to
be solved. Other information representing the initial state of the problem, problem constraints, goals,
and objectives may be contained on the blackboard. As the problem solvers are working toward the
solution, intermediate results, hypotheses, and conclusions are recorded on the blackboard. The
intermediate results written by one problem solver on the blackboard may act as a catalyst for other
problem solvers reading the blackboard. Tentative solutions are posted to the blackboard. If the
solutions are determined not to be sufficient, these solutions are erased and other solutions are pursued.
The problem solvers use the blackboard as opposed to direct communication to pass partial results and
findings to each other. In some configurations the blackboard acts as a referee, informing the problem
solvers when a solution has been reached or whether to start work or stop work. The blackboard is an
active object, not simply a storage location. In some cases the blackboard determines which problem
solvers to involve and what content to accept or reject. The blackboard may also organize the
incremental or intermediate results of the problem solvers. The blackboard may translate or interpret the
work from one set of problem solvers so that it may be used by another set of problem solvers.

The problem solver is a piece of software that typically has specialized knowledge or processing
capabilities within some area or problem domain. The problem solver can be as simple a routine that
converts from Celsius to Fahrenheit or as complex as a smart agent that handles medical diagnoses. In
the blackboard model these problem solvers are called knowledge sources. To solve a problem using
blackboards, two or more knowledge sources are needed and each knowledge source usually has a
different area of focus or specialty. The blackboard is a natural fit for problems that can be divided into
separate tasks that can be solved independently or semi-independently. In the basic blackboard
configuration each problem solver tackles a different part of the problem. Each problem solver only
sees the part of the problem with which it is familiar. If the solutions to any parts of the problem are
dependent on the solutions or partial solutions to other parts of the problem, then the blackboard is used
to coordinate the problem solvers and integrate the partial solutions. A blackboard's problem solvers
need not be homogeneous. Each problem solver may be implemented using different techniques. For
instance, some problem solvers might be implemented using object-oriented techniques while other
solvers might be implemented as functions. Furthermore, the problem solvers may employ completely
different problem-solving paradigms. For example, solver A might use a backward-chaining approach
to solving its problem, while solver B might use a counterpropagation approach. There is no
requirement that the blackboard's problem solvers be implemented using the same programming
language.

The blackboard model does not specify any particular structure or layout for the blackboard nor does it
suggest how the knowledge sources should be structured. In practice, the structure of a blackboard is
problem dependent.[1] The implementation of the knowledge sources is also specific to the problem
being solved. The blackboard framework is a conceptual model describing relationships without
describing the structures of the blackboard and knowledge sources. The blackboard model does not
dictate the number or purpose of the knowledge sources. The blackboard may be a single global object
or a distributed object with components on multiple computers. Blackboard systems may consist of
multiple blackboards, with each blackboard dedicated to a part of the original problem. This makes the
blackboard an extremely flexible model for problem solving. The blackboard model supports parallel

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec1.htm#ch13fn01

programming and distributed programming. First, the knowledge sources may execute simultaneously,
with each knowledge source working on its part of the problem. Second, the knowledge sources may be
implemented in separate threads or in separate processes on the same or different computers.

[1] While a blackboard may be reused for other, very similar problems, it is nontrivial to
design a blackboard that can be used for completely different kinds or classes of problems.
Reuse is usually limited to problems that are very similar in nature. This is because the
solution space is closely mapped to the problem and the rule component is closely mapped
to the solution space, which prevents the use of the blackboard for general problems.

The blackboard can be segmented into separate parts allowing concurrent access by multiple knowledge
sources. The blackboard easily supports CREW, EREW, and MIMD. We implement the blackboard as
a global object or collection of objects when the knowledge sources are implemented in separate
threads. Since the threads share the same address space, a blackboard implemented as a global object or
family of objects will be accessible by each threaded knowledge source. If the knowledge sources are
implemented as separate processes running on the same or different computers, the blackboard is
implemented as a CORBA object or collection of CORBA objects. Recall that CORBA objects can be
used to support both a parallel and distributed model of computing. Here, we use CORBA to support
the blackboard as a kind of distributed shared-memory between tasks executing in different address
spaces. The tasks can be PVM (Parallel Virtual Machine) tasks, tasks spawned by the traditional fork-
exec functions calls, or tasks spawned by the new posix_spawn(). Figure 13-1 shows our two memory
configurations for the blackboard.

Figure 13-1. Two memory configurations for the blackboard.

In both the cases in Figure 13-1, all knowledge sources have access to the blackboard. Knowledge
sources in different address spaces will each make a network connection to a blackboard implemented
as one or more CORBA objects. Also, when the knowledge sources are implemented as PVM tasks, the
knowledge sources can supplement the blackboard communication with the message-passing model.
This configuration provides for an extremely flexible model of problem solving.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec1.htm#ch13fig01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec1.htm#ch13fig01

13.2 Approaches to Structuring the Blackboard

There is no one way to structure a blackboard. However, most blackboards will have certain
characteristics and attributes in common. The original contents of the blackboard will typically contain
some kind of partitioning of the solution space for the problem that is to be solved. The solution space
will contain all the partial solutions and full solutions to a problem. For instance, let's say that we have a
search engine that searches the Internet for pictures of cars. The search engine can process a bitmap
image or vector image to determine whether it contains a picture of a car and if so, whether it is the
target car. Let's say that our search engine is developed using the blackboard model. Each knowledge
source has a speciality: one knowledge source is a specialist in identifying images of tires, another
focuses on identifying rearview mirrors, and another is an expert in identifying car door handles, lug
nuts, and so on. Each aspect of the car represents a small part of the solution space. Parts of the solution
space contain full images of cars from different perspectives that is, from the top, the bottom, 45-degree
angles, and so on. Other parts of the solution space only contain sections of cars, perhaps the front end,
the roof, the trunk, and the back end. A bitmap or vector image is placed on the blackboard and the
individual knowledge sources attempt to identify something in the image that might be part of a car. If
some part of the solution space matches something in the image, that piece of the image is written to
another part of the blackboard as a partial solution. One knowledge source might put an identified car
door handle on the blackboard. Another may put an identified car door on the blackboard. Once these
two pieces of information have been put on the blackboard, another knowledge source may use this
information to aid in identifying the front end of a car in the image. Once this has been identified, the
image of the front end is placed on the blackboard. Each of these various ways to identify the image of
a car represents part of the solution space.

The solution space is sometimes organized in a hierarchy. In our car example, complete images of cars
might be at the top of the hierarchy and the next level may consist of various views of front ends and
back ends, with the next level consisting of the doors, trunks, hoods, windshields, and wheels. Each
level describes a smaller, perhaps less obvious image of some part of a car. The knowledge sources may
work on multiple levels within the hierarchy simultaneously. The solution space may also be organized
as a graph where each node represents some part of the solution and each edge represents the
relationships between two partial solutions. The solution space may be represented as one or more
matrices, with each element of the matrix containing a solution or partial solution. The solution space
representation is an important component of the blackboard architecture. The nature of the problem will
often determine how the solution space should be partitioned. In addition to a solution space
component, blackboards typically have one or more rule (heuristic) components. The rule component is
used to determine which knowledge sources to deploy and what solutions to accept or reject. The rule
component can also be used to translate partial solutions from one level in the solution space hierarchy
to another level. The rule component may also be used to prioritize the knowledge source approaches.
Some knowledge sources may go down blind alleys. The blackboard deselects one set of knowledge
sources in favor of another set. The blackboard may use the rule component to suggest to the
knowledge sources a more appropriate potential hypothesis based on the partial hypothesis already
generated. In addition to the solution space and rule component, the blackboard will often contain initial
values, constraint values, and ancillary goals. In some cases the blackboard will contain one or more
event queues used to capture input from either the problem space or the knowledge sources. Figure 13-2
shows a logical layout for a basic blackboard architecture.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec2.htm#ch13fig02

Figure 13-2. The logical layout for a basic blackboard architecture.

* If the KS (knowledge source) is a process, communication can be over a network or IPC (interprocess
communication). If the KS is a thread, communication may be parameter passing.

Figure 13-2 shows the blackboard has a number of segments, each segment having a variety of
implementations. This suggests that blackboards are more than global pieces of memory or traditional
databases. While Figure 13-2 shows the common core components that most blackboards have, the
blackboard architecture is not limited to these components. Other useful components for blackboards
include context models of the problem and domain models that can be used to aid the problem solvers
with navigation through the solution space. The support C++ has for object-oriented design and
programming fits nicely with the flexibility requirements of the blackboard model. Most blackboard
architectures can be modeled using classes in C++. Recall that classes can be used to model some
person, place, thing, or idea. Blackboards are used to solve problems that involve persons, places,
things, or ideas. So using C++ classes to model the objects that blackboards contain or the actual
blackboards is a natural fit. We take advantage of C++ container classes and the standard algorithms in
our implementations of the blackboard model. In addition to the built-in classes we construct interface
classes for the mutexes and other synchronization variables that we use with the blackboard. Because
multiple knowledge sources can access the blackboard simultaneously, this means that the blackboard
is a critical section and access needs to be synchronized. So along with the other components that a
blackboard contains, we will use synchronization objects to the blackboard.

13.3 The Anatomy of a Knowledge Source

Knowledge sources are represented as objects, procedures, sets of rules, logic assertions, and in some
cases entire programs. Knowledge sources have a condition part and an action part. When the
blackboard contains some information that satisfies the condition part of some knowledge source, then
the action part of the knowledge source is activated. Englemore and Morgan clearly state the
responsibilities of a knowledge source in their work Blackboard Systems:

Each knowledge source is responsible for knowing the conditions under which it can
contribute to a solution. Each knowledge source has preconditions that indicate the
condition on the blackboard that must exist before the body of the knowledge source is
activated. One can view a knowledge source as a large rule. The major difference between

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec2.htm#ch13fig02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec2.htm#ch13fig02

a rule and a knowledge source is the grain size of the knowledge each holds. The condition
part of this large rule is called the knowledge source precondition, and the action part is
called the knowledge source body.

Here Englemore and Morgan do not specify any of the details of the condition part or the action part of
a knowledge source. They are logical constructs. The condition part could be as simple as the value of
some boolean flag on the blackboard or as complex as a specific sequence of events arriving in an
event queue within a certain period of time. Likewise, the action part of a knowledge source can be as
simple as a single statement performing an expression assignment or as involved as a forward chain in
an expert system. Again, this is a statement of how flexible the blackboard model can be. The C++
class construct and the notion of an object will be sufficient for our purposes. Each knowledge source
will be an object. The action part of the knowledge source will be implemented by the object's methods.
The condition part of the knowledge source will be captured as data members of the object. Once the
object is in a certain state then the action parts of that object will be activated. To keep things simple
we will map knowledge sources to either threads or processes. Therefore, for each thread there will
only be one knowledge source and for each process there will only be one knowledge source. When
using the PVM with the blackboard, a knowledge source will be equivalent to a PVM task. Figure 13-3
shows the logical layout of the anatomy of a knowledge source.

Figure 13-3. The logical layout of a knowledge source.

Each knowledge source's condition part is updated from the blackboard. Some of the knowledge
source's action part updates the blackboard. Notice in Figure 13-3 there is a one-for-one correlation
between process space and knowledge source or thread space and knowledge source. An important
attribute of the knowledge source is its autonomy. Each knowledge source is a specialist and is largely
independent from the other problem solvers. This presents one of the desired qualities for a parallel
program. Ideally the tasks in a parallel program can operate concurrently without much interaction
with other tasks. This is exactly the case in the blackboard model. The knowledge sources act
independently and any major interaction is through the blackboard. So from the knowledge source's
point of view it is acting alone and getting additional information from the blackboard and recording
its findings on the blackboard. The activities of the other knowledge sources and their strategies and
structures are unknown. In the blackboard model, the problem is partitioned into a number of
autonomous or semi-autonomous problem solvers. This is the advantage of the blackboard model over
other models. In the most flexible configuration the knowledge sources are intelligent agents. The agent
will be completely self-sufficient and able to act on its own with minimum interaction with the
blackboard. The intelligent agent presents the greatest opportunity for large-scale parallelism.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec3.htm#ch13fig03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec3.htm#ch13fig03

13.4 The Control Strategies for Blackboards

There are several layers of control in a blackboard implementation where the knowledge sources may
be activated concurrently. At the lowest layer their synchronization schemes must protect the integrity
of the blackboard. The blackboard is a critical section because it is a shared, modifiable resource. In a
parallel environment the knowledge source's read and write access must be coordinated and
synchronized. This coordination and synchronization can involve file locking, semaphores, mutexes,
and so on. This layer of control is not directly involved in the solution the knowledge sources are
working toward. This is a utility layer of control and should be independent of the problem to be solved
by the blackboard. In our architectural approach, this layer of control will be implemented by interface
classes like the mutex, and semaphore classes that we introduced in Chapter 11. Recall that the
functionality contained in these classes is independent of the application they are used in. For
concurrency implementations of blackboards, this layer selects one or more of the four types of parallel
access that the knowledge source algorithms or heuristics will have to the physical implementation of
the blackboard. That is, the users of the blackboard can be EREW, CREW, ERCW, or CRCW. This
access determines how the synchronization primitives will be used. Table 13-1 contains the descriptions
of the four types of parallel access that a model can use.

Table 13-1. Four Types of Parallel Access Used by a Model

PRAM models Description

EREW Exclusive Read Exclusive Write

CREW Concurrent Read Exclusive Write

ERCW Exclusive Read Concurrent Write

CRCW Concurrent Read Concurrent Write

The segmentation of the blackboard into parts will determine which of the types of concurrency in
Table 13-1 are appropriate. The most flexible CRCW can be achieved depending on the structure of the
blackboard. For instance, if 16 knowledge sources are involved in a collaborative effort and each
knowledge source accesses its own segment of the blackboard, then these knowledge sources can
concurrently read and write the blackboard without data race problems.

The next layer of control involves the selection of which knowledge sources to involve in the search for
the solution and which aspects of the problem to focus on. This is a focus-of-attention layer. This layer
of control decides to focus on a certain area of the problem and selects knowledge sources accordingly.
One of the major issues to tackle in any kind of problem solving is where to start and what kind of
information is needed to solve the problem. The focus/attention layer evaluates the initial conditions of
the problem and then controls which knowledge sources to use and where they will start. The available
knowledge sources will be known to the blackboard and typically the knowledge source will accept
messages or parameters that dictate how it should proceed or where in the solution space it should begin
the search. For parallel implementations, this layer will determine the basic model of parallelism
(distribution of the problem solvers). Usually for blackboards this is the Multiple Programs Multiple
Data (MPMD, a.k.a. MIMD) model because each knowledge source/problem solver has its own area of
speciality. However, the nature of the problem might warrant the popular Single Program Multiple Data

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec4.htm#ch13table01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec4.htm#ch13table01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11.htm#ch11

(SPMD) model. If this model is used, the control layer will spawn N number of the same knowledge
source but pass different parameters to each.

The next layer of control involves determining what to do with the solution or partial solutions written
to the blackboard. This layer of control will determine whether the knowledge sources can stop work or
whether the solution generated is acceptable, unacceptable, partially acceptable, and so on. This layer of
control has complete visibility of the blackboard and all the partial or tentative solutions. It guides the
overall problem-solving strategies of the collective. As with the layout of the blackboard and the
structure of the knowledge sources, the blackboard model suggests the existence of a control
component but does not specify how it should be structured. Sometimes the control component is part
of the blackboard. Sometimes the control component is implemented by the knowledge sources. In
some cases the control component is implemented by modules external to the blackboard. The control
component can also be implemented by any combination of these. The knowledge sources collectively
search for a solution to some problem. We want to emphasize a solution because many problems have
more than one solution. Some solutions may be deeper in the search space than others, some may cost
more to find than others, and some may be deemed not good enough. The control component helps to
manage the collective search strategies of the knowledge sources and monitors the tentative or partial
solutions to make sure that the knowledge sources are not pursuing an impractical search strategy. The
control component looks out for any infinite loops, blind alleys, or recursive regression. Furthermore,
the control component is involved in selecting the best or the most appropriate knowledge sources for
the problem. As the knowledge sources make progress toward a solution, the control component may
relieve some knowledge sources while assigning others. The control strategy will be closely related to
the search strategies used by the knowledge sources. It is important to remember that the knowledge
sources may each use different search strategies and problem-solving techniques. Although they work
with a common blackboard, the knowledge sources or problem solvers are essentially autonomous and
self-contained. Therefore, this layer of control has a two-way communication with the knowledge
sources. Figure 13-4 shows possible control configurations and their layers in a blackboard architecture.

13.5 Implementing the Blackboard Using CORBA Objects

Recall from Chapter 8 that a CORBA object is a platform-independent distributed object. CORBA
objects can be accessed between processes on the same machines or processes running on different
machines connected to a network. This makes CORBA objects candidates for use in PVM
environments where the program is divided into a number of processes that may or may not be running
on the same computer. Ordinarily the PVM environment is used for the message-passing strengths and
any shared memory approaches are secondary if used at all. The notion of a network-accessible shared
object adds computational power to the PVM environment. Keep in mind that CORBA objects can
model anything that nondistributed objects can represent. This means PVM tasks that have shared
access to CORBA objects can access container objects, framework objects, pattern objects, domain
objects, and any kind of utility object. In this case, we want the PVM tasks to have access to blackboard
objects. So the message-passing model is supplemented with shared access to complex objects. In
addition to PVM tasks accessing distributed CORBA objects, traditional tasks spawned by the
posix_spawn() or fork-exec functions can access the CORBA objects. These tasks execute in separate
address spaces on the same machine but may still connect to a CORBA object that is either located on
the same machine or some different machine. So while the tasks created with the posix_spawn() and
fork-exec functions will all reside on the same machine, the CORBA objects can be located on any
machine.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08.htm#ch08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec4.htm#ch13fig04

13.5.1 The CORBA Blackboard: An Example

To demonstrate our notion of a CORBA-based blackboard, we'll look at a blackboard developed at
Ctest Laboratories. While providing a complete implementation of the blackboard is beyond the scope
of this book and subject to other restrictions, we look closely at some of the most important aspects of
the blackboard and the knowledge sources as they relate to our architectural approach to parallel
programming. The blackboard implements a software-based course adviser. The blackboard solves the
course scheduling problems for the typical college student. Students often encounter several obstacles
to the perfect schedule. During course registration there is always a competition for seats in a class. At
some point important classes are closed. So there is the infamous first-come, first-serve issue. So during
registration where tens of thousands of students are trying to sign up for a limited number of courses,
this timeliness is a factor. The student wishes to get courses that apply directly to the degree sought.
Ideally these courses will be during hours that the student can attend and has open. Also, the student
would like to stay within a certain course load, and keep some time open for working and other
extracurricular activities. The problem is that when the student is ready to take a given course, the
course may not always be offered, so substitutes or filler classes are offered to the student instead. The
substitutes and filler classes add to the cost and duration of the student's education. Adding to the cost
and duration are negative outcomes from the student's vantage point. However, if the substitutes or
filler classes are in some way related to the student's nonacademic interests, hobbies, or goals, then the
substitutes or filler classes will be reluctantly tolerated. Also, there are a number of electives and
options that can be taken under the degree sought. The student wishes to have the optimum mix of
courses that will allow the student to graduate either early or on time, within budget, and with the most
flexibility possible. The student uses real-time course advisement software built with blackboard
technology to solve the problem.

It is important to note that the blackboard has real-time access to the student's academic record, the
current courses open or closed at any instant during the registration process. The blackboard has access
to the student's degree plan, the university's requirements for the degree plan, the student availability
schedule, the student's goals, and so on. Each of these items are modeled using C++ classes and
CORBA classes and make up the components of the blackboard. To keep our blackboard example
simple, we will look only at these four knowledge sources:

• General requirements counselor

• Major requirements counselor

• Electives counselor

• Minor requirements counselor

Example 13.1 shows an excerpt from the blackboard's CORBA interface.

Example 13.1 Two CORBA declarations necessary for our blackboard class.

typedef sequence<long> courses;

interface black_board{
 //...
 void suggestionsForMajor(in courses Major);
 void suggestionsForMinor(in courses Minor);
 void suggestionsForGeneral(in courses General);
 void suggestionsForElectives(in courses Electives);
 courses currentDegreePlan();
 courses suggestedSchedule();
 //... };

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex01

The primary purpose of the black_board interface is to provide read/write access to the knowledge
sources. In this case, the blackboard's partitions will include segments for each knowledge source.[2]
This will allow the knowledge sources to access the blackboard with a CRCW policy with respect to
each other. That is, multiple types of knowledge sources can access the blackboard at the same time,
however, two or more knowledge sources of the same type will be restricted to a CREW policy. Any
method or member function the knowledge sources will access should be defined in the black_board
interface class. The class courses has been declared as a CORBA type and therefore it can be used as
parameter and return values between the knowledge sources and the blackboard. So the black_board
class declarations such as:

[2] In practice, each of the knowledge source segments will contain one or more standard
C++ container classes used as data queues and event queues. Each container is made safe
with synchronization components.

courses Minor;
courses Major;

will be used to represent information that is either being written to or read from the blackboard. The
type courses is a CORBA typedef for sequence<long>. A sequence in CORBA is a variable-length
vector (array). This means that courses will be used to store an array of longs. Each long will be used to
store a course code. Each course code represents a course offered at the university. Since C++ does not
have a sequence type, the sequence<long> declaration is mapped to a C++ class. The class has the same
name as sequence<long> typedef: courses. The mapping process from CORBA types to C++ types
occurs during the idl compilation phase when building a CORBA application. The idl compiler will
translate the sequence<long> declaration into C++ code. The C++ courses class will have a number of
method functions automatically included:

allocbuf()
freebuf()
get_buffer()
length()
operator[]
release()
replace()
maximum()

The knowledge sources will interact with these methods. The sequence<long> declaration will be
transparent to the knowledge sources; they only see the class courses. Because CORBA supports
datatypes such as structs, classes, arrays, and sequences, the knowledge sources can exchange
sophisticated objects with the blackboard. This allows the programmer to maintain the object-oriented
metaphor when exchanging data with the blackboard. Maintaining the object-oriented metaphor where
necessary is an important part of reducing the complexity of parallel programming. The ability to easily
read and write complex objects or object hierarchies from the blackboard simplifies the programming in
parallel applications. There is no need to perform the translation from primitive datatypes to complex
objects. The complex objects may be exchanged directly.

13.5.2 The Implementation of the black_board Interface Class

Notice in Example 13.1 the interface class does not declare any variables. Recall the interface class in
CORBA is restricted to only declaring the method interfaces. There are no storage components in the
interface class. CORBA classes must be supplied with C++ implementations before any work can get
done. The actual implementations of the methods and any variables are added to a derived class of the
interface class. Example 13.2 shows the derived (implementation) class for the black_board interface
class.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13fn02

Example 13.2 An excerpt from the implementation class for the black_board interface class.

#include "black_board.h"
#include <set.h>

class blackboard : virtual public POA_black_board{
protected:
 //...
 set<long> SuggestionForMajor;
 set<long> SuggestionForMinor;
 set<long> SuggestionForGeneral;
 set<long> SuggestionForElective;
 courses Schedule;
 courses DegreePlan;
public:
 blackboard(void);
 ~blackboard(void);
 void suggestionsForMajor(const courses &X);
 void suggestionsForMinor(const courses &X);
 void suggestionsForGeneral(const courses &X);
 void suggestionsForElectives(const courses &X);
 courses *currentDegreePlan(void);
 courses *suggestedSchedule(void);
 //...
};

The implementation class is used to provide the actual implementations of the methods defined in the
interface class. In addition to method implementation, the derived class may contain data components
since it is not declared as an interface. Notice that the black_board implementation class in Example
13.2 does not directly inherit the black_board interface class. Instead it inherits POA_black_board,
which is one of the classes that the idl compiler created on behalf of the black_board interface class.
Example 13.3 contains the declaration of POA_black_board created by the idl compiler.

Example 13.3 Excerpt of the POA_black_board class created by the idl compiler for the black_board interface class.

class POA_black_board : virtual public PortableServer:
 :StaticImplementation
{
public:
 virtual ~POA_black_board ();
 black_board_ptr _this ();
 bool dispatch (CORBA::StaticServerRequest_ptr);
 virtual void invoke (CORBA::StaticServerRequest_ptr);
 virtual CORBA::Boolean _is_a (const char *);
 virtual CORBA::InterfaceDef_ptr _get_interface ();
 virtual CORBA::RepositoryId _primary_interface
 (const PortableServer::ObjectId &,
 PortableServer::POA_ptr);

 virtual void * _narrow_helper (const char *);
 static POA_black_board * _narrow (PortableServer::Servant);
 virtual CORBA::Object_ptr _make_stub (PortableServer::
 POA_ptr,
 CORBA::Object_ptr);
 //...
 virtual void suggestionsForMajor (const courses& Major)
 = 0;
 virtual void suggestionsForMinor (const courses& Minor)
 = 0;

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex02

 virtual void suggestionsForGeneral (const courses& General)
 = 0;
 virtual void suggestionsForElectives (const courses& Electives)
 = 0;

 virtual courses* currentDegreePlan() = 0;
 virtual courses* suggestedSchedule() = 0;
 //...
protected:
 POA_black_board () {};
private:
 POA_black_board (const POA_black_board &);
 void operator= (const POA_black_board &);
};

Notice that the class in Example 13.3 is an abstract virtual class because it has pure virtual member
functions such as:

virtual courses* suggestedSchedule() = 0;

This means that this class cannot be used directly. It must have a derived class that provides actual
member functions for every pure virtual member function. The blackboard class in Example 13.2
provides the required definitions for each pure virtual member function. In the case of our blackboard
class, C++ methods will be used to implement the functionality of the blackboard and invocation of the
knowledge sources. However, the knowledge sources themselves are implemented partially in C++ and
partially in the logic programming language Prolog.[3] But since C++ supports multilanguage and
multiparadigm development, the advantages of Prolog can be intermixed with C++. In C++ we can
either spawn Prolog executables using posix_spawn(), fork-exec functions, or we can access the Prolog
through its foreign language interface that allows Prolog to talk directly to C++ and vice versa. Whether
the actual implementation is in C++ or Prolog, the blackboard class only has to interact with C++
methods.

[3] This configuration is useful because Prolog has many features built in, such as
unification, backtracking, and support for predicate logic that would have to be
implemented from scratch in C++. For the examples in this book where we intermix C++
with Prolog, SWI-Prolog (University of Amsterdam) and its C++ interface library is used.

13.5.3 Spawning the Knowledge Sources in the Blackboard's Constructor

The blackboard is implemented as a distributed object using the CORBA protocol. One of the primary
functions of the blackboard in this case is to spawn the knowledge sources. This is important because
the blackboard will need access to the process ids of the tasks. The initial state of the blackboard is set
in the constructor. The initial state includes information about the student, the student's academic
record, the current semester, degree requirements and so on. The blackboard decides which knowledge
sources to begin based on the initial state. As the blackboard evaluates the initial problem and state of
the system it decides on a list of knowledge sources to invoke. Each knowledge source has an
associated binary file. The blackboard uses a container called Solvers to store the names of the binaries
of the knowledge sources. Later during the construction process, a function object and the for_each()
algorithm are used to spawn the knowledge sources. Recall that any class that has the operator() defined
can be used as a function object. Function objects are used with the standard algorithms in place of
functions or in addition to functions. Usually where a function can be used a function object may be
used instead. To define your own function object you must define the operator() with the appropriate
meaning, parameter list, and return type. Our CORBA blackboard implementation can support
knowledge sources implemented within PVM tasks, traditional UNIX/Linux tasks, or within separate

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13fn03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex03

threads using the POSIX thread libraries. The type of task spawned in the constructor determines
whether the blackboard will be working with POSIX threads, traditional UNIX/Linux processes, or
PVM tasks.

13.5.3.1 Spawning Knowledge Sources Using PVM Tasks

Part of the constructor contains the call:

for_each(Solve.begin(),Solve.end(),Task);

The for_each() algorithm applies the function object operator for the task class to each element of the
Solve container. This technique is used to spawn knowledge sources in a MIMD model, which is used
when the knowledge sources each have a different speciality working on different data. Example 13.4
contains the declaration of the task class.

Example 13.4 The declaration of the task class.

class task{
 int Tid[4];
 int N;
 //...
public:
 //...
 task(void) { N = 0; }
 void operator()(string X);
};

void task::operator()(string X)
{
 int cc;
 pvm_mytid();
 cc = pvm_spawn(const_cast<char *>(X.data()),NULL,0,"",1,
 &Tid[N]);N++;
}

blackboard::blackboard(void)
{

 task Task;

 vector<string> Solve;
 //...
 // Determine which KS to invoke
 //...
 Solve.push_back(KS1);
 Solve.push_back(KS2);
 Solve.push_back(KS3);
 Solve.push_back(KS4);
 for_each(Solve.begin(),Solve.end(),Task);
}

This Task class encapsulates a process that has been spawned. It will contain the task ids in the case of
PVM. In the case of standard UNIX/Linux processes or Pthreads, it will contain the process ids and
thread ids. This class acts as an interface to the created thread or process and the blackboard. The
blackboard acts as the primary control component. It can manage the PVM tasks through their task ids.
Also, the blackboard can use the PVM group operations to synchronize the PVM tasks with barriers,
organize the PVM tasks into logical groups that will work on certain aspects of the problem, and to

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex04

signal group members with certain message tags. Table 13-2 contains the PVM group routines and their
descriptions.

The pvm_barrier() and the pvm_joingroup() routines in Table 13-2 are of particular interest to our
blackboard because there are situations where the blackboard does not want to launch new knowledge
sources until a certain group of knowledge sources has finished their work. The pvm_barrier() routine
can be used to block the calling process until the appropriate knowledge sources have finished their
processing. For instance, the course advisor blackboard does not want to activate the scheduler
knowledge source until the knowledge sources that focus on major requirements, general requirements,
minor requirements, and electives are through making their suggestions. So the blackboard will use the
pvm_barrier() routine to wait on the PVM task group that focuses on requirements. Figure 13-5 shows a
UML activity diagram that shows how the knowledge sources and the blackboard are synchronized.

Table 13-2. PVM Group Routines

PVM group operations Description

int pvm_joingroup(char *groupname); Enrolls the calling process in the group groupname and
then returns an int, which is the instance number of this
process in this group.

int pvm_lvgroup(char *groupname); Unrolls the calling process from the group groupname.

int pvm_gsive(char *groupname); Returns an int, which is the number of members in the
group groupname.

int pvm_gettid(char *groupname,
 int inum);

Returns an int, which is the task id of the process
identified by the group name groupname and the
instance number inum.

int pvm_getinst(char *groupname,
 int taskid);

Returns an int, which is the instance number associated
with the group name group-name and the process with
the task id taskid.

int pvm_barrier(char *groupname,
 int count);

Blocks the calling process until count members in the
group groupname have called this function.

int pvm_bcast(char *groupname,
 int messageid);

Broadcasts a message stored in the active send buffer
associated with messageid to all the members of the
group groupname.

int pvm_reduce(void *operation,
 void *buffer,
 int count,
 int datatype,
 int messageid,
 char *groupname,

Performs a global operation operation on all the
processes in the group groupname.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13fig05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13table02
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13table02

PVM group operations Description

 int root);

Figure 13-5. UML activity diagram showing the synchronization of the blackboard and the knowledge sources.

In Figure 13-5, the synchronization barrier is implemented with the help of the pvm_barrier() and

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13fig05

pvm_joingroup() routines. Example 13.5 contains the function operator of the task object.

Example 13.5 The function operator of the task object.

void task::operator()(string X)
{
 int cc;
 pvm_mytid();
 cc = pvm_spawn(const_cast<char *>(X.data()),NULL,0,"",1,
 &Tid[N]);N++;
}

The function operator is used to spawn PVM tasks. The name of the task is contained in X.data(). The
call to the pvm_spawn() routine in Example 13.5 creates one task and stores the task id of the task in
Tid[N]. The pvm_spawn() routine and the invocation of PVM tasks are discussed in Chapter 6. The
task class is used as a function object. The algorithm:

for_each(Solve.begin(),Solve.end(),Task);

will cause the operator() to execute for the Task object. This operation will cause a knowledge source in
the Solve container to be activated. The for_each() algorithm ensures that each knowledge source will
be activated. If the SIMD model is used, then the for_each() algorithm is not necessary. Instead we use
a PVM spawn call directly in the constructor of the blackboard. Example 13.6 shows how a set of PVM
tasks using a SIMD model can be launched from the blackboard constructor.

Example 13.6 Launching PVM tasks from the task class constructor.

void task::operator()(string X)
{

 int cc;
 pvm_mytid();
 cc = pvm_spawn(const_cast<char *>(X.data()),NULL,0,"",1,
 &Tid[N]);N++;
}

13.5.3.2 Connecting Blackboard and the Knowledge Sources

In Example 13.6, 20 knowledge sources are spawned. Initially they will each execute the same code.
After they are spawned, the blackboard will send messages to them representing what part they are to
play in the problem-solving process. With this configuration the knowledge sources and the blackboard
are part of the PVM. After the knowledge sources are created, they will be able to interact with the
blackboard by connecting to the port that the blackboard is located on, or to the address the blackboard
is at on an intranet or the Internet. The knowledge sources will need the object reference for the
blackboard. These references may be coded within the knowledge sources, or the knowledge sources
might read them from a configuration file, or get them from a naming service. Once the knowledge
source has the reference the knowledge source interacts with the ORB (Object Request Broker) to
locate the actual knowledge and activate it. For our example, we will assign the blackboard a specific
port. We start the CORBA blackboard with a command:

blackboard -ORBIIOPAddr inet:porthos:12458

This command executes our blackboard program and assigns it to listen on port 12458 on host porthos.
Starting a CORBA object will differ depending on the CORBA implementation used. Here we are
using Mico,[4] an open-source implementation of CORBA. When the blackboard program executes, it

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13fn04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch06.htm#ch06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex05
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex05

instantiates the blackboard that in turn spawns the knowledge sources. When the knowledge sources are
spawned by the blackboard they will have the port number hard-coded. Example 13.7 shows an excerpt
from a knowledge source that connects to the CORBA-based blackboard.

[4] We used Mico 2.3.3 in the Linux environment and Mico 2.3.7 under Solaris 8 for all of
the CORBA examples in this book.

Example 13.7 A knowledge source that connects to the CORBA blackboard.

 1 #include "pvm3.h"
 2 using namespace std;
 3 #include <iostream>
 4 #include <fstream>
 5 #include <string.h>
 6 #include <strstream>
 7 #include "black_board_impl.h"
 8
 9 int main(int argc, char *argv[])
10 {
11 CORBA::ORB_var Orb = CORBA::ORB_init(argc,argv,
 "mico-local-orb");
12 CORBA::Object_var Obj =Orb->bind("IDL:black_board:1.0",
 "inet:porthos:12458");
13 courses Courses;
14 //...
15 //...
16 black_board_var BlackBoard = black_board::_narrow(Obj);
17
18 int Pid;
19 //...
20 //...
21
22 cout << "created the knowledge source" << endl;
23 Courses.length(2);
24 Courses[0] = 255551;
25 Courses[1] = 253212;
26 string FileName;
27 strstream Buffer;
28 Pid = pvm_mytid();
29 Buffer << "Result." << Pid << ends;
30 Buffer >> FileName;
31 ofstream Fout(FileName.data());
32 BlackBoard->suggestionsForMajor(Courses);
33 Fout.close();
34 pvm_exit();
35 return(0);
36 }
37

In line 11 in Example 13.7, the ORB runtime is initalized. Line 12 associates the black_board object
name with the port 12458 and returns a reference to the CORBA object in the Obj variable. Line 16
performs a kind of cast operation so that the Blackboard variable is referring to the right size object.
Once the knowledge source has instantiated the Blackboard object, any method declared in the
black_board interface shown in Example 13.1 may be invoked. Notice on line 13 that the object
Courses is instantiated. Recall that courses was originally defined as a CORBA sequence type. Here,
the knowledge source is using the class courses created during the idl compilation. The elements are
added to this class as they would be for an array.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex01
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex07

Lines 24 and 25 add two courses to the Courses object and line 32 contains the method invocation:

BlackBoard->suggestionsForMajor(Courses)

This call writes the courses on the blackboard. Similarly, the:

courses currentDegreePlan();
courses suggestedSchedule();

methods can be used to read information from the blackboard. So all that is needed by the knowledge
source is a reference to the Black_board object. The Black_board object may be located anywhere
within an intranet or the Internet. It is the ORB's responsibility to actually locate the object. (Chapter 8
discusses the process of locating and activating CORBA objects.) Because the Black_board object has
the PVM task ids, it may perform task management and send and receive messages directly from the
knowledge sources. Likewise the knowledge sources may communicate directly with each other using
the more traditional PVM messaging. It is important to note that the destructor for the Black_board
object will call pvm_exit() and each knowledge source should call pvm_exit() after there are no more
PVM system calls. This will remove them from the PVM environment, although other processing may
continue.

13.5.3.3 Activating Knowledge Sources Using POSIX spawn()

Implementing the knowledge sources or problem solvers within PVM tasks is especially useful when
the tasks will run on separate computers. Each knowledge source can take advantage of any special
resource that a particular computer may have. These resources can include processor speed, databases,
special peripherals, processor architectures, and numbers of processors. The PVM tasks may also be
used on a single computer that has multiple processors. However, since our blackboard can be
implemented by connecting to ports, we can just as easily use traditional UNIX/Linux processes to
contain our knowledge sources. When the knowledge sources are created in standard UNIX/Linux
processes and the computer has multiple processors, then the knowledge sources may run concurrently
on the processors available. Obviously if there are more knowledge sources than there are processors,
then multitasking will be necessary. Figure 13-6 shows two simple architectures that can be used with
the CORBA-based blackboard and UNIX/Linux processes.

Figure 13-6. Two architectures that can be used with the CORBA-based blackboard and UNIX/Linux processes.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch08.htm#ch08

In Case 1, the CORBA object is located on the same computer as the knowledge sources and each
knowledge source has its own address space. That is, each knowledge source has been spawned using
either the posix_spawn() routine or the fork-exec routines. In Case 2, the CORBA object is located on a
different computer and the knowledge sources are each located on the same computer but in different
address spaces. In both Case 1 and Case 2, the CORBA object acts as a kind of shared memory for the
knowledge sources because they each have access to it and they may exchange information through the
blackboard. But there is a major advantage of the CORBA object—it is far more sophisticated than a
simple block of memory locations. The blackboard is a complete object that may consist of any type of
data structure, object, or even other blackboards. This kind of sophistication cannot be easily
implemented using the basic shared memory routines. So the CORBA gives us an ideal method for
implemented complex shared objects between processes. In section 13.5.3.1 we spawned PVM tasks
that implemented the knowledge sources. Here we change the constructor to contain calls to the
posix_spawn() routine or we can use our for_each() algorithm and the task function object to call the
posix_spawn() routine. In Case 1 in Figure 13-6, the blackboard can spawn the knowledge sources from
its constructor. However, in Case 2, this is not possible because the blackboard is located on a separate
computer. In Case 2, the blackboard will use some intermediary to cause the posix_spawn() routine to
be executed. There are several options available such as the blackboard calling another CORBA object
on the computer that contains the knowledge sources, or RPC, or using a MPI or PVM task that will
call a program containing a call to posix_spawn(). Chapter 3 contains a discussion of how to set up a
call to posix_spawn(). Example 13.8 shows how the posix_spawn() routine can be used to activate one
of the knowledge sources.

Example 13.8 Using posix_spawn() to launch knowledge sources.

#include <spawn.h>

blackboard::blackboard(void)
{
 //...
 pid_t Pid;
 posix_spawnattr_t M;
 posix_spawn_file_actions_t N;
 posix_spawn_attr_init(&M);
 posix_spawn_file_actions_init(&N);
 char *const argv[] = {"knowledge_source1",NULL};
 posix_spawn(&Pid,"knowledge_source1",&N,&M,argv,NULL);
 //...
}

In Example 13.8, the spawn attributes and the spawn file actions are initialized and then the
posix_spawn() routine is used to create a separate process that will execute knowledge_source1. Once
this process is created the blackboard has some access to the process through the process's id stored in
Pid. In addition to the blackboard as a means of communication, the standard IPC communication is
available if the blackboard is located on the same computer as the knowledge sources. While sockets
are available in the configuration where the blackboard is on a separate computer, the blackboard is the
simplest means of communication between the knowledge sources. When using this configuration, the
control that the blackboard has over the knowledge sources will be governed more strictly by the
content of the blackboard at any given time as opposed to sending messages directly to the knowledge
sources. Sending messages directly is more easily accommodated using the blackboard in conjunction
with PVM tasks. Here the knowledge sources regulate themselves based on the content of the
blackboard. However, the blackboard does have some level of control over the knowledge sources
because the blackboard has the process ids for each process containing a knowledge source. Both the
MPMD (MIMD) and SPMD (SIMD) models are also supported using the posix_spawn() routine.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex08
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch03.htm#ch03
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13fig06
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13lev3sec1

Example 13.9 shows a class that will be used as a function object with the for_each() algorithm.

Example 13.9 The child_process will be used as a function object when launching knowledge sources.

class child_process{
 string Command;
 posix_spawnattr_t M;
 posix_spawn_file_actions_t N;
 pid_t Pid;
 //...
public:
 child_process(void);
 void operator()(string X);
 void spawn(string X);
};

void child_process::operator()(string X)
{
 //...
 posix_spawnattr_init(&M);
 posix_spawn_file_actions_init(&N);
 Command.append("/tmp/");
 Command.append(X);
 char *const argv[] = {const_cast<char*>(Command.data())
 ,NULL};
 posix_spawn(&Pid,Command.data(),&N,&M,argv,NULL);
 Command.erase(Command.begin(),Command.end());
 //...

}

We encapsulate the attributes for the posix_spawn() routine in a class named child_process.
Encapsulating all of the information needed to use the posix_spawn() routine within a class makes it
easier to use posix_spawn() and provides a natural interface to the attributes of a process that will be
created using posix_spawn(). Notice in Example 13.9 that we defined the operator () for the
child_process class. This means that the class can be used as a function object with the for_each()
algorithm. As the blackboard decides which knowledge sources will be involved in a problem-solving
effort, it stores the name of the knowledge sources in a container we call Solve. Later, during the
construction of the blackboard, the knowledge sources are activated using the for_each() algorithm.

// Constructor
//...
child_process Task;
for_each(Solve.begin(),Solve.end(),Task);

This will cause the operator() method shown in Example 13.9 to be executed for each element of the
Solve container. Once these knowledge sources are activated, they access a reference to the blackboard
and can begin the problem-solving process. Although these are not PVM tasks they connect to the
blackboard in the same manner (see section 13.5.3.2) and they perform the work in the same manner.
The difference is the interprocess communication between standard UNIX/Linux processes and the
interprocess communication that is possible using the PVM environment. Also, the PVM tasks may be
located on separate computers. While processes created with posix_spawn() exist on the same
computer. If processes created by either posix_spawn() or the fork-exec routines are to be used in
conjunction with the SIMD model, then the argc and argv parameters can be used in addition to the
blackboard to assign the knowledge sources a specific area of the problem to solve. In the case where
the blackboard is on the same computer as the knowledge sources and the blackboard activates the

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13lev3sec2
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex09
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex09
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec5.htm#ch13ex09

knowledge sources in its constructor, then technically the blackboard is the parent of the knowledge
sources and the knowledge sources will inherit the environment variables of the blackboard. The
environment variables of the blackboard are an additional method that can be used to pass information
to the knowledge sources. These environment variables can be easily manipulated using the:

#include <stdlib.h>
//...
setenv();
unsetenv();
putenv();

routines. When the knowledge sources are implemented in processes that were created using either
posix_spawn() or the fork-exec routines, the programs look like regular CORBA programs and can take
advantage of all of the facilities that the CORBA protocol has to offer.

Figure 13-4. Control configurations and their layers in the blackboard architecture.

Note the configuration in Figure 13-4 contains the control within the blackboard as opposed to a
separate module or knowledge source. In this configuration, the control is designed as part of the
blackboard class. Since a two-way communication is needed in Layer 2 and Layer 3, it is convenient to
have the blackboard spawn the processes or threads that will contain the knowledge sources. If the
blackboard spawns the processes or threads it will have easy access to the thread ids or process ids. This
will allow the blackboard to easily broadcast messages to the knowledge sources, and perform process
and thread management. When the blackboard needs to terminate a knowledge source for some reason,
access to the thread id or process id will make this easy. Notice if Figure 13-4 that one of the options is
to have the control external to the blackboard and the knowledge sources. If this configuration is used,
thread ids and process ids must be communicated explicitly to the control modules.

13.6 Implementing the Blackboard Using Global Objects

The choice of a CORBA-based blackboard is a natural choice when the knowledge sources will be
implemented within an intranet or the Internet environment or when the knowledge sources will be
implemented in separate processes for purposes of modularity, encapsulation, and so on. However,
distributed blackboards are not always necessary. In the case where the knowledge sources can be
implemented within the same process and on the same computer, multiple threads provide a superior
solution because they will be faster, have less overhead, and are easier to use and set up. The
communication between multiple threads is also easier because the threads share the same address
space and can use global variables. In fact, with threads the blackboard will be instantiated as a global
object available to all of the threads within the process. There is no need for inter-process
communication, socket communication, or any other kind of network communication when the
knowledge sources are implemented as threads within a single program. Also, the added layer of the
CORBA protocol is not necessary and the objects may be designed as regular C++ classes. If the
program is running on a machine that has multiple processors, then the threads may run concurrently on
as many processors as are available. The thread's configuration of the blackboard is very attractive in
SMP and MPP systems. In general, threads will have the best performance. Threads are often referred
to as lightweight processes because they don't require the same overhead as traditional UNIX/Linux
processes. The POSIX threads (Pthreads) library offers virtually everything needed for knowledge
source creation and management. Figure 13-7 contrasts the three basic configurations for process
distributions for blackboards and knowledge sources.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec6.htm#ch13fig07
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec4.htm#ch13fig04
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec4.htm#ch13fig04

Figure 13-7. Contrasts of the three basic configurations for process distribution for blackboards and knowledge
sources.

Because the blackboard is implemented within a multithread environment, then Pthread mutexes and
condition variables may be used to synchronize access to the blackboard. Of course the mutexes and
condition variables should be encapsulated within interface classes, as discussed in Chapter 11. Also,
pthread_cond_signal() and pthread_cond_broadcast() can be used to coordinate and synchronize the
work that the knowledge sources are performing. Since the blackboard creates the threads it will have

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch11.htm#ch11

easy access to the thread id of each knowledge source. This means the blackboard can cancel a thread if
necessary with pthread_cancel(). Also, the blackboard will be able to synchronize on the various
knowledge sources using the pthread_join() routine. In addition to the performance and ease-of-use
advantages of threads and global blackboards, there is also the issue of error and exception
management. In general, it is easier to deal with errors and exceptions within the same process than
between different processes, and with errors on the same machine than between different machines.
Figure 13-8 shows the exception and error level difficulty when handling errors and difficulties within a
program.

Figure 13-8. The exception and error level difficulty.

Since the knowledge sources are implemented within separate threads within the same process, any
errors or exceptions that occur will be at Level 2. Whenever programs that require concurrency are
designed and developed, the complexity of handling and recovering from errors and exceptions must be
considered. The blackboard implemented as a global object and the knowledge sources implemented as
threads are the simplest architecture when using the blackboard model for concurrency. Example 13.10
contains an excerpt declaration from our course advisor blackboard.

Example 13.10 An excerpt from the course advisor blackboard designed for a threaded environment.

class blackboard{
protected:
 //...
 set<long> SuggestionForMajor;
 set<long> SuggestionForMinor;
 set<long> SuggestionForGeneral;
 set<long> SuggestionForElective;
 set<long> Schedule;
 set<long> DegreePlan;
 mutex Mutex[10];
 //...

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec6.htm#ch13ex10
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec6.htm#ch13fig08

public:
 blackboard(void);
 ~blackboard(void);
 void suggestionsForMajor(set<long> &X);
 void suggestionsForMinor(set<long> &X);
 void suggestionsForGeneral(set<long> &X);
 void suggestionsForElectives(set<long> &X);
 set<long> currentDegreePlan(void);
 set<long> suggestedSchedule(void);
 //...
};

This blackboard class is designed to be instantiated as a global object accessible to all the threads within
a program. Notice that the blackboard class in Example 13.10 has an array of mutexes. These mutexes
will be used to protect the critical sections within the blackboard. The knowledge sources are virtually
unaware of the synchronized access to the critical sections because the synchronization is encapsulated
within the blackboard.

13.7 Activating Knowledge Sources Using Pthreads

The knowledge sources are implemented within separate threads. The blackboard's constructor creates
the threads and assigns each thread a specific knowledge source. This gives the blackboard its MIMD
model. Example 13.11 contains part of the constructor for the blackboard.

Example 13.11 The blackboard's constructor used to create the threads that will contain the knowledge sources.

blackboard::blackboard(void)
{
 pthread_t Tid[4];
 //...
 try{
 pthread_create(&Tid[0],NULL,suggestionForMajor,
 NULL);
 pthread_create(&Tid[1],NULL,suggestionForMinor,
 NULL);
 pthread_create(&Tid[2],NULL,suggestionForGeneral,
 NULL);
 pthread_create(&Tid[3],NULL,suggestionForElective,
 NULL);
 pthread_join(Tid[0],NULL);
 pthread_join(Tid[1],NULL);
 pthread_join(Tid[2],NULL);
 pthread_join(Tid[3],NULL);
 }

 //...
}

Notice that the constructor calls the pthread_join() routine. This causes the constructor to wait for these
four threads to terminate before it continues. These threads can be activated from other member
functions of the blackboard. However, the particular processing these knowledge sources are
performing for the constructor is a preliminary kind of initialization for the blackboard, so it is totally
appropriate for the blackboard to wait on these threads before it continues to construct the object. This
technique of creating threads within the constructor also raises error handling and exception handling
issues. What happens if the threads fail for some reason? Since constructors don't have return values,
exception handling must be used.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec7.htm#ch13ex11
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec6.htm#ch13ex10

Each thread is associated with a function. In this case:

void *suggestionForMajor(void *X);
void *suggestionForMinor(void *X);
void *suggestionForGeneral(void *X);
void *suggestionForElective(void *X);

These four functions are used by the threads to implement the functionality of these particular
knowledge sources. Since the blackboard is a global object, each of these functions has immediate
access to the blackboard's member functions. So the knowledge sources may call the blackboard's
member functions directly, such as:

//...
Combination.generateCombinations(1,9,Courses);
Result = Combination.element(9);
//...
Blackboard.suggestionsForMinor(Value);
//...

Since some divisions of the blackboard are restricted to a particular knowledge source, these divisions
of the blackboard may be accessed using CRCW policies, as shown in Figure 13-9.

Figure 13-9. The four knowledge sources may concurrently read and write their section of the blackboard.

The type of parallelism shown in Figure 13-9 is a natural scheme in blackboard systems because the
blackboard is often divided into sections, with each section referring to a certain part of the problem or
subproblem. There is typically one knowledge source per problem area, so these sections may be
accessed concurrently.

file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec7.htm#ch13fig09
file:///home/lukac/.chmsee/bookshelf/1985fba92671d0673465c1587248acbd/0-13-101376-9_ch13lev1sec7.htm#ch13fig09

Summary

The blackboard model supports concurrency. The concurrency is inherent in the structure of the
blackboard and the relationship between the blackboard and the knowledge sources and between the
knowledge sources and each other. The blackboard is a problem-solving model. The problem is divided
up into knowledge-specific areas. Each area is assigned a knowledge source or problem solver. The
knowledge sources and problem solvers are typically self-contained and require little interaction with
the other knowledge sources. The communication that is necessary occurs through the blackboard.
Therefore, the knowledge sources and problem solvers serve to modularize the processing within the
program. These modules can be treated separately and they can execute concurrently without complex
synchronization needs. The blackboard may be implemented using CORBA objects. When the
blackboard is implemented as CORBA objects, the knowledge sources can be distributed across
intranets or the Internet. The blackboard acts as a kind of shared distributed memory for tasks within a
PVM-type environment. The blackboard model easily supports MPMD (MIMD) and the SPMD
(SIMD) model. The concept of the blackboard motivates the designer to break down the work that a
program needs to do along knowledge lines. This results in the program having a WBS of knowledge
specialists. The blackboard will contain software models of the problem domain and the solution space.
These software models help the designer and developer to discover any parallelism that is necessary
within a program that will be implemented. Alongside of the classic client-server model of distributed
programming the blackboard model is one of the most powerful models available for both distributed
and parallel programming. The knowledge sources or problem solvers in the blackboard model are
often implemented as agents. In the next chapter we will take a closer look at how to implement agents
and how to deploy multiagent systems to achieve concurrency.

Appendix A. Diagrams
This appendix provides a quick reference to the UML diagrams used throughout this book. The UML
(United Modeling Language) is a graphical notation used to design, visualize, model, and document the
artifacts of a software system. It is the de facto standard for communicating and modeling object-
oriented systems. The modeling language uses symbols and notations to represent the artifacts of a
software system from different views and different focuses. Although there are other graphical
notations and artifacts used in this book, this appendix provides a quick way the reader can become
familiar with the basic UML notations and symbols they may require in documenting their software
systems.

A.1 Class and Object Diagrams

Class and object diagrams are the most common diagrams used in modeling an object-oriented system.
Class diagrams can be use to represent each type of class in your system, including template classes and
interface classes. Class diagrams can include the details of the class (e.g., attributes, services). Class and
object diagrams can show the datatype, value of variables, and return types of functions. Object
diagrams can show the object name. Both types of diagrams can depict the number of classes or objects
used in the system along with their relationships between classes and objects.

Figure A-1. The multiple ways a class or object can be represented. Classes can show services, attributes, and
visibility. Active classes or objects use a heavier line.

Figure A-2. Multiple instances of classes and objects. Multiple instances can be shown graphically or by using
multiplicity notation.

Figure A-3. The ways to represent bound or unbound template or parameterized classes.

A.2 Interaction Diagrams

Interaction diagrams show the interaction between objects. It consists of a set of objects, their
relationship, and the messages exchanged between them. Interaction diagrams include collaboration,
sequence, and activity diagrams.

A.2.1 Collaboration Diagrams

Collaboration diagrams are used to show a set of objects working together to perform some work. The
collaboration in the system is a temporary cooperation between a set of objects. Collaboration diagrams
can depict the organization of the collaboration or can depict the structure of the collaboration. This
involves showing all the objects in the set, their links, and the messages sent and received between
them.

A.2.2 Sequence Diagrams

Sequence diagrams are used to emphasize the time ordering of messages received and sent by objects in
a system.

Figure A-4. The ways to represent an interface class. An interface class can be represented using a lollipop symbol or
as a regular class displaying the <<interface>> stereotype. The relationship between the interface class
and the realization of the class can also be depicted.

Figure A-5. The ways to represent single and multiple inheritance. There are two target styles that can be used when
multiple classes are involved in a relationship: shared and separate. With the shared target style, multiple
classes are tied to a single inheritance symbol that points to the target class. With the separate target
style, each class has its own inheritance symbol.

A.2.3 Activity Diagrams

Activity diagrams show the flow of control from one activity to another. Activities are actions
performed by objects. Actions include processing input/output, creating or destroying objects, or
performing computations. Activity diagrams are similar to flowcharts.

Figure A-6. Examples of the multiple relationships that can be depicted in a class diagram. Multiplicity notation can
be used to show the number of instances between classes and objects.

Figure A-7. A collaboration diagram showing the organization of collaborations within a system and the structural
relationship of objects within a collaboration.

Figure A-8. A sequence diagram is used to emphasize the time ordering of messages passed between objects. The
active objects are placed at the top on the x-axis of the diagram. The messages passed between the objects
are placed on the y-axis of the diagram. The diagram can depict synchronous and asynchronous
messaging. The time ordering of messages is demonstrated by reading the messages from top to bottom
along the y-axis.

Figure A-9. Activity diagrams show the action of objects as it flows from the focus of control of one object to another.
It depicts the forking of multiple flows of control (concurrency) and joining of flows of control with a
synchronization bar. Swimlanes are used to show which object is performing the action. Transitions may
cut across swimlanes. A synchronization bar may also cut across swimlanes, indicating multiple flows of
control reside in different objects performing actions concurrently.

A.3 State Diagrams

A state diagram is used to emphasize the state of objects and their transitions to those states. A state is a
condition that an object occupies at some point in its lifetime. An object can be transformed into many
different states in its lifetime. The objects transform into a state if some condition is met, some action is
performed, or some event has taken place.

Figure A-10. State diagrams show the states and transitions of an object during its lifetime. A state diagram has an
initial state and a final state. A state has several parts. States can also be a composite of other states or

even another state diagram. Substates that execute in parallel within a single entity are called concurrent
substates.

A.4 Package Diagrams

Package diagrams are used to organize entities into groups.

Figure A-11. Package diagrams can be used to organize elements of a system. The stereotypes <<system>> or
<<subsystem>> can be used. The tab on the left can hold the name of the package if the package contains

other entities.

Bibliography

Audi, Robert. Action, Intention, and Reason. Ithaca, N.Y.: Cornell University Press, 1993.

Axford, Tom. Concurrent Programming: Fundamental Techniques for Real-Time and Parallel Software Design. Chichester,
U.K.: John Wiley, 1989.

Baase, Sarah. Computer Algorithms: Introduction to Design and Analysis. 2nd ed. Reading, Mass.: Addison-Wesley, 1988.

Barfield, Woodrow, and Thomas A. Furnell III. Virtual Environments and Advanced Interface Design. New York: Oxford
University Press, 1995.

Binkley, Robert, Bronaugh, Richard, and Ausonio Marras. Agent, Action, and Reason. Toronto: University of Toronto
Press, 1971.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User Guide. Boston: Addison-
Wesley, 1999.

Bowan, Howard, and John Derrick. Formal Methods for Distributed Processing: A Survey of Object-Oriented Approaches.
New York: Cambridge University Press, 2001.

Brewka, Gerhard, Jurgen Diz, and Kurt Konolige. Nonmonotonic Reasoning. Stanford, Calif.: CSLI Publications, 1997.

Carroll, Martin D., and Margaret A. Ellis. Designing and Coding Reusable C++. Reading, Mass.: Addison-Wesley, 1995.

Cassell, Justine, Joseph Sullivan, Scott Prevost, and Elizabeth Churchill. Embodied Conversational Agents. Cambridge,
Mass.: MIT Press, 2000.

Chellas, Brian F. Modal Logic: An Introduction. New York: Cambridge University Press, 1980.

Coplien, James O. Multi-Paradigm Design for C++. Reading, Mass.: Addison-Wesley, 1999.

Cormen, Thomas, Charles Leiserson, and Ronald Rivet. Introduction to Algorithms. Cambridge, Mass.: MIT Press, 1995.

Englemore, Robert, and Tony Morgan. Blackboard Systems. Wokingham, England: Addison-Wesley, 1988.

Garg, Vijay K. Principles of Distributed Systems. Norwell, Mass.: Kluwer Academic, 1996.

Geist, Al, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sinderman. PVM: Parallel Virtual
Machine. London, England: MIT Press, 1994.

Goodheart, Berny, and James Cox. The Magic Garden Explained: The Internals of Unix System V Release 4. New York:
Prentice Hall, 1994.

Gropp, William, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir.
MPI: The Complete Reference. Vol. 2. Cambridge, Mass.: MIT Press, 1998.

Heath, Michael T. Scientific Computing: An Introduction Survey. New York: McGraw-Hill.

Henning, Michi, and Steve Vinoski. Advanced COBRA Programming with C++. Reading, Mass.: Addison-Wesley, 1999.

Hintikka, Jakko, and Merrill Hintikka. The Logic of Epistemology and the Epistemology of Logic. Amsterdam: Kluwer
Academic, 1989.

Horty, John F. Agency and Deontic Logic. New York: Oxford University Press, 2001.

Hughes, Cameron, and Tracey Hughes. Mastering the Standard C++ Classes. New York: John Wiley, 1990.

Hughes, Cameron, and Tracey Hughes. Object-Oriented Multithreading Using C++. New York: John Wiley, 1997.

Hughes, Cameron, and Tracey Hughes. Linux Rapid Application Development. Foster City, Calif.: M & T Books, 2000.

International Standard Organization. Information Technology: Portable Operating System Interface. Pt. 1 System
Application Program Interface. 2nd ed. Std 1003.1 ANSI/IEEE. 1996.

Josuttis, Nicolai M. The C++ Standard. Boston: Addison-Wesley, 1999.

Koeing, Andrew, and Barbara Moo. Ruminations on C++. Reading, Mass.: Addison-Wesley, 1997.

Krishnamoorthy, C.S., and S. Rajeev. Artificial Intelligence and Expert Systems for Engineers. Boca Raton, Fla.: CRC
Press, 1996.

Lewis, Ted, Glenn Andert, Paul Calder, Erich Gamma, Wolfgang Press, Larry Rosenstein, and Kraus, Sarit. Strategic
Negotiation in Multitangent Environments. London: MIT Press, 2001.

Luger, George F. Artificial Intelligence. 4th ed. England: Addison-Wesley, 2002.

Mandrioli Dino, and Carlo Ghezzi. Theoretical Foundations of Computer Science. New York: John Wiley, 1987.

Nielsen, Michael A., and Isaac L. Chuang. Quantum Computation and Quantum Information. New York: Cambridge
University Press, 2000.

Patel, Mukesh J., Vasant Honavar, and Karthik Balakrishnan. Advances in the Evolutionary Synthesis of Intelligent Agents.
Cambridge, Mass.: MIT Press, 2001.

Picard, Rosalind. Affective Computing. London: MIT Press, 1997.

Rescher, Nicholas, and Alasdir Urquhart. Temporal Logic. New York: Springer-Verlag, 1971.

Robbins, Kay A., and Steven Robbins. Practical Unix Programming. Upper Saddle River, N.J.: Prentice Hall, 1996.

Schmucker, Kurt, Ander Weinand, and John M. Vlissides. Object-Oriented Application Frameworks. Greenwich, Conn.:
Manning Publications, 1995.

Singh, Harry. Progressing to Distributed Multiprocessing. Upper Saddle River, N.J.: Prentice Hall, 1999.

Skillicorn, David. Foundations of Parallel Programming. New York: Cambridge University Press, 1994.

Soukup, Jiri. Taming C++: Pattern Classes and Persistence for Large Projects. Reading, Mass.: Addison-Wesley, 1994.

Sterling, Thomas L., John Salmon, Donald J. Becker, and Daniel F. Savarese. How to Build a Bewoulf: A Guide to
Implementation and Application of PC Clusters. London: MIT Press, 1999.

Stevens, Richard W. UNIX Network Programming: Interprocess Communications. Vol. 2, 2nd ed. Upper Saddle River:
Prentice Hall, 1999.

Stroustrup, Bjarne. The Design and Evolution of C++. Reading, Mass.: Addison-Wesley, 1994.

Subrahmanian, V.S., Piero Bonatti, Jurgen Dix, Thomas Eiter, Sarit Kraus, Fatma Ozcan, and Robert Ross. Heterogeneous
Agent Systems. Cambridge, Mass.: MIT Press, 2000.

Tel, Gerard. Introduction to Distributed Algorithms. 2nd ed. New York: Cambridge University Press, 2000.

Thompson, William J. Computing for Scientists and Engineers. New York: John Wiley, 1992.

Tomas, Gerald, and Christoph W. Uebeerhuber. Visualization of Scientific Parallel Programming. New York: Springer-
Verlag, 1994.

Tracy, Kim W. and Peter Bouthoorn. Object-Oriented: Artificial Intelligence Using C++. New York: Computer Science
Press, 1997.

Weiss, Gerhard. Multitagent Systems. Cambridge, Mass.: MIT Press, 1999.

Wooldridge, Michael. Reasoning About Rational Agents. London: MIT Press, 2000.

Table of Contents
Copyright...2

Dedication...3
Preface..3

The Challenges..3
The Approach..4
Why C++?...4
Libraries for Parallel and Distributed Programming...5
The New Single UNIX Specification Standard...5
Who is This Book For?...5
Development Environments Supported..5
Ancillaries...6

UML Diagrams...6
Program Profiles...6

Sidebars..6
Testing and Code Reliability..6

Acknowledgments...6
Chapter 1. The Joys of Concurrent Programming...7

1.1 What is Concurrency?...8
1.1.1 The Two Basic Approaches to Achieving Concurrency...8

1.2 The Benefits of Parallel Programming..10
1.2.1 The Simplest Parallel Model (PRAM)..10
1.2.2 The Simplest Parallel Classification..11

1.3 The Benefits of Distributed Programming..12
1.3.1 The Simplest Distributed Programming Models...12
1.3.2 The Multiagent (Peer-to-Peer) Distributed Model..13

1.4 The Minimal Effort Required..13
1.4.1 Decomposition...13
1.4.2 Communication...14
1.4.3 Synchronization...14

1.5 The Basic Layers of Software Concurrency...14
1.5.1 Concurrency at the Instruction Level..14
1.5.2 Concurrency at the Routine Level...15
1.5.3 Concurrency at the Object Level...15
1.5.4 Concurrency of Applications...15

1.6 No Keyword Support for Parallelism in C++...15
1.6.1 The Options for Implementing Parallelism Using C++..16
1.6.2 MPI Standard...17
1.6.3 PVM: A Standard for Cluster Programming...17
1.6.4 The CORBA Standard...17
1.6.5 Library Implementations Based on Standards...18

1.7 Programming Environments for Parallel and Distributed Programming..................................18
Summary—Toward Concurrency...19

Chapter 2. The Challenges of Parallel and Distributed Programming...20
2.1 The Big Paradigm Shift...20
2.2 Coordination Challenges...23

Problem #1 Data Race..23
Problem #2 Indefinite Postponement...23
Problem #3 Deadlock...24
Problem #4 Communication Difficulties..25

2.3 Sometimes Hardware Fails and Software Quits..26
2.4 Too Much Parallelization or Distribution Can Have Negative Consequences.........................27
2.5 Selecting a Good Architecture Requires Research...27
2.6 Different Techniques for Testing and Debugging are Required...29
2.7 The Parallel or Distributed Design Must Be Communicated..29
Summary...30

Chapter 3. Dividing C++ Programs into Multiple Tasks...31
3.1 Process: A Definition..31

3.1.1 Two Kinds of Processes..32
3.1.2 Process Control Block...32

3.2 Anatomy of a Process..33
3.3 Process States..35
3.4 Process Scheduling..38

3.4.1 Scheduling Policy..38

3.4.2 Using the ps Utility..39
Synopsis...41

3.4.3 Setting and Returning the Process Priority..43
Synopsis...43
Synopsis...44

3.5 Context Switching...45
3.6 Creating a Process...46

3.6.1 Parent–Child Process Relationship..46
Synopsis...49

3.6.2 Using the fork() Function Call..50
Synopsis...50

3.6.3 Using the exec Family of System Calls...50
Synopsis...52
Synopsis...53
Synopsis...54

3.6.4 Using system() to Spawn Processes..54
Synopsis...55

3.6.5 The POSIX Functions for Spawning Processes..55
Synopsis...55

3.6.6 Identifying the Parent and Child with Process Management Functions............................60
Synopsis...60

3.7 Terminating a Process...61
3.7.1 The exit(), kill() and abort() Calls...61

Synopsis...61
Synopsis...62

3.8 Process Resources...63
S 3.1 Resource Allocation Graph...63

3.8.1 Types of Resources..64
3.8.2 POSIX Functions to Set Resource Limits...65

Synopsis...65
3.9 What are Asynchronous and Synchronous Processes?...68

3.9.1 Synchronous and Asynchronous Processes Created with fork(), exec(), system(), and
posix_spawn() Functions..70
3.9.2 The wait() Function Call...70

Synopsis...70
3.10 Dividing the Program into Tasks..73

3.10.1 Processes Along Function and Object Lines...79
Summary...80

Chapter 4. Dividing C++ Programs into Multiple Threads...81
4.1 Threads: A Definition..82

4.1.1 Thread Context Requirements...82
4.1.2 Threads and Processes: A Comparison...83
4.1.3 Advantages of Threads..84
4.1.4 Disadvantages of Threads..86

4.2 The Anatomy of a Thread...88
4.2.1 Thread Attributes...89

4.3 Thread Scheduling...90
4.3.1 Thread States...91
4.3.2 Scheduling and Thread Contention Scope..92
4.3.3 Scheduling Policy and Priority..93

4.4 Thread Resources..95
4.5 Thread Models...95

4.5.1 Delegation Model..96
4.5.2 Peer-to-Peer Model..97
4.5.3 Pipeline Model...98
4.5.4 Producer-Consumer Model...99
4.5.5 SPMD and MPMD for Threads...99

4.6 Introduction to the Pthread Library...100
4.7 The Anatomy of a Simple Threaded Program..101

4.7.1 Compiling and Linking Multithreaded Programs..102
4.8 Creating Threads...103

Synopsis...103
Program Profile 4.1..105

4.8.1 Getting the Thread Id...105
Synopsis...106

4.8.2 Joining Threads...106
Synopsis...106

4.8.3 Creating Detached Threads...107
Synopsis...107

4.8.4 Using the Pthread Attribute Object...107
Synopsis...108
Synopsis...108

4.9 Managing Threads...109
4.9.1 Terminating Threads...109

Synopsis...110
Synopsis...110
Synopsis...111
Synopsis...112
Program Profile 4.2..114
Synopsis...117

4.9.2 Managing the Thread's Stack...118
Synopsis...119
Synopsis...119
Synopsis...120

4.9.3 Setting Thread Scheduling and Priorities..120
Synopsis...121
Synopsis...122
Synopsis...123
Synopsis...125

4.9.4 Using sysconf()..125
Synopsis...125

4.9.5 Managing a Critical Section..127
4.10 Thread Safety and Libraries..132
4.11 Dividing Your Program into Multiple Threads...134

4.11.1 Using the Delegation Model..134
4.11.2 Using the Peer-to-Peer Model...138
4.11.3 Using the Pipeline Model..139
4.11.4 Using the Producer–Consumer Model..140
4.11.5 Creating Multithreaded Objects..141

Summary...142

Chapter 5. Synchronizing Concurrency between Tasks..143
5.1 Coordinating Order of Execution..144

5.1.1 Relationships between Synchronized Tasks..144
5.1.2 Start-to-Start (SS) Relationship...145
5.1.3 Finish-to-Start (FS) Relationship..145
5.1.4 Start-to-Finish Relationship...145
5.1.5 Finish-to-Finish Relationship..146

5.2 Synchronizing Access to Data...146
5.2.1 PRAM Model..147

5.3 What are Semaphores?..149
5.3.1 Semaphore Operations...149
5.3.2 Mutex Semaphores..150
5.3.3 Read–Write Locks...157
5.3.4 Condition Variables...160

5.4 Synchronization: An Object-Oriented Approach..165
Summary...165

Chapter 6. Adding Parallel Programming Capabilities to C++ Through the PVM...........................166
6.1 The Classic Parallelism Models Supported by PVM..167
6.2 The PVM Library for C++..168

Program Profile 6.1..169
Program Profile 6.2..170

6.2.1 Compiling and Linking a C++/PVM Program..171
6.2.2 Executing a PVM Program as a Standalone..171
6.2.3 A PVM Preliminary Requirements Checklist...173
6.2.4 Combining the C++ Runtime Library and the PVM Library..177
6.2.5 Approaches to Using PVM Tasks...178

S 6.1. Combination Notation...185
6.3 The Basic Mechanics of the PVM...186

6.3.1 Process Management and Control Routines..187
Synopsis...187

6.3.2 Message Packing and Sending..188
Synopsis...190
Synopsis...191
Synopsis...193

6.4 Accessing Standard Input (stdin) and Standard Output (stdout) within PVM Tasks..............194
6.4.1 Retrieving Standard Output (cout) from a Child Task..194

Summary...195
Chapter 7. Error Handling, Exceptions, and Software Reliability...196

7.1 What is Software Reliability?...197
7.2 Failures in Software Layers and Hardware Components..198
7.3 Definitions of Defects Depend on Software Specifications..199
7.4 Recognizing Where to Handle Defects versus Where to Handle Exceptions.........................200
7.5 Software Reliability: A Simple Plan...202

7.5.1 Plan A: The Resumption Model, Plan B: The Termination Model.................................203
7.6 Using Map Objects in Error Handling..203
7.7 Exception Handling Mechanisms in C++...206

7.7.1 The Exception Classes...207
7.8 Event Diagrams, Logic Expressions, and Logic Diagrams...210
Summary...212

Chapter 8. Distributed Object-Oriented Programming in C++..213

8.1 Decomposition and Encapsulation of the Work..215
8.1.1 Communication between Distributed Objects...217
8.1.2 Synchronization of the Interaction between the Local and the Remote Objects.............217
8.1.3 Error and Exception Handling in the Distributed Environment......................................217

8.2 Accessing Objects in Other Address Spaces...218
8.2.1 IOR Access to Remote Objects...219
8.2.2 ORBS (Object Request Brokers)...220
8.2.3 Interface Definition Language (IDL): A Closer Look at CORBA Objects.....................223

8.3 The Anatomy of a Basic CORBA Consumer..227
8.4 The Anatomy of a CORBA Producer...229
8.5 The Basic Blueprint of a CORBA Application...230

Program Profile 8.1..231
Program Profile 8.2..232

8.5.1 The IDL Compiler...232
8.5.2 Obtaining IOR for Remote Objects...233

8.6 The Naming Service..235
S 8.1. Semantic Networks..237

8.6.1 Using the Naming Service and Creating Naming Contexts..238
8.6.2 A Name Service Consumer/Client..240

8.7 A Closer Look at Object Adapters..243
8.8 Implementation and Interface Repositories...245
8.9 Simple Distributed Web Services Using CORBA..245
8.10 The Trading Service..246
8.11 The Client/Server Paradigm..248
Summary...248

Chapter 9. SPMD and MPMD Using Templates and the MPI..250
9.1 Work Breakdown Structure for the MPI...251

9.1.1 Differentiating Tasks by Rank...251
9.1.2 Grouping Tasks by Communicators..253
9.1.3 The Anatomy of an MPI Task...253

9.2 Using Template Functions to Represent MPI Tasks...257
9.2.1 Instantiating Templates and SPMD (Datatypes)...257
9.2.2 Using Polymorphism to Implement MPMD...258
9.2.3 Adding MPMD with Function Objects...262

9.3 Simplifying MPI Communications...264
9.3.1 Overloading the << and >> Operators for MPI Communication....................................267

Summary...270
Chapter 10. Visualizing Concurrent and Distributed System Design..270

10.1 Visualizing Structures...271
10.1.1 Classes and Objects...271
10.1.2 The Relationship between Classes and Objects..279
10.1.3 The Organization of Interactive Objects...285

10.2 Visualizing Concurrent Behavior..286
10.2.1 Collaborating Objects..286
10.2.2 Message Sequences between Objects..290
10.2.3 The Activities of Objects...292
10.2.4 State Machines...295
10.2.5 Distributed Objects..299

10.3 Visualizing the Whole System..301
10.3.1 Visualizing Deployment of Systems...301

10.3.2 The Architecture of a System..302
Summary...304

Chapter 11. Designing Components That Support Concurrency...305
11.1 Taking Advantage of Interface Classes...307

Synopsis...307
11.2 A Closer Look at Object-Oriented Mutual Exclusion and Interface Classes........................312

11.2.1 Semi-Fat Interfaces that Support Concurrency...312
Synopsis...314
Synopsis...316

11.3 Maintaining the Stream Metaphor...318
11.3.1 Overloading the <<, >> Operators for PVM Streams...320

11.4 User-Defined Classes Designed to Work with PVM Streams..323
11.5 Object-Oriented Pipes and fifos as Low-Level Building Blocks..325

Synopsis...328
11.5.1 Connecting Pipes to iostream Objects Using File Descriptors......................................328

Program Profile 11.1..330
11.5.2 Accessing Anonymous Pipes Using the ostream_iterator...332

Program Profile 11.2..335
Program Profile 11.2b..337

11.5.3 fifos (Named Pipes), iostreams, and the ostream_iterator Classes................................337
Program Profile 11.3a..339
Program Profile 11.3b..341

11.6 Framework Classes Components for Concurrency...342
Summary...346

Chapter 12. Implementing Agent-Oriented Architectures...347
12.1 What are Agents?..347

12.1.1 Agents: A First-Cut Definition..348
12.1.2 Types of Agents...348
12.1.3 What is the Difference between Objects and Agents?..349

S 12.1. Deduction, Induction, and Abduction..350
12.2 What is Agent-Oriented Programming?..352

12.2.1 Why Agents Work for Distributed Programming...352
12.2.2 Agents and Parallel Programming...353

12.3 Basic Agent Components..355
12.3.1 Cognitive Data Structures..355

12.4 Implementing Agents in C++..360
12.4.1 Proposition Datatypes and Belief Structures...361
12.4.2 The Agent Class..365
12.4.3 Simple Autonomy..374

12.5 Multiagent Systems...376
Summary...376

Chapter 13. Blackboard Architectures Using PVM, Threads, and C++ Components.......................377
13.1 The Blackboard Model..378
13.2 Approaches to Structuring the Blackboard...380
13.3 The Anatomy of a Knowledge Source..381
13.4 The Control Strategies for Blackboards..383
13.5 Implementing the Blackboard Using CORBA Objects...384

13.5.1 The CORBA Blackboard: An Example..385
13.5.2 The Implementation of the black_board Interface Class...386
13.5.3 Spawning the Knowledge Sources in the Blackboard's Constructor.............................388

13.6 Implementing the Blackboard Using Global Objects...398
13.7 Activating Knowledge Sources Using Pthreads..401
Summary...403

Appendix A. Diagrams..403
A.1 Class and Object Diagrams..403
A.2 Interaction Diagrams..405

A.2.1 Collaboration Diagrams..405
A.2.2 Sequence Diagrams..405
A.2.3 Activity Diagrams...407

A.3 State Diagrams...410
A.4 Package Diagrams..411

Bibliography..412

	Copyright
	Dedication

	Preface
	The Challenges
	The Approach
	Why C++?
	Libraries for Parallel and Distributed Programming
	The New Single UNIX Specification Standard
	Who is This Book For?
	Development Environments Supported
	Ancillaries
	UML Diagrams
	Program Profiles
	Sidebars
	Testing and Code Reliability

	Acknowledgments

	Chapter 1. The Joys of Concurrent Programming
	1.1 What is Concurrency?
	1.1.1 The Two Basic Approaches to Achieving Concurrency
	Figure 1-1. Typical architecture for a parallel and distributed program.

	1.2 The Benefits of Parallel Programming
	1.2.1 The Simplest Parallel Model (PRAM)
	Figure 1-2. A Simple PRAM.
	Table 1-1. Four Basic Read-Write Algorithms

	1.2.2 The Simplest Parallel Classification

	1.3 The Benefits of Distributed Programming
	1.3.1 The Simplest Distributed Programming Models
	1.3.2 The Multiagent (Peer-to-Peer) Distributed Model

	1.4 The Minimal Effort Required
	1.4.1 Decomposition
	1.4.2 Communication
	1.4.3 Synchronization

	1.5 The Basic Layers of Software Concurrency
	1.5.1 Concurrency at the Instruction Level
	Figure 1-3. Decomposition of a single instruction.

	1.5.2 Concurrency at the Routine Level
	1.5.3 Concurrency at the Object Level
	1.5.4 Concurrency of Applications

	1.6 No Keyword Support for Parallelism in C++
	1.6.1 The Options for Implementing Parallelism Using C++
	1.6.2 MPI Standard
	1.6.3 PVM: A Standard for Cluster Programming
	1.6.4 The CORBA Standard
	1.6.5 Library Implementations Based on Standards
	Table 1-2. MPICH, PVM, MICO, and POSIX Threads Used with C++

	1.7 Programming Environments for Parallel and Distributed Programming
	Summary—Toward Concurrency

	Chapter 2. The Challenges of Parallel and Distributed Programming
	2.1 The Big Paradigm Shift
	Figure 2-1. The three levels of parallelism that are possible within a single computer program.
	Figure 2-2. The three levels of parallelism combined with the basic parallel processor configurations.

	2.2 Coordination Challenges
	Problem #1 Data Race
	Problem #2 Indefinite Postponement
	Problem #3 Deadlock
	Figure 2-3. The deadlock situation between Tasks B and C.

	Problem #4 Communication Difficulties
	Table 2-1. A Matrix of the Combinations of Parallel and Distributed Programming with Hardware Configurations

	2.3 Sometimes Hardware Fails and Software Quits
	2.4 Too Much Parallelization or Distribution Can Have Negative Consequences
	2.5 Selecting a Good Architecture Requires Research
	Table 2-2. Commonly Found Software Architectures that Support Parallel and Distributed Programming

	2.6 Different Techniques for Testing and Debugging are Required
	2.7 The Parallel or Distributed Design Must Be Communicated
	Table 2-3. Seven UML Diagrams Helpful for Documenting Multithreaded, Parallel, and Distributed Programs

	Summary

	Chapter 3. Dividing C++ Programs into Multiple Tasks
	3.1 Process: A Definition
	3.1.1 Two Kinds of Processes
	3.1.2 Process Control Block

	3.2 Anatomy of a Process
	Figure 3-1. The address space of a process divided into the text, data, and stack segments. This is the logical layout of a process.
	Figure 3-2. The contiguous virtual page frames mapped to pages in physical memory.
	Figure 3-3. The operating system control tables. Each entry in the process table stores represents a process in the system.

	3.3 Process States
	Figure 3-4. The process states and transitions in the UNIX/Linux environments.
	Table 3-1. Process Transitions

	3.4 Process Scheduling
	Figure 3-5. The multilevel priority queue in which each entry of the dispatch array points to a ready queue of processes with the same priority level.
	3.4.1 Scheduling Policy
	Figure 3-6. The behavior of the First-In-First-Out (FIFO) and round-robin (RR) scheduling policies. The FIFO scheduling policy assigns processes to the processor according to its arrival time in the queue. The process runs until completion. The RR scheduling policy assigns processes using FIFO scheduling but when the time slice runs out the process is placed at the back of the ready queue.

	3.4.2 Using the ps Utility
	Table 3-2. Common Headers Used for ps Utility in the Solaris/Linux Environments

	Synopsis
	Figure 3-7 Output of ps -f and ps -lf in the Solaris environment.
	Figure 3-8 Output of ps Tux in the Linux environment.
	3.4.3 Setting and Returning the Process Priority

	Synopsis
	Synopsis
	Example 3.1 Using setpriority() and getpriority().
	3.5 Context Switching
	3.6 Creating a Process
	3.6.1 Parent–Child Process Relationship
	Figure 3-9. A tree of processes. A process spawns two new processes if a certain condition is met.
	Table 3-3. Attributes Preserved by the New Process After Its Process Image Has Been Replaced with a New Process Image
	3.6.1.1 The pstree Utility

	Synopsis
	Figure 3-10 Output of pstree -h in the Linux environment.
	3.6.2 Using the fork() Function Call

	Synopsis
	3.6.3 Using the exec Family of System Calls
	Example 3.2 Using the fork-exec system calls.
	3.6.3.1 execl() Functions

	Synopsis
	3.6.3.2 execv() Functions
	3.6.3.3 Determining Restrictions on exec() Functions

	Synopsis
	3.6.3.4 Reading and Setting Environment Variables

	Synopsis
	3.6.4 Using system() to Spawn Processes

	Synopsis
	3.6.5 The POSIX Functions for Spawning Processes

	Synopsis
	Table 3-4. Functions Used to Add File Actions to the posix_spawn_file_actions Object
	Table 3-5. Functions Used to Set and Retrieve the Individual Attributes Contained in the posix_spawnattr_t Structure
	Example 3.3 Spawning a process, using the posix_spawn() function, that calls the ps utility.
	3.6.6 Identifying the Parent and Child with Process Management Functions

	Synopsis
	3.7 Terminating a Process
	3.7.1 The exit(), kill() and abort() Calls

	Synopsis
	Synopsis
	3.8 Process Resources
	Figure 3-11. A resource-allocation graph that shows which processes hold resources and which processes are requesting resources.

	S 3.1 Resource Allocation Graph
	3.8.1 Types of Resources
	3.8.2 POSIX Functions to Set Resource Limits

	Synopsis
	Table 3-6. Values for resource
	Example 3.4 Using setrlimit() to set the soft limit for file size.
	3.9 What are Asynchronous and Synchronous Processes?
	Table 3-7. Information Contained in struct rusage
	Figure 3-12. Possible scenarios of asynchronous and synchronous processes.
	3.9.1 Synchronous and Asynchronous Processes Created with fork(), exec(), system(), and posix_spawn() Functions
	3.9.2 The wait() Function Call

	Synopsis
	Table 3-8. Macros in Which the Value of the Exit Status Can be Evaluated
	3.10 Dividing the Program into Tasks
	Figure 3-13. Approaches that can be used to divide a program up into separate tasks.
	Figure 3-14. The stages of the render process.
	Example 3.5 Using approach 1 to create processes.
	Example 3.6 Using approach 3 to create processes. The tasks are launched from a parent process.
	3.10.1 Processes Along Function and Object Lines
	Example 3.7 The mainline which calls the function.
	Example 3.8 A process declaring an object.

	Summary

	Chapter 4. Dividing C++ Programs into Multiple Threads
	4.1 Threads: A Definition
	Figure 4-1. The flows of control of a multithreaded process.
	4.1.1 Thread Context Requirements
	4.1.2 Threads and Processes: A Comparison
	4.1.2.1 Differences between Threads and Processes
	4.1.2.2 Threads Controlling Other Threads

	4.1.3 Advantages of Threads
	Table 4-1. Similarities and Differences between Threads and Processes
	4.1.3.1 Context Switches during Low Processor Availability
	4.1.3.2 Better Throughput
	4.1.3.3 Simpler Communication between Concurrently Executing Parts
	Figure 4-2. Communication between threads of a single process and communication between multiple processes.
	4.1.3.4 Simplify Program Structure

	4.1.4 Disadvantages of Threads
	4.1.4.1 Threads Can Corrupt Process Data Easier
	4.1.4.2 One Bad Thread Can Kill the Entire Program
	4.1.4.3 Threads are Not as Reusable by Other Programs
	Table 4-2. Advantages and Disadvantages of Threads

	4.2 The Anatomy of a Thread
	Figure 4-3. Layout of a process that contains multiple threads.
	4.2.1 Thread Attributes

	4.3 Thread Scheduling
	Table 4-3. Settable Properties for the Thread Attribute Object
	4.3.1 Thread States
	Figure 4-4. Thread states and transitions.

	4.3.2 Scheduling and Thread Contention Scope
	Figure 4-5. Scheduling with process and system scope threads in a multiprocessor environment.

	4.3.3 Scheduling Policy and Priority
	4.3.3.1 Changing Thread Priority

	4.4 Thread Resources
	4.5 Thread Models
	Table 4-4. Thread Models
	4.5.1 Delegation Model
	Figure 4-6. The two approaches to the delegation model.

	4.5.2 Peer-to-Peer Model
	Figure 4-7. Peer-to-peer thread model.

	4.5.3 Pipeline Model
	Figure 4-8. The pipeline model.

	4.5.4 Producer-Consumer Model
	Figure 4-9. The producer–consumer model.

	4.5.5 SPMD and MPMD for Threads
	Figure 4-10. The STMD and MTMD models of parallelism.

	4.6 Introduction to the Pthread Library
	4.7 The Anatomy of a Simple Threaded Program
	Example 4.1 Using the delegation model in a simple threaded program.
	Figure 4-11. The layout, output, and flow of control for Example 4.1.
	4.7.1 Compiling and Linking Multithreaded Programs

	4.8 Creating Threads

	Synopsis
	Program 4.1
	Program 4.2

	Program Profile 4.1
	4.8.1 Getting the Thread Id

	Synopsis
	4.8.2 Joining Threads

	Synopsis
	4.8.3 Creating Detached Threads

	Synopsis
	4.8.4 Using the Pthread Attribute Object

	Synopsis
	4.8.4.1 Creating Detached Threads Using the Pthread Attribute Object

	Synopsis
	Example 4.2 Using an attribute object to create a detached thread.
	4.9 Managing Threads
	4.9.1 Terminating Threads

	Synopsis
	Synopsis
	Synopsis
	Table 4-5. Combinations of Cancelabililty State and Type
	4.9.1.1 Cancellation Points

	Synopsis
	Program 4.3
	Program 4.4

	Program Profile 4.2
	4.9.1.2 Cleaning Up Before Termination
	Table 4-6. POSIX System Calls Required to be Cancellation Points

	Synopsis
	4.9.2 Managing the Thread's Stack
	Figure 4-12. Stack frames generated from a thread.

	Synopsis
	Synopsis
	Synopsis
	Example 4.3 Changing the stack size of a thread using an offset.
	4.9.3 Setting Thread Scheduling and Priorities

	Synopsis
	Synopsis
	Example 4.4 Using the thread attribute object to set the scheduling policy and priority of a thread.

	Synopsis
	Table 4-7. Conditions in Which the Scheduling Policy and Priority Functions May Fail
	4.9.3.1 Setting Contention Scope of a Thread

	Synopsis
	4.9.4 Using sysconf()

	Synopsis
	Table 4-8. Systems Variables and Their Corresponding Symbolic Constants
	4.9.5 Managing a Critical Section
	Program 4.5
	Program 4.6
	Program 4.7

	4.10 Thread Safety and Libraries
	4.11 Dividing Your Program into Multiple Threads
	4.11.1 Using the Delegation Model
	Example 4.5 Approach 1: Skeleton program of boss and worker thread model.
	Example 4.6 Functions that manage thread availability count.
	Example 4.7 Approach 2: Skeleton program of boss and worker thread model.

	4.11.2 Using the Peer-to-Peer Model
	Example 4.8 Skeleton program using the peer-to-peer model

	4.11.3 Using the Pipeline Model
	Example 4.9 Skeleton program using the pipeline model.

	4.11.4 Using the Producer–Consumer Model
	Example 4.10 Skeleton program using the producer–consumer model.

	4.11.5 Creating Multithreaded Objects
	Example 4.10 Declaration and definition of multithreading an object.

	Summary

	Chapter 5. Synchronizing Concurrency between Tasks
	5.1 Coordinating Order of Execution
	Figure 5-1. Activity diagram for sorting, searching, and displaying the contents of a list.
	5.1.1 Relationships between Synchronized Tasks
	Figure 5-2. The synchronization relationships that can exist between tasks A and B.

	5.1.2 Start-to-Start (SS) Relationship
	5.1.3 Finish-to-Start (FS) Relationship
	5.1.4 Start-to-Finish Relationship
	5.1.5 Finish-to-Finish Relationship

	5.2 Synchronizing Access to Data
	Figure 5-3. The memory shared between threads and processes.
	5.2.1 PRAM Model
	5.2.1.1 Concurrent and Exclusive Memory Access
	Figure 5-4. EREW, CREW, ERCW, and CRCW access policies.

	5.3 What are Semaphores?
	5.3.1 Semaphore Operations
	Table 5-1. Semaphore Types Defined by the POSIX Standard and Their Use by Threads and/or Processes

	5.3.2 Mutex Semaphores
	Table 5-2. pthread_mutex_t Functions
	5.3.2.1 Using the Mutex Attribute Object
	Table 5-3. pthread_mutex_t Attribute Object Functions
	Figure 5-5. Private and shared mutexes.
	5.3.2.2 Using Mutex Semaphores to Manage Critical Sections
	Example 5.1 Using mutexes to protect critical sections of threads.
	Example 5.2 Mutexes used to protect critical sections.

	5.3.3 Read–Write Locks
	Table 5-4. Read–Write Lock Operations
	5.3.3.1 Using Read-Write Locks to Implement Access Policy
	Table 5-5. Attribute Object Functions for pthread_rwlock_t
	Example 5.3 Threads using read-write locks.
	Table 5-6. Part of the Decision Table for Example 5.3

	5.3.4 Condition Variables
	Table 5-7. Functions for the pthread_cond_t that Implement Condition Variables Operations
	5.3.4.1 Using Condition Variables to Manage Synchronization Relationships
	Example 5.4 FS synchronization relationship between two threads.
	Table 5-8. Functions of the Attribute Object for the Condition Variable of Type pthread_cond_t
	Example 5.5 FF synchronization relationship between two threads.

	5.4 Synchronization: An Object-Oriented Approach
	Summary

	Chapter 6. Adding Parallel Programming Capabilities to C++ Through the PVM
	6.1 The Classic Parallelism Models Supported by PVM
	Figure 6-1. Four classic models of parallelism and the classification of PVM programs.

	6.2 The PVM Library for C++
	Program 6.1

	Program Profile 6.1
	Program 6.2

	Program Profile 6.2
	6.2.1 Compiling and Linking a C++/PVM Program
	6.2.2 Executing a PVM Program as a Standalone
	6.2.2.1 Starting PVM Programs Using the PVM Console
	6.2.2.2 Start PVM Programs Using XPVM
	Figure 6-2. The XPVM task dialog.
	Table 6-1. Seven Categories of PVM Library Routines

	6.2.3 A PVM Preliminary Requirements Checklist
	Table 6-2. Most Commonly Used Architectures for the PVM Environment
	Figure 6-3. An example of a PVM host file.

	6.2.4 Combining the C++ Runtime Library and the PVM Library
	6.2.5 Approaches to Using PVM Tasks
	Figure 6-4. Some possible configurations for spawning PVM tasks.
	6.2.5.1 Using the SPMD (SIMD) Model with PVM and C++
	Example 6.1 Calling the pvm_spawn routine from main().
	Example 6.2 Using multiple calls to pvm_spawn from main().
	Example 6.3 Creating combinations of sets.
	Example 6.4 Definition of the colorCombinations() function.
	Example 6.5 Using PVM tasks to produce numeric combinations.
	Example 6.6 Using the MessageId tag to distinguish data types.
	6.2.5.2 Using the MPMD (MIMD) Model with PVM and C++
	Example 6.7 Using PVM to implement the MPMD model of computation.
	Figure 6-5. Some options available for MPMD configurations using the PVM environment.

	S 6.1. Combination Notation
	6.3 The Basic Mechanics of the PVM
	Figure 6-6. Basic architecture of the PVM environment.
	6.3.1 Process Management and Control Routines

	Synopsis
	6.3.2 Message Packing and Sending
	Table 6-3. pvmpk Routines

	Synopsis
	Synopsis
	Synopsis
	6.4 Accessing Standard Input (stdin) and Standard Output (stdout) within PVM Tasks
	6.4.1 Retrieving Standard Output (cout) from a Child Task

	Summary

	Chapter 7. Error Handling, Exceptions, and Software Reliability
	7.1 What is Software Reliability?
	7.2 Failures in Software Layers and Hardware Components
	Figure 7-1. A breakdown of some of the hardware components and layers of software involved in failure.
	Figure 7-2. Contrasting the increase of distance between location of tasks and the increase of the level of difficulty of error and exception handling.

	7.3 Definitions of Defects Depend on Software Specifications
	7.4 Recognizing Where to Handle Defects versus Where to Handle Exceptions
	Table 7-1. Types of Testing Used During the Software Development Process
	Table 7-2. Differences between the Characteristics of Error and Exception Handling and the Handling of Unwanted Conditions
	Figure 7-3. Architecture of a simplified error handling component.

	7.5 Software Reliability: A Simple Plan
	7.5.1 Plan A: The Resumption Model, Plan B: The Termination Model

	7.6 Using Map Objects in Error Handling
	Example 7.1 Using a function's return values to determine the correct ErrorHandler object to access.
	Example 7.2 Using a template in the importantOperation() function.

	7.7 Exception Handling Mechanisms in C++
	7.7.1 The Exception Classes
	Table 7-3. Runtime and Logic Error Classes
	7.7.1.1 The runtime_error Classes
	Figure 7-4. The class relationship diagram for the runtime_error family of classes.
	Example 7.3 Throwing an exception object and a logic_error object.
	7.7.1.2 The logic_error Classes
	Figure 7-5. The class relationship diagram for the logic_error family of classes.
	7.7.1.3 Deriving New Exception Classes
	7.7.1.4 Protecting the Exception Classes from Exceptions

	7.8 Event Diagrams, Logic Expressions, and Logic Diagrams
	Figure 7-6. A simple event diagram.
	Figure 7-7. A logic diagram showing three AND gates OR'ed with OR gates to obtain the success of the system.

	Summary

	Chapter 8. Distributed Object-Oriented Programming in C++
	8.1 Decomposition and Encapsulation of the Work
	Figure 8-1. The logical structure and distribution of objects in the producer–consumer, peer-to-peer, blackboard, and multiagent models.
	8.1.1 Communication between Distributed Objects
	8.1.2 Synchronization of the Interaction between the Local and the Remote Objects
	8.1.3 Error and Exception Handling in the Distributed Environment

	8.2 Accessing Objects in Other Address Spaces
	Example 8.1 Simple example of block scope.
	Example 8.2 Using objects which invoke methods of other objects of the same address space.
	8.2.1 IOR Access to Remote Objects
	Figure 8-2. A high-level breakdown of some component contained in an IOR under the IIOP protocol.

	8.2.2 ORBS (Object Request Brokers)
	Figure 8-3. The simplified overview of the steps that an ORB uses on behalf of a local object.
	Program 8.1
	Program 8.2

	8.2.3 Interface Definition Language (IDL): A Closer Look at CORBA Objects
	Table 8-1. IDL Keywords
	Table 8-2. Basic IDL Data Types
	Example 8.3 Two classes generated by MICO IDL compiler from the adding_machine.idl.
	Example 8.4 User-defined class implementation of skeleton classes.

	8.3 The Anatomy of a Basic CORBA Consumer
	8.4 The Anatomy of a CORBA Producer
	Figure 8-5. Basic components of a CORBA producer program.

	8.5 The Basic Blueprint of a CORBA Application
	Figure 8-6. The logical structure of a barebones CORBA application.

	Program Profile 8.1
	Program Profile 8.2
	8.5.1 The IDL Compiler
	Table 8-3. Some Commonly Used Command-Line Options to the IDL Compiler

	8.5.2 Obtaining IOR for Remote Objects
	8.6 The Naming Service
	Figure 8-7. Several different naming contexts.
	Figure 8-8. An alternative representation of the naming graph.
	Program 8.3

	S 8.1. Semantic Networks
	. Sidebar Figure 8-1 A simple vehicle semantic network.
	8.6.1 Using the Naming Service and Creating Naming Contexts
	Example 8.5 Shell script that adds an entry to the Implementation Repository and starts the naming service.

	8.6.2 A Name Service Consumer/Client
	Program 8.4

	8.7 A Closer Look at Object Adapters
	Table 8-4. Some Commonly Found Elements in an Implementation Repository
	Figure 8-9. Configuration possibilities between POAs and servants.

	8.8 Implementation and Interface Repositories
	8.9 Simple Distributed Web Services Using CORBA
	Example 8.6 A HTML document with an embedded call to a CORBA client program.
	Figure 8-10. A simple Web services configuration using CORBA components.

	8.10 The Trading Service
	Figure 8-11. Basic architecture of a CORBA-based client-server application that makes requests of traders.
	Table 8-5. Common Trader Programming Terms

	8.11 The Client/Server Paradigm
	Summary
	Table 8-6. Common Types of Software Servers

	Chapter 9. SPMD and MPMD Using Templates and the MPI
	9.1 Work Breakdown Structure for the MPI
	9.1.1 Differentiating Tasks by Rank
	Example 9.1 Using the MPI_Comm_rank() routine.

	9.1.2 Grouping Tasks by Communicators
	9.1.3 The Anatomy of an MPI Task
	Figure 9-1. A MPI program.
	Table 9-1. Routines Used to Work with Communicators

	9.2 Using Template Functions to Represent MPI Tasks
	9.2.1 Instantiating Templates and SPMD (Datatypes)
	Example 9.2 Using template functions to designate what the MPI task will do.
	Example 9.3 Using container templates as arguments to template functions.

	9.2.2 Using Polymorphism to Implement MPMD
	Figure 9-2. The vehicle class family hierarchy.
	Example 9.4 The travel() function using a vehicle object.
	Example 9.5 MPI tasks implementing simple search and rescue simulation.
	Table 9-2. Different Types of Polymorphism That May Be Used to Simplify MPI Tasks

	9.2.3 Adding MPMD with Function Objects

	9.3 Simplifying MPI Communications
	Table 9-3. MPI Send and Receive Functions and Their Prototypes
	Figure 9-3. UML class diagram for iostream family classes.
	9.3.1 Overloading the << and >> Operators for MPI Communication
	Example 9.6 Contains an excerpt from the declaration of a mpi_stream class.
	Example 9.7 Definition of << and >> operators.

	Summary

	Chapter 10. Visualizing Concurrent and Distributed System Design
	10.1 Visualizing Structures
	10.1.1 Classes and Objects
	Figure 10-1. The various ways to represent a class.
	Figure 10-2. Mutiple instances of a class represented graphically and using multiplicity notation.
	10.1.1.1 Displaying Specifics about Attributes and Services
	Table 10-1. Properties for Attributes and Operations
	10.1.1.2 Ordering the Attributes and Services
	Figure 10-3. Two ways attributes and services can be organized in a class diagram.
	10.1.1.3 Template Classes
	Figure 10-4. The ways to represent a bound and unbound template class.

	10.1.2 The Relationship between Classes and Objects
	Table 10-2. Stereotypes That Can Be Applied to Dependencies
	Table 10-3. Stereotypes and Constraints That Can Be Applied to Generalizations
	Table 10-4. Stereotypes, Constraints, and Adornments That Can Be Applied to Associations
	10.1.2.1 Interface Classes
	Example 10.1 Using the stack class as an interface class.
	Figure 10-5. Ways to represent an interface class.

	10.1.3 The Organization of Interactive Objects
	Figure 10-6. A collaboration diagram for a course adviser system.

	10.2 Visualizing Concurrent Behavior
	10.2.1 Collaborating Objects
	Figure 10-7. A collaboration diagram using sequence numbers.
	10.2.1.1 Processes and Threads
	Figure 10-8. An active object and class.
	10.2.1.2 Showing the Multiple Flows of Control and Communication
	Figure 10-9. A collaboration diagram of static and active objects in the course adviser system.

	10.2.2 Message Sequences between Objects
	Figure 10-10. A sequence diagram of some of the objects involved in the course adviser system.

	10.2.3 The Activities of Objects
	Figure 10-11. The decision symbol used in determining whether a knowledge source should be constructed.
	Figure 10-12. An example of forking and joining from or to the synchronization bar.
	Figure 10-13. An activity diagram with swimlanes showing a sequence of actions in the course advisor system.

	10.2.4 State Machines
	Figure 10-14. State diagram for processes.
	Table 10-5. Parts of a State
	Figure 10-15. The general structure of a state with an exit action, entry action, do activity, and internal– self-transitions.
	Table 10-6. Parts of a Transition
	10.2.4.1 Concurrent Substates
	Figure 10-16. State diagram for the blackboard object.

	10.2.5 Distributed Objects
	Figure 10-17. Approaches to show the location of a component in a distributed system.

	10.3 Visualizing the Whole System
	10.3.1 Visualizing Deployment of Systems
	Figure 10-18. A deployment diagram using packages.

	10.3.2 The Architecture of a System
	Figure 10-19. Packages used in the course adviser system.

	Summary

	Chapter 11. Designing Components That Support Concurrency
	Table 11-1. Types of Object-Oriented Classes
	11.1 Taking Advantage of Interface Classes

	Synopsis
	Example 11.1 Declaration of the mutex class.
	Example 11.2 Member functions for the mutex class.
	Figure 11-1. The relationship between threads, PVM tasks, event queue, and the pvm_stream class within a PVM program.
	Figure 11-2. The class diagram for our userdefined x_queue class and pvm_stream class.
	Example 11.3 Declaration of the x_queue class.
	Example 11.4 Defintion of enqueue() method.
	Example 11.5 Declaration of pvm_stream class.
	Example 11.6 Definition of the << operator for the pvm_stream class.
	11.2 A Closer Look at Object-Oriented Mutual Exclusion and Interface Classes
	11.2.1 Semi-Fat Interfaces that Support Concurrency
	Example 11.7 Declaration of the synchronization_variable class.
	Example 11.8 Declaration of a mutex class that inherits the synchronization_variable class.

	Synopsis
	Example 11.9 Declaration of rw_mutex class that contains pthread_rwlock_t and pthread_rwlockattr_t objects.
	Figure 11-3. The class relationships between rw_mutex, mutex, synchronization_variable, and runtime_error classes.
	Example 11.10 Declaration of semaphore class.

	Synopsis
	Example 11.11 Definitions of lock(), unlock(), and trylock() methods for the semaphore class.
	Table 11-2. Fundamental Differences between Mutexes and Semaphores
	11.3 Maintaining the Stream Metaphor
	Example 11.12 Declaration of pvm_stream class that inherits mios class.
	Figure 11-4. The class diagram showing the relationship between the major classes in the iostream class library and the class diagram for the pvm_stream class.
	11.3.1 Overloading the <<, >> Operators for PVM Streams
	Example 11.13 Definition of <<operator for the pvm_stream class.
	Example 11.14 Definition of operator >> for the pvm_stream class.
	Figure 11-5. The interaction between the threads, the pvm_stream class, and the pvm_send and pvm_receive buffers.
	Example 11.15 Definition of operator << and operator >> for the pvm_stream class.

	11.4 User-Defined Classes Designed to Work with PVM Streams
	Example 11.16 Declaration of spectral_palette class.
	Example 11.17 Definition of operator<< for the spectral_palette class.
	Example 11.18 Using the pvm_stream and spectral_palette objects.
	Figure 11-6. The components used to support the TaskStream and MyColors objects.

	11.5 Object-Oriented Pipes and fifos as Low-Level Building Blocks
	Figure 11-7. Class diagram for the major components of the iostream class.
	Example 11.19 Using system call to create a pipe.
	Table 11-3. Three Types of Buffer Classes
	Figure 11-8. The class diagrams for the fstream family of classes.

	Synopsis
	11.5.1 Connecting Pipes to iostream Objects Using File Descriptors
	Example 11.20 Creating a pipe and using the attach() function.
	Program 11.1

	Program Profile 11.1
	Example 11.21 Connecting file descriptors to an ofstream object.
	Figure 11-9. The relationships between ifstream and ofstream objects, pipe, and the inserter and extractor when the iostreams are used for interprocess communication.
	11.5.2 Accessing Anonymous Pipes Using the ostream_iterator
	Table 11-4. Set of Operations Available on the ostream_iterator and istream_iterator
	Figure 11-10. The relationship between the I/O iterators and the iostream classes.
	Example 11.22 Declaration of the ostream_iterator class.
	Program 11.2

	Program Profile 11.2
	Program 11.2b

	Program Profile 11.2b
	11.5.3 fifos (Named Pipes), iostreams, and the ostream_iterator Classes
	Program 11.3

	Program Profile 11.3a
	Program 11.3b Reads from channel1 and write to channel2.

	Program Profile 11.3b
	11.5.3.1 fifo Interface Classes
	Example 11.23 Declaration of the fifo class.
	11.6 Framework Classes Components for Concurrency
	Example 11.24 Declarations for the language_processor class and definition for the process_input method.
	Example 11.25 Definition of recordMessge() and getMessage() methods for the agent_framework class.
	Figure 11-11. The basic structure of the agent_framework class and how it relates to the blackboard.

	Summary

	Chapter 12. Implementing Agent-Oriented Architectures
	12.1 What are Agents?
	12.1.1 Agents: A First-Cut Definition
	12.1.2 Types of Agents
	Table 12-1. Five Major Categories of Agents

	12.1.3 What is the Difference between Objects and Agents?

	S 12.1. Deduction, Induction, and Abduction
	. Sidebar Figure 12-1 Rules of inference taken from the back inside cover of COPI symbolic reasoning.
	12.2 What is Agent-Oriented Programming?
	12.2.1 Why Agents Work for Distributed Programming
	12.2.2 Agents and Parallel Programming
	Table 12-2. State Access Policies

	12.3 Basic Agent Components
	Figure 12-1. Logical layout of an agent class.
	12.3.1 Cognitive Data Structures
	12.3.1.2 Inference Methods
	Table 12-3. Tables for Descriptions of the Most Basic Inference Implementation Techniques

	12.4 Implementing Agents in C++
	12.4.1 Proposition Datatypes and Belief Structures
	Example 12.1 Declaration of a proposition class.
	Table 12-4. How the Operators are Mapped to Logical Operators
	Example 12.2 Declaration of the trip_announcement class.
	Example 12.3 Declaration for the performance_statement class.
	Figure 12-2. UML class diagram for the trip_announcement class and the performance_statement class.

	12.4.2 The Agent Class
	Example 12.4 Declaration of the agent class.
	Example 12.5 The agent class's constructor.
	12.4.2.1 The Agent Loop
	Figure 12-3. Simple overview of a logical agent cycle.
	12.4.2.2 The Agent's Inference Methods
	Example 12.6 Excerpts from the definition of the proposition class and its descendants.
	Example 12.7 Definitions for validTrip and directTrip().
	Example 12.8 Update beliefs.
	Example 12.9 The set goals method.
	Example 12.10 Second inference method.
	Example 12.11 The performance_statement class.
	Example 12.12 Operator overloading of || and &&.
	Example 12.13 displayTravelPlan() method.

	12.4.3 Simple Autonomy

	12.5 Multiagent Systems
	Summary

	Chapter 13. Blackboard Architectures Using PVM, Threads, and C++ Components
	13.1 The Blackboard Model
	Figure 13-1. Two memory configurations for the blackboard.

	13.2 Approaches to Structuring the Blackboard
	Figure 13-2. The logical layout for a basic blackboard architecture.

	13.3 The Anatomy of a Knowledge Source
	Figure 13-3. The logical layout of a knowledge source.

	13.4 The Control Strategies for Blackboards
	Table 13-1. Four Types of Parallel Access Used by a Model

	13.5 Implementing the Blackboard Using CORBA Objects
	13.5.1 The CORBA Blackboard: An Example
	Example 13.1 Two CORBA declarations necessary for our blackboard class.

	13.5.2 The Implementation of the black_board Interface Class
	Example 13.2 An excerpt from the implementation class for the black_board interface class.
	Example 13.3 Excerpt of the POA_black_board class created by the idl compiler for the black_board interface class.

	13.5.3 Spawning the Knowledge Sources in the Blackboard's Constructor
	13.5.3.1 Spawning Knowledge Sources Using PVM Tasks
	Example 13.4 The declaration of the task class.
	Table 13-2. PVM Group Routines
	Figure 13-5. UML activity diagram showing the synchronization of the blackboard and the knowledge sources.
	Example 13.5 The function operator of the task object.
	Example 13.6 Launching PVM tasks from the task class constructor.
	13.5.3.2 Connecting Blackboard and the Knowledge Sources
	Example 13.7 A knowledge source that connects to the CORBA blackboard.
	13.5.3.3 Activating Knowledge Sources Using POSIX spawn()
	Figure 13-6. Two architectures that can be used with the CORBA-based blackboard and UNIX/Linux processes.
	Example 13.8 Using posix_spawn() to launch knowledge sources.
	Example 13.9 The child_process will be used as a function object when launching knowledge sources.
	Figure 13-4. Control configurations and their layers in the blackboard architecture.

	13.6 Implementing the Blackboard Using Global Objects
	Figure 13-7. Contrasts of the three basic configurations for process distribution for blackboards and knowledge sources.
	Figure 13-8. The exception and error level difficulty.
	Example 13.10 An excerpt from the course advisor blackboard designed for a threaded environment.

	13.7 Activating Knowledge Sources Using Pthreads
	Example 13.11 The blackboard's constructor used to create the threads that will contain the knowledge sources.
	Figure 13-9. The four knowledge sources may concurrently read and write their section of the blackboard.

	Summary

	Appendix A. Diagrams
	A.1 Class and Object Diagrams
	Figure A-1. The multiple ways a class or object can be represented. Classes can show services, attributes, and visibility. Active classes or objects use a heavier line.
	Figure A-2. Multiple instances of classes and objects. Multiple instances can be shown graphically or by using multiplicity notation.
	Figure A-3. The ways to represent bound or unbound template or parameterized classes.

	A.2 Interaction Diagrams
	A.2.1 Collaboration Diagrams
	A.2.2 Sequence Diagrams
	Figure A-4. The ways to represent an interface class. An interface class can be represented using a lollipop symbol or as a regular class displaying the <<interface>> stereotype. The relationship between the interface class and the realization of the class can also be depicted.
	Figure A-5. The ways to represent single and multiple inheritance. There are two target styles that can be used when multiple classes are involved in a relationship: shared and separate. With the shared target style, multiple classes are tied to a single inheritance symbol that points to the target class. With the separate target style, each class has its own inheritance symbol.

	A.2.3 Activity Diagrams
	Figure A-6. Examples of the multiple relationships that can be depicted in a class diagram. Multiplicity notation can be used to show the number of instances between classes and objects.
	Figure A-7. A collaboration diagram showing the organization of collaborations within a system and the structural relationship of objects within a collaboration.
	Figure A-8. A sequence diagram is used to emphasize the time ordering of messages passed between objects. The active objects are placed at the top on the x-axis of the diagram. The messages passed between the objects are placed on the y-axis of the diagram. The diagram can depict synchronous and asynchronous messaging. The time ordering of messages is demonstrated by reading the messages from top to bottom along the y-axis.
	Figure A-9. Activity diagrams show the action of objects as it flows from the focus of control of one object to another. It depicts the forking of multiple flows of control (concurrency) and joining of flows of control with a synchronization bar. Swimlanes are used to show which object is performing the action. Transitions may cut across swimlanes. A synchronization bar may also cut across swimlanes, indicating multiple flows of control reside in different objects performing actions concurrently.

	A.3 State Diagrams
	Figure A-10. State diagrams show the states and transitions of an object during its lifetime. A state diagram has an initial state and a final state. A state has several parts. States can also be a composite of other states or even another state diagram. Substates that execute in parallel within a single entity are called concurrent substates.

	A.4 Package Diagrams
	Figure A-11. Package diagrams can be used to organize elements of a system. The stereotypes <<system>> or <<subsystem>> can be used. The tab on the left can hold the name of the package if the package contains other entities.

	Bibliography

